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The Axioms of ZFC
1. (Extensionality, Ext) two sets are equal whenever they have the same members:

8x 8y .x D y $ 8v .v 2 x $ v 2 y//.
2. (Empty set) there is a set ; with no members: 9z8x.x … z/.
3. (Comprehension, Comp) for each x, and for each FOL.2/-formula '.v; Ew/, ¹v 2 x W '.v; Ew/º exists:

8w0 � � � 8wn 8x 9z 8v .v 2 z $ v 2 x ^ '.v; Ew//.
4. (Pairing, Pair) for any two sets x and y, the pair ¹x; yº exists: 8x 8y 9z8v .v 2 z $ .v D x _ v D y//.
5. (Union, Union) for any family of sets F , there is a set containing the elements of all of those sets:

8F 9U 8v .v 2 U $ 9x.x 2 F ^ v 2 x//.
6. (Foundation, Found) for each x, there is a 2-minimal element of x, meaning a member y 2 x with no z 2 y

being in x:
8x9y.y 2 x ^ 8z.z 2 y ! z … x//.

7. (Infinity, Inf) an infinite set exists: 9N.; 2 N ^ 8x.x 2 N ! x [ ¹xº 2 N//.
8. (Replacement, Rep) the image of a function over a set is a set: for each FOL.2/-formula ',

8w0 � � � 8wn8D
�
8x.x 2 D ! 9Šy '.x; y; Ew//! 9R.y 2 R$ 9x.x 2 D ^ '.x; y; Ew///

�
.

9. (Powerset, P) for each x, P .x/ exists: 8x 9P 8v .v 2 P $ 8y .y 2 v ! y 2 x//.
10. (Choice, AC) for any family of non-empty family of non-empty, disjoint sets F , there is a set C which has

chosen one element from each z 2 F :
8F .; … F ^ 8x; y 2 F .x \ y D ;/! 9C 8x 2 F 9Šy .y 2 x \ C/.

Variant Axioms and Axiom Systems
i. (Weak pairing, wPair) for any two x; y, there is a z with x; y 2 z.
ii. (Weak union, wUnion) for any family F , there is a z with 8x 2 F .x � z/.
iii. (Weak replacement, wRep) the image of a function over a set is contained in a set.
iv. (Weak powerset, wP) for any x, there is a set containing all subsets of x.
v. (Collection, Coll) there is a range for a relation with over a given domain: for each FOL.2/-formula ',

8w0 � � � 8wn8D
�
8x 2 D 9y '.x; y; Ew//! 9R 8x 2 D 9y 2 R '.x; y; Ew/

�
.

vi. (†n-Comprehension, †n-Comp) for each x, and for each †n-formula '.v; Ew/, ¹v 2 x W '.v; Ew/º exists.
vii. (†n-Collection, †n-Coll) Coll holds for †n-formulas.
viii. (Dependent choice, DC) for R � X � X , if 8x 2 X 9y 2 X .x R y/ then there is a sequence hxn W n 2 !i

such that xn R xnC1 for all n 2 !.
ix. For every x; y, x � y exists.

Set Theories
• BST consists of (1)–(6) plus (ix).
• wZF consists of (1), (2), (3), (6), (7), and (i)–(iv). wZFC also adds (10).
• ZF� consists of (1)–(8) plus (v). ZFC� also adds (10).
• ZF D ZF�

C P consists of (1)–(9). ZFC also adds (10).
• KP D BST�CompC†0-CompC†0-Coll, i.e. (1), (2), (4), (5), (6), †0-Comprehension, and†0-Collection.
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CH I

Chapter I. Transitivity

Set theory is on one hand the study of collections and their use in mathematics. When mathematicians attempt to
make something precise, they do so using collections: functions are viewed as collections of pairs, a line or circle
is a collection of points, real numbers are certain collections of rational numbers, and so on. Set theory then serves
as a foundational role in mathematics in that questions like “what kinds of things exist?” and “are there any counter-
examples to this idea?” become questions about what sets exist.

So we use set theory in an attempt to provide a foundation for valid mathematical reasoning, and in doing so, we are
unsurprisingly led to ask what is and isn’t valid by way of asking what sets do or don’t exist. This evolves into the
study of statements whose validity is impossible to determine—statements called independent of our mathematical
principles or axioms. Set theory then becomes the study of why these statements are independent.

On the other hand, set theory is the result of a historical process of discovery and definition. The standard axioms we
have set as the ultimate foundation of mathematical thought, ZFC, have been formulated and modified by people over
the last one and half centuries. As such, these principles are not some divine work but instead (supposedly) intuitively
clear principles and ideas that hold when thinking about collections. As one studies these principles more and more,
the theory of ZFC seems more and more canonical despite its cultured past. So although the precise form the axioms
take is not “universal”, it’s difficult to find any intuitively clear principles that aren’t already proven by ZFC.

I state these two perspectives because it’s important to realize that what principles hold of the real world are not entirely
obvious. Indeed, a large chunk of this document is dedicated to why there are lots of principles we simply have no way
of knowing the truth about one way or the other if we take ZFC as our only starting point. Nevertheless, we are not
doomed to wallow in the weaknesses of ZFC. There are arguments to be made for other, less obvious principles that
can have tremendously deep consequences and explanatory power. So we may also act as scientists, having to use our
intuitions, imaginations, and available evidence to think about what lies beyond our limited knowledge.

Before getting too deep in the study, I want to give some notation. The only (non-logical) symbol really used in set
theory is the membership relation: “x 2 y” symbolizes “x is a member of the collection y”, or more succinctly, “x
is in y”. For example, N is typically used to denote the collection of all natural numbers. So 1 2 N and 4 2 N,
for example. We can also consider smaller sets. If we can list out all the elements of a set, we may denote the set by
enclosing the members in braces: the set of 1, 4, and 8 is ¹1; 4; 8º. Note that in general, x ¤ ¹xº. To see why this is
true, consider a more physical analogy: if we take x to be a marble, ¹xº is a bag with one marble in it, whereas x is
just the marble itself. The concept is flexible enough to allow us to collect together many things at once, and thinking
about statements like the above is where set theory starts.

In practice, one cannot go too deep in set theory without understanding transitive sets. In general, a relationR is called
“transitive” iff for all relevant x, y, and z, if x R y and y R z, then x R z. Classic examples of this include equality,
and the ordering on the reals <, among many others. In the context of set theory, a collection is called transitive iff
the membership relation 2 is a transitive relation on it: X is transitive iff z 2 y 2 X implies z 2 X . On its own, this
property seems unmotivated or perhaps useless, but it plays one of the most fundamental roles in set theory. To hint
at an important connection, consider the totality of all sets, denoted here by V. So V is composed just of sets: any
member of V is a set and all of their members are sets too, and all of their members, and so on. This collection V is
therefore transitive. Transitive collections are then the first candidates for models of set theory: they are an attempt to
approximate V.

Transitive sets can also approximate V in truth. In particular, there are lots of statements “absolute” between transitive
structures in the sense that they all agree on whether they’re true or false. So we will be interested in this kind of
absoluteness, as this tells us information about V. In another sense, transitive sets interpret membership correctly. This
makes independence results around transitive sets important because the “reason” the statement is independent isn’t

1



CH I§ 0A

the result of misinterpretation. Misinterpretations are relatively easy to come by; formally, ZFC is regarded as a bunch
of formulas, and it’s impossible for such formulas to uniquely determine what exactly a set is and what properties they
have. So with transitive sets, independence results aren’t merely due to these weird misinterpretations but instead some
deeper facts about sets.

§0A. Philosophy

We begin with the philosophically basic notion of a collection: we take it as immediate that things exist, and that we
can consider collections of things as abstract objects. It is in this sense that we mean that these collections “exist”, and
hence we can take collections of collections, and so forth. We in the real world can then reason about these collections
and their properties. The simplest examples of this kind of reasoning comes from Venn diagrams, like the one pictured
below.

A B

A \ B ,
things in
both A
and B .

0A • 1. Figure: Example of a Venn-diagram

The first concept we then define is the collection of all sets, the actual set theoretic universe. More precisely, we begin
with the sets that are hereditarily sets, meaning for each x, every member of x is a set, and all of their members are
too, and so on.

0A • 2. Definition
The universe of sets is the structurei V D hV;2i, where V consists of all (and only) sets, and 2 denotes membership.

What exactly should this universe look like? Intuitively, we start with a set with no elements: the empty set, ;. Then,
we can take the set of just this object ¹;º. Now we have two objects, and we can take collections of these: ;, ¹;º,
¹¹;ºº, and ¹;; ¹;ºº. And we can continue this iterative formation of sets. This iterative conception is at the heart of
modern set theory, and I hope to further motivate why it is true through the chapter. But first, we must acknowledge
how we will do this: indeed, the question of our base level axioms come into question.

Wewill go through the chapter introducing principles or axiomswhich are generally seen as statements true of V beyond
any doubt. Now we are interested not just in what is true of V, but also what we can prove about V from these axioms.
In particular, it is not immediately obvious whether certain statements are true or false. If we are to argue that we
cannot prove nor disprove them, then we need to have agreed upon, intuitively true axioms about V. It is, of course,
an open question whether our list of axioms exhausts all intuitively true statements about V. But given the power of
the axioms we present, it is difficult to find simple principles that are intuitively obvious but independent of the other
axioms.

How we state these axioms is important if we are to have a precise notion of proof or the lack thereof. Usually,
mathematical statements are written in a codified version of natural language, where notation replaces the normal
words of English, Russian, or whatever other language. This is no different for us, but we rely on notation even more
to ensure that we can carry out everything in a formal system using just basic reasoning about finite objects, namely
formulas. This then begs the question, what formal system should we use?

iStructures are regarded as ordered lists with the first entry denoting the domain of discourse or “universe”, and the other entries denoting the
relevant relations and functions we're considering over that universe. Angle brackets are generally used to denote ordered lists in set theory.

2



CH I§ 0

Note that there is an important distinction in logic between the reasoning we use in the real world and the reasoning a
certain subject allows. For example, we in the real world have the ability to conclude a D c from a D b and b D c.
However if we consider only the sentential/propositional connectives there—“and” and “implies”—we cannot make
the same conclusions. From the perspective of propositional logic, “a D b and a D c” is no different from “A and B”
where A and B are two completely unrelated propositions: the logic no longer considers the meaning of equality, only
the meaning of these sentential connectives. To distinguish the two logics, the reasoning we use in the real world
is called the meta-theory whereas the reasoning a certain subject (like propositional logic) allows is called the logic
system.ii The reasoning of a logic system is entirely formal, following from strings of symbols, but with the proper
setup, it can characterize a portion of the meta-theory, like the simple example of propositional logic.

The more complicated example of first-order logic is where we will state our axioms. This is both because it has the
expressive power needed to present the axioms, and because there are a great deal of important results related to it, as
we will see in the first section. To give a more cultural reason, first-order logic is not the only logic system one can use
to study mathematics, but most other logic systems can be reformulated in terms of set theory with arguments that take
place in first-order logic. In fact, second order logic is sometimes called “set theory in sheep’s clothing”. Generally,
first-order logic is the framework in which the results of set theory are given, and results about set theory are generally
about it in this framework.

Now a priori, there’s no guarantee that the world behaves in accordance with the axioms of ZFC (the standard axioms
of set theory). The axioms are taken to be intuitively obvious, but in fact, we would need to reject them as part of
the meta-theory if it turned out that this system were inconsistent. Furthermore, constructions allowed by ZFC like R
and N can be called into question if we reject certain axioms like the existence of N. How then do we regard such
statements as “jRj > jNj”? Is this a meta-theoretic fact, or is this better regarded as a formula of first-order logic
following from certain axioms? There are a few ways to address these concerns. Two major positions are presented
here.

One stance is a purely formalist one. This view will neglect to say anything substantial about the meta-theory, taking
only the most basic algorithmic reasoning needed for the study of logic for granted. The formalist approach then
doesn’t connect the reality of the meta-theory with results of axioms like ZFC, and it in some sense ignores whether the
theories we study are important at all. No commitments are made for whether the natural numbers N exist or whether a
statement like jRj > jNj has any meaning in the meta-theory. But the formalist will deny that the sequence of symbols
“jRj > jNj” has any actual meaning. Instead, the formalist will view the statements about ‘N’ or ‘R’, for example,
as merely symbols algorithmically changed from other symbols collectively called ZFC.iii So the results of theories in
the logic system are seen purely as symbolic manipulation with no connection to the meta-theory. At best, a formalist
will say the symbols in the logic system can be translated into arguments in the meta-theory where they should have
been given in the first place. At worst, a formalist will say the symbols are devoid of content.

Another stance is a platonist one. This view will hold that the results of axioms like ZFC in the logic system do
characterize a fragment of the meta-theory—in particular, V. Not only is there a standard meaning of the statement
“jRj > jNj”, but there is an actual fact of the matter, and we can learn such facts through study of theories in things like
first-order logic. By and large, a platonist stance is held by mathematicians that want to claim that their conclusions
are actually true and not merely derived from playing with symbols. Indeed most of mathematics is not done through
symbolic algorithms like truth tables but instead through intuitions and clever constructions. That said, a platonist stance
isn’t strictly necessary, since often meta-theoretic arguments can be reformulated as symbolic ones and vice-versa. In
this way the two stances are not incompatible.

This work will takemore of a platonist stance. More precisely, ZFC is held as a collection of true statements aboutV, and
this is used to reason about ZFC as presented symbolically. Later it will be useful when thinking about independence
results to adopt a slightly different outlook where there might be expansions of this universe (such expansions would
be incompatible with Definition 0A • 2). The results we give can be translated into any of these frameworks pretty

iiElsewhere in the literature, you might see other words like the object language, proof system, or perhaps just logic to refer to logic system or
how it's written.

iiior whatever other foundation they are studied in.
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LOGIC AND MODEL THEORY CH I §1A

easily, so the view adopted is partially for pragmatic and pedagogical reasons.

Section 1. Logic and Model Theory

We begin with an overview of symbolic logic, because most of the rest of this document will assume some familiarity
with the basics of first-order logic, particularly the meaning of ` and �, as well as the associated concepts of formulas,
sentences, theories, and models or structures. Rather than spend an inordinate amount of time giving the fine details of
first-order logic, the reader is referred to any introductory logic text, like [7]. So instead an overview is given with most
details omitted. Many students of set theory will already have experience with these concepts. The reader intending to
skip this section should just be aware of two things: for a signature or vocabulary � , the language of first-order logic
is written FOL.�/; and if we have a formula with parameters, we say it is a FOLp.�/ or FOLp-formula.

There are two parts to introduce first-order logic as with almost any logic system. Firstly there is a syntactic component
ruling what can be said. Secondly there is a semantic component that gives meaning to these formulas. This separation
is similar to the separation between the grammar and spelling of English, and the meaning of sentences. There are a
number of steps in this introduction. Continuing the natural language analogy, we need to
1. determine the alphabet we’re using;
2. determine how to spell words with this alphabet;
3. determine how to “reason” with these words;
4. determine the meaning of these words; and
5. connect spelling with meaning.

§1A. The alphabet and its formulas

To start, the alphabet of first-order logic is better regarded as a collection of alphabets that are all variations on a
simpler alphabet. In particular, they all share the so called logical symbols given below that allow us to make basic
formulas that are statements of equality and inequality: “x ¤ y”, “v3 D v10”. From these basic statements—so called
atomic formulas—we can build up larger formulas using simple rules. For things already determined to be formulas,
we can connect them using formula connectives, or quantify them over some variable. So for ' and  already for-
mulas, “.' ^  /”, “:'”, “9x '”, and so forth are all formulas too. Although these symbols have no actual meaning
introduced, it’s useful to have an idea for what they are supposed to represent.

Symbol ‘^’ ‘_’ ‘:’ ‘!’ ‘$’ ‘9’ ‘8’
Usual Meaning “and” “or” “not” “implies” “iff” (i.e. “equivalent to”) “there exists” “for all”

Symbol ‘D’ ‘x’, ‘y’, ‘v0’, ‘v1’, etc. ‘.’, ‘/’, ‘;’, etc.
Usual Meaning equality variables various grammatical marks or punctuation

This allows us to build formulas like “9x 9y .:x D y/” and “.x D x ^ :x D x/”. We cannot, however, make ordi-
nary mathematical statements like “x D y C z” or “9z .z � x�1 � z C y/” yet. To make such statements we need a
bigger alphabet. In particular, we have the concept of a signature or vocabulary to expand the logical symbols with
non-logical symbols like ‘C’ or ‘�’ above.

1A • 1. Definition
A signature is a collection of symbols that are divided into constant symbols, relation symbols, and function symbols
with the corresponding number of arguments.
The first-order language associated with a signature � is denoted FOL.�/.

For example, those familiar with some algebra will know that rings and fields generally use a signature of just function
symbols: ¹C; �; 0; 1º. This expands the signature usually used with groups: ¹�; 1º. Partial orders and graphs will use

4



LOGIC AND MODEL THEORY CH I §1B

only relation symbols for the order and the edges. Most importantly for us, set theory uses the signature with only one
element ¹2º.iv

The rules for forming formulas change very little from when there were just logical symbols. Essentially, one just
needs to respect the number of arguments for the relation and function symbols. So if ‘f ’ is a function symbol with
two arguments, you can’t write “f .x; y; z/” or “f .t/”. The same applies to relation symbols. Building terms t1, ...,
tn by composing function symbols and variables, we can let relations holding between terms—i.e. strings of the form
“R.t1; � � � ; tn/” or “t1 D t2”—be the basic building blocks of formulas. Then we can build the rest of the formulas in
the same way as before with connectives and quantifiers.

Now we remark that often formulas are written in short-hand, meaning we don’t include so many parantheses, and
introduce symbols which are defined in the original signature. For example, “x � y” can be defined by

x � y iff 8z .z 2 x ! z 2 y/.
Such defined notions affect nothing since they can be replaced by their defining formulas. In general, we’re satisfied
giving instructions for how to construct a formula as opposed to giving it explicitly. The same principle also holds for
proofs. For an explicit example of this, the quantifier ‘9Š’ is generally used to mean “there exists a unique”. We use
“9Šx '.x/” merely as shorthand for “9x 8y .'.y/$ x D y/”.

§1B. The proofs of formulas

With the notion of formula comes the notion of proof: a means of manipulating formulas. The concept of proof
should be fairly familiar at this point. Note that in setting up the proof system, we should be trying to emulate valid
reasoning in the meta-theory, though there is no association of meaning with formulas yet. A priori, there’s no reason
we couldn’t allow ourselves to conclude “' ^  ” from “' _  ”—“both” from “at least one”. So there is some careful
setup required in what precisely is allowed—so called logical axioms. The following is an informal definition, omitting
what precisely a logical axiom is.v

1B • 1. Definition
Let T be a collection of formulas, and ' a formula. T proves ', or T ` ', iff there is a sequence of formulas where
every member
1. is a given assumption, i.e. a member of T ; or
2. is a logical axiom, e.g. x D x or .:: /$  ; or
3. follows from previous ones by given rules of inference, e.g.  follows from ' and ' !  .

For example, one can prove “8x8y.x C y D y C x/” from the axioms of peano arithmetic, PA, which are then re-
garded as given assumptions in the above. A collection of formulas is generally called a theory. Note that the statement
T ` ' for “there is a proof of ' from the formulas T ” is a meta-theoretic one about the logic system.

And as with formulas, it’s rare to give proofs as just a sequence of formulas, because they are hard to read and compre-
hend. Even when annotated, it’s hard to see at a glance that the formulas obey the definition. For example, consider
the following tedious proof of the obvious fact that ' ! ' for any formula '.

1. .' ! .' ! '//! (from axiom scheme .' !  /! ..' ! . ! �//! .' ! �//

..' ! ..' ! '/! '//! .' ! '// where  is .' ! '/ and � is ')
2. ' ! .' ! '/ (from axiom scheme ' ! . ! '/ where  is ')
3. .' ! ..' ! '/! '//! .' ! '/ (1, 2 and Modus Ponens)
4. ' ! ..' ! '/! '/ (from axiom scheme ' ! . ! '/ where  is ' ! ')
5. ' ! ' (3, 4 and Modus Ponens)

So often proofs are given as instructions for creating a proof rather than just a sequence of formulas. This perspective
ivArguably set theory uses many more symbols, e.g. ‘�’, ‘;’, and so forth. But these can be better regarded as short-hand for statements which

use only ‘2’ and ‘D’.
vMany texts make do with a list of around fifteen axioms, axiom schemes, and rules of inference. So it should be clear why the exact details are

omitted here.
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is useful when arguing in the meta-theory about proofs in the logic system.

This concludes the syntactic portion of first-order logic, and now we will look towards interpreting these formulas,
since thus far formulas are regarded merely as a bunch of markings on paper formed in a certain way.

§1C. The semantics of formulas

Now we will move on to the semantics of first-order logic, looking at how to interpret these formulas and reason from
them in the meta-theory. In some sense the goal is to answer “what makes a formula true?”. Answering this requires
first fixing a context we ask the question in, and then we build up a notion of truth in just the same way we’ve built up
formulas. The explanations given here relate somewhat back to the real world insofar as they assume that structures,
relations, functions, and so forth exist. So we might as well assume that we’re working in V, where we know that these
things exist.

Firstly, we have the notion of a structure. This is in some sense where we evaluate truth. For example, when we ask
whether the group operation � is commutative, we answer relative to some particular group. The question can be asked
of any group, but the answer depends on the group we evaluate in. For a less mathematical example, “how many
citizens are there?” can be asked of any particular nation, but the answer depends on the nation. More generally, we
can ask questions in a fixed signature, but the answer depends on the structure.

1C • 1. Definition
Let � be a signature. A FOL.�/-structure or model is a pair M D hM;&i whereM is the universe of M, and
1. For every n-place relation symbol R in � , there is one RM 2 & with RM a relation on tuples ofM ; and
2. For every n-place function symbol f in � , there is one f M 2 & with f M a function from tuples ofM toM .

Intuitively, & tells us how the model interprets the symbols of the signature � , and the members of & are the interpre-
tations of the members of � . For example, the signature � D ¹4º has models which are really just any set equipped
with a binary relation. For example hN; <i is a ¹4º-model, and so is any graph hG;Ei where E is the edge relation of
the graph. Under this definition, for any signature � , any � -model is also an ;-model where there are no non-logical
symbols, and the only statements are about equality.vi In fact for any � -model is also a ı-model for any ı � � .

The interpretation of the signature essentially determines truth of the atomic formulas: the structure hN; <i says that
“3 < 2” is false and that “2 < 5” is true. Hence “3 < 2 _ 2 < 5” is true while “3 < 2 ^ 2 < 5” is false for hN; <i.

By following the construction of any given formula, this association of a symbol in � with the interpretation in &
presents how to tell whether any given formula is true or false in a given structure in the natural way we read formulas.
Note that there will always be a fact of the matter in any given structure of whether a formula is true or false in it, even
if it isn’t possible to determine practically. Explicitly, we have the following definition.

1C • 2. Definition
Let � be a signature with R in � a relation symbol. Let ' and  be FOL.�/-sentences; and let M a FOL.�/-model
with various mi 2M . Write

M � “R.m1; � � � ; mn/” if and only if RM.m1; � � � ; mn/ holds,
M � “m1 D m2” if and only if m1 D m2,
M � “' ^  ” if and only if M � ' and M �  ,
M � “:'” if and only if M 6� ',
M � “8x '.x/” if and only if M � “'.m/” for every m 2M ,
M � “9x '.x/” if and only if M � “'.m/” for some m 2M .

Implicit in this is the ability to interpret terms in the signature, and this is done exactly as one would expect. For
example, the interpretation of “f .m1; g.m2//” is just f M.m1; g

M.m2//. For a more concrete example, “3C .5 � 2/”
has an interpretation of 13 in the structure of arithmetic N D hN; 0; 1;C; �i.

viWe can still say meaningful things in this language, but mostly this is about the number of things: 9x8y.x D y/ will require that there is only
one element, for example. Some systems also drop the need for equality, in which case there are no formulas without relation symbols.
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Free variables are left uninterpreted, so this is why we only deal with sentences. Also note that we are mixing formal
symbols and non-formal ones, leaving the parameters implicit when needed. It’s important to realize that parameters
can only be used when we’ve fixed a particular model. Parameters—like m1; m2 2M in the above—are not symbols
in the language, and so cannot be referenced in general. In some sense, parameters are used here merely to build up a
notion of truth.

With this concept (or at least the use of ‘�’) firmly in place, notation will be slightly abused in the following ways.
1C • 3. Definition

Let � be a signature, and let ' and  be formulas, and T a theory all in FOL.�/. LetM be a FOL.�/-structure. Write
M � T if and only if M � � for every sentence � 2 T .
' �  if and only if every � -model M with M � ' also has M �  .
T �  if and only if every � -model M with M � T also has M �  .

For example, “.' ^  /” � ', since any model M � “.' ^  /” has M � ' by Definition 1C • 2.

These definitions comprise all the semantics of first-order logic, and they all take place all in the meta-theory, meaning
that ' �  if there is a meta-theoretic argument about models of '. Alternatively, it might be the case that all models
of ' also model  merely by chance with no intelligible reason behind it. So far this situation hasn’t been ruled out. It
is up to the next subsection to dispel this possibility.

§1D. Connecting syntax and semantics

We now have the basic setup for working in mathematics. On the one hand, we can symbolically manipulate our way
to various formulas, and on the other, we can argue in the meta-theory about whether certain structures satisfy a given
formula. The central question, however, is whether there is any connection between the two, that is, whether “T ` '”
and “T � '” have any relationship.

Clearly, we should have set up our proof system to be sound, that is to say that if T ` ' then T � '. This way we
aren’t making any “mistakes” in our symbolic manipulations. Proving that any given proof system is in fact sound can
be done fairly easily through meta-theoretic arguments about structures. Mostly this amounts to checking that each
logical axiom and rule of inference holds in every model.

Quite a striking result in the study of first-order logic is the completeness theorem which says that the converse also
holds with our notion of proof.

1D • 1. Theorem (Completeness)
Let � be a signature, and let T be a theory, and ' a formula in FOL.�/. Therefore T � ' implies T ` '.

Proof .:.

Suppose T � ', but T 6` '. This means T [ ¹“:'”º is consistent (assuming the proof system is good), meaning
that it doesn’t prove a contradiction “' ^ :'”. Note that T [ ¹“:'”º cannot have a model, however, as this
model would satisfy T and “:'”, contradicting that T � '. To get our contradiction, we will construct a model
of T [ ¹“:'”º out of syntax.

Call a FOL.�/-theory T complete iff for every FOL.�/-sentence ', either ' is in T , or “:'” is in T . By well-
ordering the FOL.�/-sentences, we can successively decide whether to put a given sentence in an expansion T0
or not according to whether the resulting expansion of T would be consistent (i.e. put it in if it is, if it’s not, then
leave it out). Hence we can expand T [ ¹“:'”º to a theory T0 which is consistent and complete: just the result
of this process.

Now by ordering T0 and proceeding through each formula one-by-one (i.e. well-ordering T0), for each existental
statement ', being “9x  .x/” in T0, associate a unique constant c' , and add in the statement “ .c'/” to the
new theory T1 in the expanded signature �1. Also expand to make sure T1 is still consistent and complete now
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in FOL.�1/. Repeating this process infinitely many times to take the closure under this propety, we end up with
a complete, consistent (assuming the proof system is good) theory T! in an expanded signature �! such that if
“9x  .x/” is in T! , then “ .c/” is in T! for some constant symbol c of �! .

Now we construct a model of T! , which is then still a model of T (by forgetting about the constants of �! , we
end up with a FOL.�/-model rather than a FOL.�!/-model). Firstly, for c a constant symbol of �! , consider the
equivalence class Œc� consisting of all the other constants d such that T! ` “d D c”. This is an equivalence
class as T! is complete (assuming we’ve set up the proof system correctly). Now consider the structure M with
universeM being the set of these equivalence classes, and with function interpretations given by

f M.Œd1�; � � � ; Œdn�/ D Œd0� iff T! ` “f .d1; � � � ; dn/ D d0”,
and similarly for relations (again, assuming the proof system is good, this is well-defined). The resulting structure
then satisfies M � T! , and so we have a model of T [ ¹“:'”º, and so T 6� '. a

This identifies the “accidental truth” of being true by chance in all models with the “justified truth” of proof. This
also allows us to make conclusions from valid arguments in the meta-theory about models, and conclude that there
are syntactic proofs of these results. Most important for our purposes is the fact that if T 6` ', then T 6� '. In
particular, if T is consistent—meaning T 6` “.' ^ :'/”—then there is a model of T . This connection between finite
sequences of formulas and the existence of structures is somewhat surprising considering that structures can be very
large. Furthering this relation between the finite and the infinite is the compactness theorem.

Given that proofs are finite, the compactness theorem for proofs can yield important results when paired with Com-
pleteness (1D • 1).

1D • 2. Theorem (Compactness)
(ZFC) Let T be a theory. Therefore T has a model if and only if each finite � � T has a model.

Proof .:.

If T has a model, then clearly every finite subset does too. But if T doesn’t, then for any formula ', T �
“.' ^ :'/”, because no model M � T . By Completeness (1D • 1), T ` “.' ^ :'/”. Since proofs are finite,
there is some finite subset � � T which contains all the formulas of T used in proving “.' ^ :'/”. This finite
subset then also has� ` “.' ^ :'/”, and so by soundness,� � “.' ^ :'/”. Hence this finite subset of T can’t
have a model. a

These two theorems are very useful for their ability to generate models. As noted above, consistent theories have
models which say that they’re true. This is the kind of black magic that allows us to form models that satisfy all of the
axioms of arithmetic, but aren’t just N. Adding to this black magic is the Löwenheim-Skolem theorem, which is the
final theorem we need in the background of first-order logic, and it again allows us to conclude the existence of models
with extremely nice properties. The proof of this is basically a more careful version of Completeness (1D • 1), but we
are not yet equipped to prove it without knowing some more set theory. In particular, we require knowledge of infinite
cardinals.

We end this section with a bit of notation that will prove useful. In particular, “FOLp” or “FOLp.�/” is used to denote
“first-order logic with parameters”. Really this is only used in the context of formulas: a formula is FOLp iff it is of the
form '.Ev; Ep/ for some variables Ev, and some parameters Ep. So this is always made in the context of some (arbitrary)
model. For example, the identity element in a group G is FOL-definable, meaning definable without parameters. Given
an arbitrary element g of the group G, g�1 is FOLp-definable: it is the y such that G � “g � y D y � g D 1”, i.e.
G � “8z..g � y/ � z D z � .g � y/ D z/”. The fact that g is used as a parameter here is what makes g�1 2 G FOLp-
definable.
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Section 2. Basic Set Theoretic Concepts

Recall the following definition from Subsection 0A.
2 • 1. Definition

The universe of sets is the structure V D hV;2i, where V consists of all sets, and 2 denotes membership.

Recall the notation introduced earlier: we may denote a set by enclosing its members in braces. For example, the set
of 0, x, and Abraham Lincoln is ¹0; x;Abraham Lincolnº. The empty set is given some special notation: ¹º D ;. It’s
also important to note that repetition in writing is unimportant: ¹x; x; x; xº D ¹xº. This is just because all of those xs
are the same object and so the only thing in the collection ¹x; x; x; xº is x. And recall that generally x ¤ ¹xº. Again,
a physical analogy with sets is that the braces represent a box and the things in between them represent the contents:
¹xº is a box with x in it while x is just the thing in that box.

The notation of listing out the elements is good enough for sets with only a few members, but things quickly get
unwieldy if we want to consider larger collections. If we don’t wish to list out explicitly all the elements of a set, we
may instead write a description in the following form.

2 • 2. Definition
Let ' be some property, or predicate, or description, etc. Write ¹x W '.x/º for the collection of all x such that ' holds
of x, i.e. '.x/. For A another collection, we also consider ¹x 2 A W '.x/º for ¹x W x 2 A ^ '.x/º.

For example, ¹x W x is a personº is the set of all people. Similarly, we can restrict ourselves to a certain domain. For
example, ¹x 2 N W x2 D 1º is the set of all natural numbers that square to 1. As sets are determined by their members
(i.e. two sets are the same iff they have the same elements) this set is just ¹1º, because the only natural number whose
square is 1 is 1 itself (the only other “number” that has a square of 1 is �1 which is not an element of N). So we have
defined a subset of N in that all of ¹1º’s elements are in N: it contains fewer members. We write x � y to denote that
x is a a subset of y, translated as 8z.z 2 x ! z 2 y/ in first-order logic.

There are other ways of forming sets. For example, if x is a set, we can consider the powerset, the set of all collections
formed from elements of x. Formally, P .x/ D ¹t W t � xº. Additionally, we have operations on sets, like union and
intersection. These will be formally defined later, but to give a simple example, regarding lines as sets of points, the
intersection of two (non-parallel) lines is always the set containing exactly one point. In particular, L1 D ¹hx; yi 2
R2 W y D 2x C 3º is a line, as is L2 D ¹hx; yi 2 R2 W y D �xº, and their intersection is where the two lines meet,
denoted L1 \ L2:

L1 \ L2 D ¹hx; yi 2 R2 W y D 2x C 3 ^ y D �xº D ¹h�1; 1iº.
Now that we have some basic intuition set up, let’s consider the following true statements about V, which are axioms
of ZFC.

2 • 3. Definition (Axioms)
(Extensionality) two sets are equal whenever they have the same members:

8x 8y .x D y $ 8v .v 2 x $ v 2 y//.
(Empty set) there is a set ; with no members: 9z 8x .x … z/.
(Comprehension) for each A, and for each FOLp.2/-formula '.v/, ¹v 2 A W '.v/º exists: for ' a FOL.2/-formula,

8w0 � � � 8wn 8A 9z 8v .v 2 z $ v 2 A ^ '.v; Ew//.

Extensionality is perhaps the most definition-like axiom, contained in the idea of a set.
2 • 4. Corollary

Suppose ¹xº D ¹yº. Therefore x D y.

The empty set will provide the base for our universe in the following sense.
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2 • 5. Result
For every set A, ; � A. Moreover, A � ; implies A D ;.

Proof .:.

; � A since every element of ; (of which there are none) is an element of A. Now suppose A � ;. Thus
8x .x 2 A ! x 2 ;/. For each x, x 2 ; is false, and thus x … A, Hence 8x .x … A/, and therefore A and ;
have the same elements: no elements. By extensionality, A D ;. a

Comprehensionvii really is a scheme, meaning that for each FOL-formula, we get a different axiom. It is an attempt to
formalize the idea of ¹x W '.x/º. It’s important to realize, however, that the full generality is inconsistent we can only
consider the subset ¹x 2 A W '.x/º for some set A. The idea is that we can’t take arbitrary collections and call them
sets, as seen in the following theorem.

2 • 6. Theorem (Russell's Paradox)
There is no set ¹x W x D xº. Equivalently, :9s8x.x 2 s/.

Proof .:.

If there were such a set, call it V . Now consider by comprehension the subset a D ¹x 2 V W x … xº. By
hypothesis, a 2 V . Now we can question whether a 2 a or not. If a 2 a, then a meets the definition: a … a,
a contradiction. Hence a … a. But this means that a doesn’t meet the definition of a, meaning a 2 a, again a
contradiction. So either way we have a contradiction, and so the hypothesis that V exists is false. a

So comprehension at least says that we can consider (definable) subsets. In some sense, the issue is that the collection
of all x is too big to be a set: V is not a set. So comprehension says that if we have a set, then all the subsets are small
enough to be sets too.

§2A. A word on classes versus sets

We often want to talk about collections that aren’t sets. Russell’s Paradox (2 • 6) gives one such example: the collection
of all sets, V. There are other, less ad hoc collections we will want to consider later, but this raises the question of how
do we talk about these things? What is the distinction between “collection” and “set”? The basic idea is that collections
inside a model are sets. So V is not a set by Russell’s Paradox (2 • 6). We can still consider V a collection, though, and
in particular, a definable collection in that the property of being in V is definable over V (trivially by x 2 V iff x D x).

The fact that a collection C is definable allows us to use the axioms of set theory with it like a parameter: we can’t
necessarily write for example “8x .x 2 C! '.x//” as a FOLp-formula, but we can write “8x . .x/! '.x//” where
C D ¹x W  .x/º. Similarly, the fact that C is definable tells us through Axioms (2 • 3) that ¹y 2 A W y 2 Cº is a set for
every set A: 9z 8y .y 2 z $ y 2 A ^  .y//.

2A • 1. Definition
Let A be a model of set theory. A class of A is a collection C � A which is FOLp.2/-definable, i.e. x 2 C iff
A � “'.x/” for some FOLp.2/-formula '. A class is a proper class iff it is not a set, meaning not in A.viii

So with V, sets are just things in V and classes are more like concepts that we can define. As a bit of notation, classes
will generally be written upright: like ‘V’, ‘L’, ‘Ord’, ‘HOD’, instead of ‘V ’, ‘L’, ‘Ord ’, ‘HOD’. But this is just a
convention for this text, and there isn’t a general standard in the field. Often upright boldface is used, and frequently
there is no distinction in writing except by the use of majuscule letters.

It’s hard to over emphasize that these collections are not necessarily a part of the set theoretic universe V: every set is a
class, but not vice-versa. To see this, any set X is FOLp.2/-definable (by the formula “x 2 X”), so all sets are classes,

viialso called separation
viiiTechnically, A's interpretation of ‘2’ isn't necessarily membership, and so it's better to say that C is a proper class iff it's a class and A �

“:9X 8x .x 2 X $ '.x//” where ' defines C. Basically, for X 2 A, we might not have that X D ¹x 2 A W A � “x 2 X”º because A is
misinterpreting membership.
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but not vice versa as Russell’s Paradox (2 • 6) shows. The point of classes is just to say that while the entire collection
isn’t in our domain of discourse, the fact that it’s definable shows that it still plays nicely with our axioms and we can
easily reason about it. As noted before, comprehension tells us that the intersection of a set with a class is a set. So in
some sense, every part of a class is a set, although the totality might not be.

There are more complicated understandings of classes that allow more collections than just definable ones. But at that
point, we get into the realm of class theory rather than set theory. And before learning class theory, one needs to start
with a good understanding of set theory. In essence, the typical model of class theory will be one that satisfies a variant
of ZFC in an expanded language that has constant symbols for the relevant classes (so at least all definable collections).
In this setting, a set is no longer defined to just be a member of the universe but instead something that can be collected
together: x is a set iff 9y .x 2 y/ iff ¹xº exists in the universe.

But under our definition, classes really are just short-hand for formulas. So often results for sets generalize to results for
classes just by virtue of classes being definable. That said, it’s still important to remember that classes are not always
sets, and certain theorems do not always generalize to classes. The basic problem is that we can’t quantify over classes
in the sense of saying “for all classes such-and-such happens”. So often our results about classes are metatheoretic.ix

§2B. Ordered pairs

So far, the set theory presented is relatively uninteresting, because the axioms do not allow us to form sets with new
elements: we may only take subsets. Moreover, even if we have these sets, it’s not completely clear what the benefit
of them is. To motivate things a little more, sets are seen as a foundation of mathematics, both practically, and philo-
sophically. Often, when one needs to make things mathematically precise, it is done using sets.x So to begin with, we
will first show that we can formalize an ordered pair hx; yi, in that we have a construction where ha; bi D ha0; b0i if
and only if a D a0 and b D b0. This will allow us to talk about sequences, functions, relations, and so forth. To do this,
we need some additional axioms that reflect what’s true of V.

2B • 1. Definition (Axiom)
(Pairing) for any two sets x and y, the pair ¹x; yº exists: 8x 8y 9z 8v .v 2 z $ .v D x _ v D y//.

2B • 2. Definition
For x, y sets, the ordered pair of x and y, hx; yi is the set ¹¹xº; ¹x; yºº.

As a side note, if x D y, then hx; yi collapses down to ¹¹xºº, since ¹x; yº D ¹x; xº D ¹xº because the two have the
same members. Now let’s prove the single point of having an ordered pair: that the entries are uniquely determined by
the ordered pair.

2B • 3. Result
Let x; x0; y; y0 be sets. Therefore hx; yi D hx0; y0i iff x D x0 and y D y0.

Proof .:.

Clearly if x D x0 and y D y0, then hx; yi D hx0; y0i. So suppose hx; yi D hx0; y0i, meaning that these sets have
the same members. The members of these sets are ¹xº and ¹x; yº, and ¹x0º and ¹x0; y0º.

If x ¤ y and x0 ¤ y0, then the two-element sets must be equal, and the one-element sets must be equal, implying

ixTo give a more precise example of where the distinction is important, Gödel's theorems tell us that ZFC cannot prove the consistency of ZFC.
But if we assume we have a modelM � ZFC, then in the metatheory it would seem like M should know that ZFC is consistent becauseM contains a
model of it—after all, the class M is a model. But this isn't true: M � M, but M … M. In other words, M is unable to talk about M or what infinite
collection of axioms it satisfies directly because it is a class and so it does not exist in the domain of discourse that M considers. Although M can
see that ' holds in M for each formula ' of ZFC, that doesn't mean M understands that M exists as a model.
(Nor does it mean that M thinks all of those formulas make up ZFC. In particular, there are non-standard models that misinterpret what “finite”
means, and thus [as formulas, proofs, and so on are finite strings of symbols] misinterpret what exactly is in our description of “ZFC”. In such a
model M, it's possible for there to be models W of the actual ZFC, but M doesn't recognize W as satisfying all of the formulas of ZFC, precisely
because it has misinterpreted what exactly ZFC is.)

xthere are other theories some people put forth as a foundation of mathematics, but their proponents often either defer the serious paradoxical
issues for set theory to deal with, or fail to start from philosophically basic notions.
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x D x0 and ¹x; yº D ¹x0; y0º. Since we already know x D x0, we must have y D y0. If x D y, then
hx; yi D ¹¹xºº. Hence both elements of hx0; y0i are equal to this: ¹xº D ¹x; yº D ¹x0º D ¹x0; y0º, implying that
x0 D y0 D x D y. The same idea holds if x0 D y0. a

We can also refer to the left and right coordinate of an ordered pair in this way: given an ordered pair z, the left-
coordinate is just the x satisfying 9y.hx; yi D z/. In fact, using another axiom, we can restrict the search for such a y
to an element of the union of z.

2B • 4. Definition (Axiom)
(Union) for any family of sets F , there is a set containing the elements of all of those sets:

8F 9U 8v .v 2 U $ 9x.x 2 F ^ v 2 x//.

We denote the union by
S
F , in this case. For just two sets, write x [ y D ¹a W a 2 x _ a 2 yº rather than the

more clumsy
S
¹x; yº, which exists by union and pairing. For a concrete example of a union, consider x D ¹1; 2º,

and y D ¹2; 4; 10º. Therefore x [ y D ¹1; 2; 4; 10º. A related concept, which we could already form through
comprehension, is the intersection of two sets: x \ y D ¹a W a 2 x ^ a 2 yº. More generally, for a non-empty family,
F , the intersection

T
F D ¹a W 8x 2 F.a 2 x/º, which can be written as a subset of each particular x 2 F . Similarly,

we can take complements: x n y D ¹a 2 x W a … yº. Using the same x and y example from before, x n y D ¹1º while
x \ y D ¹2º. Note that we have the following trivial facts about intersection, union, and so forth, mostly which just
follow from properties of sentential connectives:

• x \ x D x, x [ x D x, x [ ; D x;
• x \ ; D ;, x n x D ;;
• x n .x \ y/ D x n y;
• x \ y � x, and if a � x and a � y, then a � x \ y;
• x \ .y \ z/ D .x \ y/ \ z, and similarly for union;
• .x \ y/ [ z D .x [ z/ \ .y [ z/, and .x [ y/ \ z D .x \ z/ [ .y \ z/;
• if x � a and y � a, then x [ y � a;
• if x � y and y � a, then x � a; and
• x � y iff y [ x D y iff x \ y D x iff x n y D ;.
• x � y implies

S
x �

S
y.

These also have a related definition, since sets having completely different elements is very useful.
2B • 5. Definition

Two sets x and y are disjoint iff x \ y D ;. A family of sets F consists of disjoint sets or pairwise disjoint sets iff
x \ y D ; for all x; y 2 F .

Now ordered pairs on their own are fine, but we still need to be able to do more with them to do any basic set theory.
Obviously using pairing, we can form ¹hx; yi; hx0; y0iº. We can also form ¹hx; yi; hx0; y0i; hx00; y00iº using another
application of pairing and union:

¹hx; yi; hx0; y0
i; hx00; y00

iº D ¹hx; yi; hx0; y0
iº [ ¹hx00; y00

i; hx00; y00
iº.

We have two potential routes to form arbitrary sets of pairs—excluding finite applications of pairing and union—
powerset (with comprehension), and replacement. First we introduce replacement.

2B • 6. Definition
A FOLp.2/-formula '.x; y/ defines a function over D iff for every x 2 D there is a unique y with '.x; y/. Sym-
bolically, 8x .x 2 D ! 9Šy '.x; y//.

Replacement then says in effect that if we can definably transform elements of a set, then the set of the transformations
exist.

2B • 7. Definition (Axiom)
(Replacement) the image of a function over a set is a set: for each FOL.2/-formula ',

8w0 � � � 8wn8D
�
'.x; y; Ew/ defines a function overD ! 9R.y 2 R$ 9x.x 2 D ^ '.x; y; Ew///

�
.

12
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It should be clear that D is the intended domain of the function defined by ', and R is the range of ' restricted to D.
So replacement is saying that R exists: if I can define a function from a set, then the range is a set. So if we consider
the function mapping xs and ys to hx; yi, we get a cartesian product as the range.

2B • 8. Definition
The cartesian product A � B of A and B is the set of all pairs from A and B: ¹ha; bi W a 2 A ^ b 2 Bº.

2B • 9. Result
Let A and B be arbitrary. Therefore A � B existsxi.

Proof .:.

For each a 2 A consider the formula '.b; p; a/ which is just that p D ha; bi. This is of course shortened, but the
defining notions can be replaced here. Regardless, it’s clear that this defines a function over B , where b maps to
ha; bi for our fixed a 2 A. So replacement says that there is some

Ra D ¹p W 9b 2 B '.b; p; a/º D ¹ha; bi W b 2 Bº.
This is an individual slice of the cartesian product. So consider the function  .r; a/ which states r D Ra, i.e.
r D ¹ha; bi W b 2 Bº. (We can do this by taking the even longer formula  .r; a/ to be 8x .x 2 r $ 9b 2
B '.b; x; a//.) This defines a function over A, and so another application of replacement yields the set

P D ¹¹ha; bi W b 2 Bº W a 2 Aº.
Hence

S
¹¹ha; bi W b 2 Bºa 2 Aº D ¹ha; bi W a 2 A ^ b 2 Bº D A � B . a

§2C. Relations

The cartesian product is the basis for most of basic set theory, since it allows us to consider relations and fuctions, and
thus define sequences, and notions of size. Really, if sets are supposed to be devoid of all structure beyondmembership,
this idea allows us to put structure back into play, and thus work with more complicated ideas all within set theory.

2C • 1. Definition
A relation is a subset R � A � B for some A, B . For any relation R, dom.R/ D ¹x W 9y .hx; yi 2 R/º, and
similarly, ran.R/ D ¹y W 9x .hx; yi 2 R/º.

The existence of the domain and range ofR can be shown by the union axiom: x; y 2
S
hx; yi D ¹x; yº[¹xº D ¹x; yº

so that hx; yi 2 R implies x; y 2
SS

R. Hence we can take the appropriate subset to define the domain and range.
Alternatively, we can use replacement. But resorting to the more basic axioms can be insightful.

Note that then if R is a relation, every subset of R is a relation too. Moreover, the union of relations are relations.
Really a relation is just a set R where z 2 R implies z D hx; yi for some x and y. So the relation doesn’t need to be
over the same set or have some intuitive reason behind relating elements. Note that forR a relation, we will often write
x R y for hx; yi 2 R. Note that we can have the relation defined on three sets (or more) just by having hx; yi 2 R
always having y an ordered pair of some form. We will make this more formal or official later, so for now we focus
on binary relations. Again, we get some immediate facts: for R and S relations,

• dom.R [ S/ D dom.R/ [ dom.S/;
• ran.R [ S/ D ran.R/ [ ran.S/;
• dom.R \ S/ � dom.R/ \ dom.S/; and
• ran.R \ S/ � ran.R/ \ ran.S/.

Given any relation, we can form the inverse, where we swap all the entries of the ordered pairs:
2C • 2. Definition

For R a relation, define R�1 D ¹hy; xi W hx; yi 2 Rº to be the inverse or converse of R.

xiNote that we've also shown that the cartesian product of classes exists as well. In particular, for A and B classes, we have the FOLp-formula
defining A � B by x 2 A � B iff 9y 9z .x D hy; zi ^ y 2 A ^ z 2 B/.

13
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The existence of R�1 can be shown through a variety of methods, notably replacement. Note that this behaves exactly
as one would expect:

2C • 3. Result
Let R be a relation. Therefore R�1 is a relation, and .R�1/�1 D R. Moreover, for S a relation, .R \ S/�1 D
R�1 \ S�1.
Proof .:.

Clearly R�1, as a set of ordered pairs, is a relation. Moreover, .R�1/�1 D ¹hx; yi W hy; xi 2 R�1º D

¹hx; yi:hx; yi 2 Rº D R. To see that the inverse of an intersection is the intersection of the inverses, let
hy; xi 2 .R \ S/�1. Therefore hx; yi 2 R \ S and so hy; xi 2 R�1 and hy; xi 2 S�1. Similarly, if
hy; xi 2 R�1 \ S�1, then hx; yi must be in both R and in S , so that hy; xi 2 .R \ S/�1. So the two sets
have the same elements, and so must be equal. a

One of the most important kinds of relations is a partial order, notable mostly for the notion of transitivity.
2C • 4. Definition

Let R be a relation. Write x R y for hx; yi 2 R. We say R is a realtion over X iff dom.R/ [ ran.R/ D X .
• R is transitive iff 8x 8y 8z .x R y ^ y R z ! x R z/.
• R is symmetric iff 8x 8y .x R y $ y R x/.
• R is antisymmetric iff 8x 8y .x R y ^ y R x ! x D y/.
• R is total iff 8x 8y .x; y 2 dom.R/ [ ran.R/! .x R y _ x D y _ y R x//.
• R is reflexive iff 8x .x 2 dom.R/ [ ran.R/! hx; xi 2 R/.
• R is a partial order iff it is transitive, and antisymmetric.
• R is linear iff it is transitive, antisymmetric, and total.

A relation R is called a strict order if hx; xi … R for all x.

We now get some very easy results about various relations that the reader should check to confirm their intuitions.
• The identity relation idA D ¹hx; xi W x 2 Aº is symmetric and antisymmetric.
• R is symmetric iff R D R�1.
• If R is a linear order then R \ .A � A/ is a linear order for any set A.
• If R is antisymmetric, and dom.R/ [ ran.R/ has more than one element, then R�1 ¤ R.
• If R and S are reflexive, then R [ S is reflexive.
• If R and S are antisymmetric, then R [ S is antisymmetric.
• If R is antisymmetric, and S � R, then S is antisymmetric.
• If R is transitive, then R�1 is transitive.
• If R is a partial order, then R [ iddom.R/[ran.R/ is a reflexive partial order.
• If R is a partial order, then R n iddom.R/[ran.R/ is a strict partial order.

The relations which are of fundamental importance to set theory are well-founded relations, and equivalence relations.
2C • 5. Definition

A relation R is well-founded iff for every subset X � dom.R/ [ ran.R/, there is an R-minimal element of X ,
meaning an x 2 X with no y 2 X with y R x.

When we investigate well-founded linear orders. It turns out that they are canonical in the sense that they are all initial
segments of each other (up to isomorphism). We will investigate well-founded relations later on. For now, consider
some terminology regarding equivalence relations.

2C • 6. Definition
A relation R is an equivalence relation iff R is reflexive, symmetric, and transitive.
An equivalence class of R is a X � dom.R/ [ ran.R/ such that x R y for every x; y 2 X .
For x 2 dom.R/ D ran.R/, write Œx�R, the equivalence class of x, for ¹y 2 dom.R/ W x R yº.
For X an equivalence class of R, a representative of X is an x 2 dom.R/ such that X D Œx�R.
For X a set, a partition is a set P such that 8x.x 2 X ! 9ŠY.Y 2 P ^ x 2 Y // and 8Y 2 P.Y � X/.

14



BASIC SET THEORETIC CONCEPTS CH I §2D

For example, idX is an equivalence relation over X with Œx�D D ¹xº for all x 2 X . But an equivalence relation is
more general than equality. But in essence, an equivalence relation still acts like it in the following sense.

2C • 7. Result
For R an equivalence relation and x; y 2 dom.R/, x R y iff Œx�R D Œy�R.

Proof .:.

If Œx�R D Œy�R, then by reflexivity, y 2 Œy�R D Œx�R implies x R y. So suppose x R y. If a 2 Œx�R then x R a.
By symmetry, a R x. Since x R y, symmetry yields that a R y and symmetry again yields y R a, i.e. a 2 Œy�R.
Thus Œx�R � Œy�R. The same argument shows Œy�R � Œx�R. Therefore x R y implies Œx�R D Œy�R. a

2C • 8. Corollary
For R an equivalence relation, Œx�R D Œy�R or Œx�R \ Œy�R D ; for all x; y 2 dom.R/.

Proof .:.

Suppose a 2 Œx�R \ Œy�R. By transitivity and symmetry, x R a ^ a R y implies x R y so that Œx�R D Œy�R. a

Hence, the set of equivalence classes partitions the domain of R.
2C • 9. Corollary

For R an equivalence relation, ¹Œx�R W x 2 dom.R/º is a partition of dom.R/.

Conversely, partitions give rise to equivalence classes, and thus equivalence relations and partitions can be seen as the
same thing.

2C • 10. Result
LetX be a set and let P be a partition ofX . Therefore the relationR D ¹ha; bi 2 X �X W 9Y 2 P.a 2 Y ^b 2 Y /º
is an equivalence relation over dom.R/ D X .

Proof .:.

Symmetry is immediate by the commutativity of ^. Since each x 2 X has some Y 2 P with x 2 Y , reflexivity
is true of R, and this shows dom.R/ D X . So it suffices to show transitivity. Suppose x; y 2 Y 2 P and
y; z 2 Y 0 2 P . As a partition, there is only one Y 00 2 P with y 2 Y 00 so that Y D Y 0 and thus x; y; z 2 Y 2 P ,
which yields x R z. a

The main point of equivalence classes is just that they give a new notion of equality by considering the equivalence
classes instead of the equivalence relation so directly. This allows us to say things like “x and y are the same modulo
R”. Similarly, it allows us to define other relations so long as they respect the equivalence relation. In doing this, note
that often the equivalence class Œx�R will have multiple elements: Œx�R D Œy�R although x ¤ y. So if we are to make
a definition about Œx�R that makes reference to x, we need to ensure that this gives the same thing if we were to choose
y instead as our representative.

2C • 11. Result
Let � be an equivalence relation on X , and let R � X � X . Suppose x R y iff x0 R y0 for x � x0 and y � y0.
Therefore the relation R=� over X=� D ¹Œx�� W x 2 Xº defined by

Œx�� R=� Œy�� iff x R y

is well-defined, meaning independent of the choice of representatives.

Proof .:.

Suppose Œx�� D Œx0�� and Œy�� D Œy0��. Therefore x R y iff x0 R y0, meaning Œx�� R=� Œy�� iff x0 R y0. a

This is the idea from algebra that allow us to “mod out” by an equivalence relation, like via the orbits induced by other
groups or ideals of a ring, generating a new group or ring. There are many applications, which we will see later.
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§2D. Functions

We introduce some simple notions about functions pictured below. In particular, the notion of hitting every element in
the range, and the notion of “doubling up”: sending two elements to the same place.

2D • 1. Definition
A function is a relation f � A � B such that for each x 2 A there is exactly one y 2 B with hx; yi 2 f . We write
f W A! B , and y D f .x/ in this case.

• We call f W A! B injective iff f .x/ ¤ f .y/ for all x ¤ y in A.
• We call f W A! B surjective iff ran.f / D B .
• We call f W A! B bijective iff it is injective and surjective.

We also call such functions injections, surjections, or bijections. Note that a function being surjective depends on how
we regard it: obviously f W dom.f /! ran.f / is surjective for any function f . Clearly if f is a function f W A! B

and B � C , then we can also regard f W A ! C which may no longer be surjective. So surjectivity is only ever
referenced when the co-domain—the object to the right of the arrow—is specified. Note also that in this text, instead
of ran.f / for the “range of f ”, we will write im.f / for the “image of f ”. This is merely a personal preference to
distinguish relations from functions.

Occasionally, we might reference a function by the notation x 7! f .x/. For example, x 7! ¹xº is a function and
.x 7! ¹xº/.;/ D ¹;º. This is mostly done to avoid introducing too many letters, especially if the function is only
going to be referenced a few times. The domain of this function isn’t clear from the notation, and usually is left to
context. For example, x 7! x2 C 2 is not an injective function with the usually assumed domain of real numbers, R
(whatever this might be in our set theoretic framework, since we haven’t defined it yet). But if we restrict our domain
just to positive real numbers, the resulting function is injective.
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2D • 2. Figure: An injection f , surjection g, and bijection h

Because the objects we deal with in set theory are sets—in particular, sets that are hereditarily sets, meaning all their
members are also sets, and the same holds for them too—we need tomake the distinction between the “pointwise image”
of a function as opposed to the “value” of a function. To motivate the example, consider the set A D ¹a; b; ¹aºº and
a function f with domain A. In general, there is a difference between f .a/, f .¹aº/, and ¹f .a/º. But sometimes we
do want to consider the set of values of a function, like ¹f .a/º. Similarly, sometimes we want to take a function, but
restrict our attention to a smaller subset of its domain. To denote the difference, we have the following definition.

2D • 3. Definition
Let f W A ! B be a function over sets A, B . Let X � A. Write the pointwise image of f under X as f "X D
¹f .x/ W x 2 Xº.
Write the restriction of f to X as f � X D ¹ha; bi 2 f W a 2 Xº D f \ .X � imf /.

So in the example above, f "¹aº D ¹f .a/º while f .¹aº/ ¤ f "¹aº. Note that im.f / D f " dom.f /. Since restriction
allows us to chain our domain, dom.f � X/ D X ; we can also write f "X D im.f � X/. We also have the following
operations on functions: composition and inverses (which might not be functions).

2D • 4. Definition
Let f W A! B be a function over sets A, B . Let f �1 be the relation ¹hb; ai W ha; bi 2 f º � B � A.
For g W B ! C , the composition g ı f is defined by ¹ha; ci W 9b 2 B.f .a/ D b ^ g.b/ D c/º.

It should be clear that g ı f is also a function, now from dom.f / to im.g/.
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2D • 5. Figure: Example of composition

Functions are fundamental to mathematics, as they are a means of transformations. More than functions, really, the
importance is placed on the properties of functions. Most graphs of most functions will be set-theoretic haze: just a
bunch of points with no discernible relationship between the points beyond satisfying the definition of being a function.
So most applications will care about functions that preserve certain relationships. These are typically called homomor-
phisms, embeddings, and so on. We have already defined one such property: preserving inequality, or injectivity. But
the key thing for now is to recognize that functions can be interpreted in purely set theoretic terms.

Let me take a moment to talk further about bijections, injections, and surjections. When letting their sheep out to graze,
one technique that shepards used to make sure all sheep were accounted for was to pick up a pebble every time a sheep
left. Then a pebble was dropped for every sheep that returned. So if there were any left over pebbles, there were sheep
left out. Stated in terms of functions, there was a function f W sheep ! pebbles which was injective—two different
sheep get two different pebbles—and surjective—every pebble corresponds to a sheep—and hence bijective. Going
back to the example, this means we have the same number of pebbles as sheep, and we have confimed this without
counting. So bijections really form a notion of size between two sets: we merely rename the elements via the bijection.
For a very simple example, consider ¹a; b; cº and ¹˛; ˇ; º. Renaming a ‘˛’, b ‘ˇ’, and c ‘ ’, we get ¹a; b; cº should
have the same number of elements as ¹˛; ˇ; º, which it clearly does, and we did this without directly counting both
and then seeing that the two numbers line up.
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2D • 6. Figure: Counting without and with numbers

In some sense, counting just adds a third set of numbers, and then considers bijections to the numbers as a means of
counting each set. So to remove the middle-man of numbers—which we have not yet introduced in set theoretic terms
yet—we have the following definition.

2D • 7. Definition
Let A and B be sets. Write A Dsize B iff there is a bijection f W A! B .

Ideally, we’d like to say the cardinality ofA andB are the same. But without further technology in the form of ordinals,
we have no means of saying this. Instead, we will say that the cardinality of a set A is the class of ¹B W A Dsize Bº.
We also have a notion of order on these equivalence classes in the following sense.

2D • 8. Definition
Let A and B be sets. Write A �size B iff there is an injection f W A! B .

For example, A � B has A �size B . Note that this is in essence the only way to have a size less than or equal to a set
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in the following sense.
2D • 9. Result

A �size B iff there is some C Dsize B with A � C .

Proof .:.

To see this, note that if A �size B , then the injection f W A ! B witnessing this has f "A � B . So take
C D .B n f "A/ [ A, where clearly A � C . Ostensibly, C Dsize B since it seems we can consider the function
F W C ! B defined by

F.b/ D

´
b if b 2 B n f "A
f .a/ if a 2 A.

The only issue with this is that A \ .B n f "A/ might not be empty, which would make the above ill-defined.
But assuming A \ B D ;, then F is a bijection. To remove the assumption A \ B D ;, consider instead
C D ..B nf "A/�¹;º/[ .A�¹¹;ºº/. with F.hb;;i/ D b and F.ha; ¹;ºi/ D f .a/. This yields the appropriate
bijection. a

We will see later that A �size B and B �size A implies A Dsize B , as suggested by the notation. But the long proof of
this isn’t instrumental to us for now. What’s important is the notion of bijection giving a notion of size.

We have the following easy properties of size and bijections. Note that “f W A ! B” is not just a statement that
f � A � B , but that f is a function with f defined on all of A (so dom.f / D A) and im.f / � B .

• If f W A! B and g W B ! C are injective, then g ı f W A! C is injective.
• If f W A! B is surjective, and g W B ! C is surjective, then g ı f W A! C is surjective.
• If f W A! B and g W B ! C are bijections, then g ı f W A! C is a bijection;
• equivalently, if A Dsize B and B Dsize C then A Dsize C .
• If f W A! B is a bijection, then f �1 W B ! A is a bijection;
• equivalently, A Dsize B iff B Dsize A for all A and B .
• If f W A! B is injective, then f W A! imf is a bijection;
• equivalently, X Dsize f "X for f W A! B injective with X � A.

All of this has been done without the notion of counting, but the benefit of being able to count is that it opens up a new
theory of “numbers”. So we will return to the notion of size or cardinality later, after we have introduced the ordinals.
But now we should have a basic intuition for functions and size.

§2E. Transitive sets

Let’s take a moment to look at so-called “transitive” sets. In some sense, this is a misnomer, since it is not the set that
is transitive, but the membership relation.

2E • 1. Definition
A set x is transitive iff membership into x, meaning ¹ha; bi W a 2 b ^ .b 2 x _ b D x/º, is transitive.

So x being transitive is the same as saying a 2 b 2 x implies a 2 x. Equivalently, b 2 x implies b � x.xii In some
sense, this means that transitive xs not only contain various a with a 2 b 2 x, but that we go all the way down to the
basis of the universe: ;. This is partially shown in Figure 2 E • 2.

But to prove this, we need an additional axiom. In another sense, x being transitive means that the structure hx;2i is
a submodel of V: they both interpret 2 in the same way. As a result of this, we get some nice model-theoretic results.
Below is just one example of this showing that transitive sets have nice absoluteness properties that we will consider
later.

xiiOf course, we cannot have a set where 8b .b � x ! b 2 x/ by the same reasoning as in Russell's Paradox (2 • 6).
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;

¹;º

x D ¹;; ¹;ºº y D
®
¹;º
¯

¹x; yº¹;; xº

¹;; ¹x; yºº

¹yº

¹¹yºº

not transitive
D X ,

;

¹;º

x D ¹;; ¹;ºº y D
®
¹;º
¯

¹x; yº¹;; xº

¹;; ¹x; yºº

¹yº

¹¹yºº

transitive
D Y � X ,

2E • 2. Figure: The membership relation compared to a transitive set

2 E • 3. Result
Let X be transitive. Let a; b 2 X . Therefore X D hX;2i � “a � b” iff V � “a � b”.

Proof .:.

To say that a � b is just short-hand for 8y .y 2 a! y 2 b/. Since X and V interpret 2 the same way, if y 2 X ,
X � “y 2 a! y 2 b” iff V � “y 2 a! y 2 b”. Since X � V, y ranges over more sets in V than in X : if
V � “a � b”, then X � “a � b”. The other direction, if V � “a 6� b”, then there must be some element y 2 a
with y … b. But since X is transitive with a; b 2 X , y 2 a 2 X implies y 2 X . Hence V � “y 2 a ^ y … b”
implies X � “y 2 a ^ y … b”, because they interpret 2 in the same way. But then X � “a 6� b”. a

Finding examples of transitive sets and examples of non-transitive sets is easy. In particular,
1. ; is transitive. ¹;º is transitive.
2. If x is transitive, then x [ ¹xº is transitive (any element b 2 x [ ¹xº is still a subset since b � x � x [ ¹xº).
3. Writing 0 D ;, 1 D ¹0º, and 2 D ¹0; 1º, then from the above, 0, 1, 2, and ¹0; 1; 2º are transitive, but ¹1º, ¹0; 2º,

and ¹2º are not.
4. If x is transitive and y � x, then x [ ¹yº is transitive.

Now we introduce the axiom of foundation. To motivate the axiom, it’s difficult to think of a set which could be an
element of itself. Considering a more physical picture, you can’t place a box (completely) inside itself—the concept
wouldn’t make any sense. Indeed, Russell’s Paradox (2 • 6) partly goes through because we consider that the collection
of everything that exists is an element of itself. This would suggest we should assume 8x .x … x/ as an axiom. This
would rule out some direct approaches, but we could still code the counter-intuitive situations through other loops:
x 2 y and y 2 x, for example.

The axiom of foundation rules out loops of arbitrary length, and has a great number of consequences. Intuitively, the
idea can be motivated as above, but it can also be motivated though the iterative conception of what a collection is:
namely, collections are built up of smaller things that have come before in a certain sense. This will turn out to be
equivalent to the axiom. Explicitly, foundation merely states that membership is well-founded.

2E • 4. Definition (Axiom)
(Foundation) for each x, there is a 2-minimal element of x: 8x 9y .y 2 x ^ 8z .z 2 y ! z … x//.

2E • 5. Corollary
Assume the axiom of foundation. Therefore:

1. We never have x 2 x.
2. In fact, there are no finite loops x0 2 x1 2 � � � 2 xn 2 x0.
3. If x ¤ ; is transitive, ; 2 x is the 2-minimal element of x.
4. x is transitive iff x [ ¹xº is transitive.
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Proof .:.
1. Suppose x 2 x. By foundation, there is a 2-minimal element of ¹xº, which must be x. So any y 2 x has
y … ¹xº by minimality. But x 2 x has x 2 ¹xº, so we have a contradiction.

2. Consider the set ¹x0; � � � ; xnº, which exists by finite applications of union and pairing. This has no 2-minimal
element, since any xi has xi�1 2 xi for i > 0 or else xn 2 xi for i D 0.

3. If x is transitive, then every element y 2 x is a subset of x. Hence if y ¤ ; is 2-minimal, then there is some
z 2 y 2 x, which yields z 2 x and z 2 y, contradicting the minimality of y. Hence any 2-minimal element
must be ;.

4. We know that x being transitive implies x [ ¹xº is transitive. For the other direction, if x [ ¹xº is transitive,
then any a 2 b 2 x [ ¹xº must have either a 2 x or a D x. But a cannot equal x without us having a finite
loop: either x 2 b 2 x or x 2 b D x. Hence a 2 b 2 x [ ¹xº requires a 2 x. This clearly implies that x is
transitive since a 2 b 2 x � x [ ¹xº implies a 2 x. a

Important for later is the idea that any set is contained in a transitive set, which should seem rather clear: just continually
add in the elements missing. To formalize this, however, we need some more ideas in general: the natural numbers. In
general, we need ideas which will take the form of ordinals. In particular, we need a better idea of how to talk about
rank. If ; is the base of the universe, then ¹;º is just above it, and so has a rank one higher. Similarly, collections built
from these like ¹;; ¹;ºº and ¹¹;ºº are a rank higher than that. This is the iterative concept we will explore: ¹;º comes
“before” ¹;; ¹;ºº because it has a lower rank.

§2F. Formula abbreviations

We will often make abbreviations to our formulas to change their domain of discourse. For example, instead of writing
“8x .x 2 A! '/”, we will write “8x 2 A '”. Similarly, instead of “9x.x 2 A ^ '/”, we will write “9x 2 A '.x/”.
These are standard translations of the more natural language ways of phrasing the formulas: “for all x inA, '.x/ is true”
and “there is an x inA such that '.x/ is true”. We may also do this with other properties. For example, “8x < a '.x/”
stands for “8x.x < a! '.x//”. Mostly this just serves to simplify formulas and make them easier to read, which we
have already done with other abbreviations like ‘�’, ‘[’, and so forth.
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Section 3. Well-orders and Ordinals

We will primarily be working with well-orders. Ordinals themselves are the “canonical” well-orders in that they are
well-ordered bymembership. Theywill also be special transitive sets, giving some credence to the axiom of foundation,
since these canonical examples of transitive sets are well-ordered.

3 • 1. Definition
A relation R is a well-order iff R is linear, and well-founded.

Wewill see later that all well-orders on their domain and range are isomorphic to ordinals with the membership relation.
First we must figure out what the ordinals are, and what properties they have.

§3A. Introducing ordinals

3A • 1. Definition
A set ˛ is an ordinal iff ˛ is transitive, and 2 is a strict well-order of ˛.

Note by foundation that 2 is well-founded on any set ˛. In the absence of the axiom of foundation, the requirement
that 2 be well-founded isn’t redundant. In the absence of foundation, we could have a set x D ¹xº which is clearly
well-ordered by 2, but this isn’t a strict order: x 2 x.xiii For the remainder of this section, we will not assume the
axiom of foundation to show that the ordinals behave the same regardless. The well-founded property of membership
on ordinals is used extensively in the arguments below. In essence, the results say that collection of ordinals themselves
is linearly ordered by 2, rather than just each individual ordinal.

3A • 2. Result
Let ˛; ˇ be ordinals. Therefore,

1. Any  2 ˛ is an ordinal.
2. ˛ 2 ˇ _ ˛ D ˇ is equivalent to ˛ � ˇ.
3. ˛ 2 ˇ, ˇ 2 ˛, or ˛ D ˇ.
4. ˛ [ ˇ is an ordinal.

Proof .:.

• For ı 2 ˛, suppose y 2 x 2 ı. We know y; x 2 ˛. Since ˛ is linearly ordered by 2, it follows that either
ı 2 y or y 2 ı. Clearly ı 2 y is impossible by well-foundedness. Hence y 2 ı verifies that ı is transitive.
Anti-symmetry follows from antisymmetry on ˛:  � ˛. Similarly, totality follows from the totality on ˛.

• Clearly if ˛ 2 ˇ or ˛ D ˇ then ˛ � ˇ by transitivity. So suppose ˛ � ˇ for ˛ an ordinal, but that the
conclusion fails: ˛ ¤ ˇ and ˛ … ˇ. Without loss of generality, take ˇ as the least failure in the sense that for
each ˛0 2 ˇ, ˛ � ˛0 implies ˛ 2 ˛0 or ˛ D ˛0 (to do this, take any ordinal ˇ0 witnessing the failure, and then
consider the subset ¹ˇ 2 ˇ0 W ˇ has it failº and thus take a minimal element ˇ by well-foundedness of 2 on
ordinals).

Consider ˇ n˛ as a subset of ˇ. Since ˇ is well-ordered by 2, there is a least element ˛0 2 ˇ n˛. Now suppose
 2 ˛. Clearly  2 ˛0 by totality of 2 on ˇ. Hence ˛ � ˛0. By minimality of ˇ, ˛ 2 ˛0 or ˛ D ˛0. Therefore
˛ 2 ˇ, a contradiction.

xiiiEnsuring the well-order is strict gets rid of these degenerative cases in the absence of foundation. But it also allows for the usual arguments
to go through. A typical argument will be to consider the 2-least counter example ˛ and conclude that for every ˇ 2 ˛, ˇ has the property we're
after. This doesn't work if ˛ 2 ˛ D ¹˛º because we're critically assuming ˇ ¤ ˛, and this is why 2 being strict is important (although it's not very
important).
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• Let ˛ be fixed. Let ˇ be an ordinal with ˛ … ˇ, ˛ ¤ ˇ, and ˇ … ˛. Without loss of generality, take ˇ as the
least failure in the sense that for each ˛0 2 ˇ, ˛ 2 ˛0, ˛ D ˛0 or ˛0 2 ˛ (to do this, just take any ordinal ˇ0
witnessing the failure, and then consider the subset ¹ˇ 2 ˇ0 W ˇ has it failº and thus take a minimal element ˇ
by well-foundedness).

Clearly if ˛ � ˛0 2 ˇ for any ˛0 2 ˇ, then (2) yields that ˛ 2 ˇ. So then ˛0 2 ˛ for every ˛0 2 ˇ. But then
ˇ � ˛ so that ˇ 2 ˛ or ˇ D ˛ by (2), again, a contradiction.

• That ˛ [ ˇ is transitive is immediate: any y 2 ˛ [ ˇ has y 2 ˛ or y 2 ˇ. So if x 2 y, then x 2 ˛ or x 2 ˇ
and hence x 2 ˛ [ ˇ. Well-foundedness follows from the property holding on ˛ and on ˇ: for any subset X ,
˛ \X has a minimal element ˛X and ˇ \X has a minimal element ˇX , and one of these must be minimal for
˛ [ ˇ. Antisymmetry is trivial. Totality follows from (1) and (3). a

Some easy examples of ordinals can be gotten from Subsection 2 E. In particular, ; is an ordinal, and we have the
following result.

3A • 3. Result
Let ˛ be an ordinal. Therefore ˛ [ ¹˛º is an ordinal.

Proof .:.

We know by Corollary 2 E • 5 that ˛[¹˛º (or rather the memberhsip relation on it) is transitive. So all that suffices
to be shown is antisymmetry, and totallity of 2. Since antisymmetry is vacuously true for well-founded relations,
as in Corollary 2 E • 5, we only need to show totality. But this follows from Result 3A • 2: all elements of ˛[¹˛º
are ordinals, and so can be related by 2.

In particular, for ;, we have ¹;º, ¹;; ¹;ºº, and so on as ordinals. To make the notation a bit nicer, we will use the
extremely suggestive notation below.

3A • 4. Definition
For ˛ an ordinal, write ˛ C 1 for ˛ [ ¹˛º. Write ˇ < ˛ for ˇ 2 ˛. Write 0 for ;.

Hence 0, 1 D 0C 1, 2 D 1C 1, 3 D 2C 1 are all ordinals. Note further that then every ordinal ˛ D pred<.˛/ so that,
for example, 5 D ¹0; 1; 2; 3; 4º (which has five elements). Note that the use of “C1” is appropriate here as a kind of
successor operation.

3A • 5. Corollary
Let ˛ be an ordinal. Therefore there is no ordinal ˇ between ˛ and ˛ C 1.

Proof .:.

Obviously, ˛ 2 ˇ 2 ˛ C 1 requires ˇ D ˛ or ˇ 2 ˛. Since ˛ … ˛ by well-foundedness, we must have ˇ 2 ˛,
contradicting antisymmetry and that ˛ C 1 is an ordinal. a

So far we are able to construct n D 1C � � � C 1 (n additions of 1) for each natural number n. But (provably) we can’t
show that the set of all of these ordinals exists from the axioms thus far. To do this, we must introduce the axiom of
infinity: that there exists an infinite set of these.

3A • 6. Definition (Axiom)
(Infinity) The set of natural numbers (or a set containing them) exists: 9N .; 2 N ^ 8x 2 N .x [ ¹xº 2 N//.

The definition isn’t able to properly say that the set of natural numbers exists without the notion of an ordinal. So we
have to note the following result to then define the set of natural numbers. Clearly the result follows from foundation,
but to get better acquainted with ordinals, we don’t resort to this fact.
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3A • 7. Theorem
For any non-empty set X of ordinals,

• supX ��D
S
X is an ordinal, and

S
X � ˛ for each ˛ 2 X ;

• infX ��D
T
X is an ordinal, and

T
X � ˛ for each ˛ 2 X ;

• infX 2 X so that infX D minX is the minimum element of X .
Proof .:.

• It’s clear that supX � ˛ for each ˛ 2 X . To see that supX is an ordinal, transitivity follows from the
transitivity of each ordinal in X : x 2 y 2 supX has y 2 ˛ for some ˛ and hence x 2 ˛ � supX implies
x 2 supX . Antisymmetry is trivial, and totality follows easily from Result 3A • 2.

• It should be clear that then infX � ˛ for each ˛ 2 X . To see that infX is an ordinal, if y 2 x 2 ˛ for each
˛ 2 X , then y 2 ˛ for each ˛ 2 X so that infX is transitive. Antisymmetry is again trivial, and totality is
again easy to see as infX is still a set of ordinals by Result 3A • 2.

• Since every ˛ 2 X has ˛ � supX , it’s easy to see that ˛ < sup.X/ C 1 so that X � sup.X/ C 1. As
2 is well-founded on sup.X/ C 1, it follows that X has a minimal element minX , which is an ordinal. AsT
X � minX , by (2), it suffices to showminX �

T
X . But this is clear: every element˛ 2 X hasminX � ˛

so that minX �
T
X . Hence minX D

T
X 2 X . a

Thus far, we’ve only seen ordinals where supX D maxX 2 X or else X D ;. But this won’t always be true in
general. In fact, there is a whole class of ordinals where this is false. Such ordinals are called limit ordinals, and in fact
all ordinals can be broken down into limits or successors (or 0). As a hint of what to come, the set of natural numbers
will be a limit ordinal, and in fact the least such.

3A • 8. Definition
Let ˛ ¤ 0 be an ordinal. ˛ is a successor ordinal iff ˛ D ˇC1 for some ordinal ˇ. ˛ is a limit ordinal iff ˛ D sup˛.

This classifies all ordinals.
3A • 9. Theorem

Let ˛ be an ordinal. Therefore ˛ D 0, or ˛ D sup.˛/C 1, or ˛ D sup˛.

Proof .:.

Let ˛ ¤ 0. If ˛ D sup˛, then for each ˇ < ˛, there is an  < ˛ with ˇ <  . In particular, by Corollary 3A • 5,
ˇ C 1 < ˛. So it’s easy to see that ˛ D sup˛ is equivalent to 8ˇ < ˛ .ˇ C 1 < ˛/. So if ˛ ¤ sup˛, there
is some ˇ < ˛ with ˇ C 1 6< ˛. Thus ˇ < ˛ � ˇ C 1 so by Corollary 3A • 5, ˛ D ˇ C 1. But then for every
 < ˛,  � ˇ, implying ˇ D sup˛ and thus ˛ D sup.˛/C 1. a

Let’s now collect the major properties of ordinals that we know so far.
3A • 10. Theorem

For all ordinals ˛; ˇ,
1. ˛ is a set of ordinals;
2. ˛ D 0, ˛ is a successor ordinal, or ˛ is a limit ordinal;
3. 0 is the least ordinal;
4. the ordinals are well-ordered by 2;
5. ˛ [ ˇ D max.˛; ˇ/;
6. ˛ \ ˇ D min.˛; ˇ/;
7. ˛ � ˇ iff ˛ � ˇ (although not all sets x � ˇ are ordinals);
8. inf˛ � sup˛ � ˛ < ˛ C 1, and for ˛ > 0, inf˛ < sup˛.
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Proof .:.
1. follows from Result 3A • 2 (1).
2. follows from Theorem 3A • 9.
3. follows from Definition 3A • 4:  < 0 implies  2 ;, which is always false.
4. has linearity follow from transitivity and Result 3A • 2 (2). To show well-foundedness, let X be a non-

empty set (or class) of ordinals. Taking ˛ 2 X yields that X \ .˛ C 1/ � ˛ C 1 which then has a least
element ˇ 2 X \ .˛C 1/. Any least element  2 X must have  � ˛ and thus  2 X \ .˛C 1/ so that ˇ
is the least element of X .

5. follows from Result 3A • 2 (4) and (2).
6. follows from Theorem 3A • 7.
7. follows from Result 3A • 2 (4).
8. follows from Theorem 3A • 7.

Now formally, we’ve defined a well-order to be a certain kind of set, which would make (4) false: the collection of all
ordinals doesn’t constitute a set. But it’s easy to see what is meant by 2 well-ordering the ordinals (just the defining
conditions without the additional requirement that the relation—2 here—be a set).

3A • 11. Result (Burali–Forti Paradox)
:9s 8x .x is an ordinal ! x 2 s/. Informally, the collection Ord of all ordinals is not a set. In particular, there is
no largest ordinal.

Proof .:.

There is no largest ordinal, since the largest ordinal ˛ has ˛C 1 > ˛ by the reasoning above: ˛C 1 D ˛ implies
˛ 2 ˛, contradicting well-foundedness (even a set ¹˛º has no least element, since a least element ˇ requires
8z 2 ˇ .z … ˛/, which isn’t true for ˇ D ˛).

To show that Ord can’t be a set, by Theorem 3A • 10, 2 well-orders Ord. Since each ˛ 2 Ord is transitive, it
follows that ˛ � Ord and hence Ord is transitive. Therefore Ord is an ordinal. But then Ord is the largest ordinal,
contradicting the idea above. a

Let’s return to the idea of natural numbers. Notice that by our classification, every natural number is a successor
ordinal, and in particular is of the form 0C 1C � � � C 1 for some (natural) number ofCs.

3A • 12. Definition
Write ! for the least limit ordinal, the set of natural numbers.

To see why ! should be the set of natural numbers, note that the supremum of the natural numbers must be a limit
ordinal: n is a natural number implies n C 1 is too, so if n < sup N then n C 1 < sup N, meaning sup N is a limit
ordinal. Moreover, sup N must be the least limit ordinal, since every n < sup N is a natural number, which means it’s
either a successor or 0. So this implies ! D N, but we haven’t shown that ! actually exists, yet.

3A • 13. Result
The set !, the least limit ordinal, exists.

Proof .:.

Let N be as in the axiom of infinity. Take the subset N 0 D sup¹˛ 2 N W ˛ is an ordinalº so that N 0 is an ordinal.
We need to show that ! � N 0. If N 0 has a limit ordinal below it, then clearly ! is least by definition. So if N 0

has no limit ordinals below it, we want to show that N 0 D !.

Let ˛ 2 N 0 be the least such that ˛ 2 ! nN 0. As ! is the least limit ordinal, ˛ must be a successor or 0. If ˛ D 0,
then 0 2 N 0 by hypothesis that 1 2 N so 0 < 1 � N 0. If ˛ D ˇ C 1, then ˇ 2 !. By the minimality of ˇ,
ˇ 2 N 0 so that by the hypothesis on N , ˇ C 1 D ˛ 2 N and hence ˛ C 1 2 N so that ˛ < N 0, a contradiction.
Therefore ! � N 0. But then as ordinals, ! < N 0 or ! D N 0. Since N 0 has no limit ordinals below it, N 0 D !.a
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It would seem that the reasoning alone gives the existence of !, but really the idea only only characterizes !. We still
need the existence of such an N as in the axiom of infinity to ensure the existence of !.

With the natural numbers at our fingertips, we can show that ! satisfies all the usual properties that we want, namely
the axioms of peano arithmetic, PA. To do this, we need a notion of addition and multiplication of ordinals. To do this,
we need a better way of defining operations on !.

As a side note, we have a characterization of ! in meta-theoretic terms (able to be reached from 0 by finite applications
of adding 1). What we’ve done now is show that in V, this coincides with the characterization of ! as the least limit
ordinal. This formal characterization, however, isn’t necessarily the set of natural numbers. Consider the following
from model theory: in the language FOL.2; c/ where c is a constant symbol, the theory of set theory adjoined with
“! > c > 1 C � � � C 1” (n times) for each real-world natural number n 2 V yields a theory Tn that is consistent
assuming that set theory is consistent (just interpret c as n C 1 in V). Hence every finite subset of the theory T D
¹' W ' in Tn for some n a natural numberº is consistent so that T itself has a model by Compactness (1D • 2). But in
this model M � T , we have M � “! > cM > 1C � � � C 1” (n times) for each real-world natural number n < !. So
!M can’t be the same as ! in the real-world V. All of this is to say that we must be careful about using our intuitive,
meta-theoretic characterization of ! to formally prove things about it from set theory. To ensure that we can prove all
of the intuitive properties of ! formally, we resort to the principle of induction.

§3B. Finitary recursion and induction

Recall the defining property of !: if 0 2 !, and n 2 ! then nC 1 2 ! (and this is all there is in !). In particular, this
yields the following result, called the principle of induction.

3B • 1. Theorem (Induction on !)
Let '.x/ be a FOLp.2/-formula. Suppose '.0/ and '.n/! '.nC 1/. Therefore 8n 2 ! '.n/.

Proof .:.

Consider the set X D ¹n 2 ! W :'.n/º and suppose X ¤ ;. This has a least element x 2 X . Note that x ¤ 0 by
the hypothesis. Since ! is the least limit ordinal, x D sup.x/C 1 is a successor. But by minimality, '.sup.x//
holds and so '.sup.x/C 1/ holds, contradicting that sup.x/C 1 D x 2 X . a

Really, this is just a consequence of ! being well-ordered. But this reflects the properties of arithmetic that ! should
have. The key thing here is that by specifying what happens at 0, and what happens at successor stages, we can define
something on all of !. This idea is referred to as recursion.

The formal statement of recursion is long and clunky. So to better understand it, we give some examples. Firstly, we
would normally define addition by n by fn.x/ D x C 1C � � � C 1 where we add 1 ns. The issue with this is that this
definition is informal and meta-theoretic, in some sense. It’s not clear how we would define this function purely in
terms of set theory without resorting to “n-times”. Surely for each x this makes sense, but the map sending n 7! fn
isn’t so obviously well defined (consider non-standard models with different !s). To get around this, for each x < !

consider the map defined by fx.0/ D x and fx.nC1/ D fx.n/C1 for all n < !. Using induction, any functions that
satisfy this agree everywhere so this defines fx on all n < !. Moreover, intuitively, this fx satisfies fx.n/ D x C n.

Once we have fx for each x < !, we can consider the map sending hx; ni to fx.n/. This map, call it ‘C’, sends hx; ni
to x C n in the usual sense.

To define this whole process more formally, what we’re doing is specifying what happens at the start, and then what
happens at successor stages. So we are given functions f and g, and we define the function h starting with f .0/, and
finding the next values based on g and the previous value: for n < !,

h.0/ D f .0/

h.nC 1/ D g.n; h.n//.
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So to calculate h.2/, we start with h.0/ D f .0/, and then calculate h.1/ D g.1; f .0//, and then calculate h.2/ D
g.2; g.1; f .0///. In principle, we could then keep going to define h.4/, h.5/, and so on, meaning h.n/ will be some
particular number for each n. This means the function h is determined by these conditions in the sense that it is the
unique function satisfying them. Formally, we have the following theorem. The proof of this theorem is very technical,
and long, and not terribly illuminating, mostly just making precise and formal the intuitive idea of “starting and 0 and
defining what happens next determines it on all of the natural numbers”. It is included for those interested in the precise
details, but for those uninterested, it can be skipped.

3B • 2. Theorem (Recursion on !)
Let f with 0 2 dom.f / be a function. Let g be a function from ordered pairs with the first entries being natural
numbers: ! D dom.dom.g//. Therefore, there is a unique function h where dom.h/ D ! and for all n < !,

h.0/ D f .0/

h.nC 1/ D g.n; h.n//.

Proof .:.

To show existence, we proceed by induction to show that for each n 2 !, '.n; h/ defines a unique function hn,
which is supposed to represent h � n. Once we do this, we pull together all of the hns to define h.

Consider the formula  .n; h/ given formally below:

dom.h/ D n < ! ^ 8k < n
� �

k D 0 ^ h0; f .0/i 2 h
�

_ 9Šv 9m
�
k D mC 1 ^ hm; vi 2 h ^ hk; g.m; v/i 2 h

�� .

Informally,  .n; h/ says
h is a function with domain n and obeys the recusive definition up to n.

One may easily check the following facts:
1. if  .n; h/, then h is a function;
2. if  .n; h/ and m � n, then  .m; h � m/; and
3. if  .n; h/ for n D n� C 1, then  .nC 1; h [ ¹hn; g.n�; h.n�//iº/.

We want to now show that for each n < !, there is exactly one h with  .n; h/. This will allow us to use
replacement to collect all of these approximations to the h of the theorem together.

Claim 1
8n < ! 9Šh  .n; h/.

Proof .:.

There are two parts to this: the existence of h, and the uniqueness of h. Existence holds by induction: since
h0 D ; exists trivially, and hnC1 satisfying  .nC 1; hnC1/ exists by (3) above. So induction shows that
for each n < !, there exists such an h where  .n; h/.

To show there is at most one h with  .n; h/, let nC 1 < ! is the least where this fails (it vacuously holds
for n D 0). Thus we have two functions h0 ¤ h1 where  .nC 1; h0/ and  .nC 1; h1/. Note by (2) above,
 .n; h0 � n/ and .n; h1 � n/ hold. So by the minimality of nC1, h0 � n D h1 � n. So the only place the
two functions can differ is at n: h0.n/ ¤ h1.n/. But in satisfying  , we must have that for k D n D mC1,
hk; g.m; hi .m//i 2 h0; h1, i.e. h0.n/ D g.n; h0.m// D g.n; h1.m// D h1.n/, a contradiction. a

Thus by replacement, we have the set ¹hn W n 2 !º where  .n; hn/ for each n < !. Therefore
S
n2! hn D h is

a function with domain !, and for each n < !, h satisfies  .n; h � n/. Thus h.0/ D .h � 1/.0/ D f .0/ and
h.nC 1/ D .h � nC 2/.nC 1/ D g.n; .h � nC 2/.n// D g.n; h.n//, showing that h shows the existence of
such a function as in the theorem statement.

Now for uniqueness, suppose h0 ¤ h also satisfied the hypothesis. Therefore for each n < !,  .n; h0 � n/ holds
so that uniqueness of the parts yields h0 � n D h � n for each n < !. Hence h0.n/ D .h0 � nC 1/.n/ D .h �
nC 1/.n/ D h.n/ for each n < !. Thus h0 D h. a
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The above theorem isn’t actually given in its fullest generality: we are allowed more variables. As long as the order
we proceed through the tuples in is well-founded, we are guaranteed the result by the same idea as above. Another
example would be to consider building a tree of finite length sequences of 0s and 1s. We can proceed by the above idea
to define h.�/ for any � in the tree by breaking down into cases: defining h.�_h0i/ and h.�_h1i/ for arbitrary � gives
a definition to h generally: h.h0; 1; 0; 0; 1i/ is given by looking at h.;/, then looking at h.;_h0i/, then h.h0i_h1i/,
and so on. The proof of the existence and uniqueness of h is exactly the same.

3B • 3. Corollary
Let X be a set, and let T be the tree of finite sequences of elements of X . Let f with ; 2 dom.f / be a function.
Let g be a function of the form g W X � T � A ! B for some sets A � B . Therefore there is a unique function
h W T ! A where for all � 2 T and x 2 X ,

h.;/ D f .;/

h.�_hxi/ D g.x; �; h.�//.

Going beyond this is more difficult, because it’s unclear how to deal with limit stages with just the above information.
So we must consider the transfinite versions of these.

§3C. Transfinite recursion and induction

The existence of limit ordinals is incredibly powerful, as it allows us to form larger and larger ordinals beyond just
!. To go further, we need a better way of defining or constructing these ordinals. To do this, we use the notion of
transfinite recursion and induction. Intuitively, ! C 1, ! C 2, ! C 3, and so on have all been defined. If we wish to
define ! C !, we could do this as the least limit ordinal after !, but this clumsy characterization isn’t sustainable to
define ˛ C ˇ for general ordinals ˛ C ˇ. To do this, we use the characterization of ordinals into 0, successors, and
limits. If we specify the definition at 0, at successors, and at limits, we will have defined it everywhere. The idea of
transfinite recursion makes this explicit.

Again, first we have the fundamental property that allows us to do this: transfinite induction. The idea was already
noticed in Theorem 3A • 10 (4). But to make it explicit, we have the following theorem.

3C • 1. Theorem (Transfinite Induction)
Let '.x; Ew/ be a FOL.2/-formula with Ev parameters. Suppose '.˛; Ev/ holds whenever 8ˇ < ˛ '.ˇ; Ev/. Therefore
for every ordinal ˛, '.˛; Ev/.

Proof .:.

Otherwise, take ˛ the least such that :'.˛; Ev//. Thus for every ˇ < ˛, '.ˇ; Ev/. Hence by hypothesis '.˛; Ev/, a
contradiction. a

This also applies to the natural numbers, but stated this way allows us to incorporate limit ordinals. If we had simply
left the same sort of statement as in Induction on ! (3 B • 1), we wouldn’t necessarily have the result for !, much less
all ordinals ˛. In particular, consider the property of being 0 or a successor ordinal. Clearly this holds for 0 and if it
holds for ˛, it holds for ˛ C 1. But this never allows one to reason their way to the limit ordinals: only successors of
successors and so on.

To make the notion of transfinite recursion formal, we need three functions specifying what happens at stage 0, what
happens at successor stages, and what happens at limit stages. This idea of breaking down into cases proceeds in
precisely the same way as in Recursion on ! (3 B • 2). But there is a slightly easier way to state it formally. Rather
than breaking down into more and more cases with more and more classifications, the main idea of recursion is just
that we can calculate the next value from the previous ones. So the value at ! should be determined by the values on
all n < !. Stated formally, this yields the much more compact version below.

27



WELL-ORDERS AND ORDINALS CH I §3 E

3C • 2. Theorem (Transfinite Recursion)
Let ˛ be an ordinal. Let f be a function, writing f .x/ D ; for x … dom.f /. Therefore there is a unique function g
with domain ˛ such that for all ˇ < ˛, g.ˇ/ D f .g � ˇ/.

Proof .:.

Assuming existence, uniqueness follows easily by induction on ˛. For ˛ the least such where this fails, there are
then functions g ¤ g0 where g.ˇ/ D f .g � ˇ/ and g0.ˇ/ D f .g0 � ˇ/ for all ˇ < ˛. But by minimality of ˛,
g0 � ˇ D g � ˇ so that g.ˇ/ D f .g0 � ˇ/ D g.ˇ/, meaning g.ˇ/ D g0.ˇ/ for all ˇ < ˛, and thus g D g0.

To show existence, proceed as in Recursion on ! (3 B • 2). In particular, consider the formula  .ˇ; g/ which
says that g is a function with domain ˇ and 8 < ˇ .g./ D f .g � //. By induction on ˇ, we can show
9Šg  .ˇ; g/. To see this, let ˇ be least where this fails. Hence for each  < ˇ, 9Šg  .; g/. By replacement
we get a set ¹g W  < ˇº. One can easily see that  .; g/ implies  .ı; g � ı/ for any ı <  < ˇ. Hence
the union g D

S
¹g W  < ˇº is a function with domain ˇ, and one can easily check that for each  < ˇ,

g./ D f .g � /. Uniqueness follows from the uniqueness of each g D g �  as in Recursion on ! (3 B • 2).
a

The idea above actually extends to Ord in the sense we can get define an output on every ordinal ˛. Although we won’t
get a g such that Ord � dom.g/ (since g needs to be a set), we can still define what the output will be at any given ˛ by
considering the resulting function with domain ˛C1. Uniqueness ensures that this output doesn’t vary with the change
in domain. So it makes sense to say that this defines a function on all of Ord, even though only the approximations
to this function exist. Formally, we might say '.˛; y/ holds iff 9g .g is a function with dom.g/ D ˛ C 1 ^ 8ˇ <

˛ C 1.g.ˇ/ D f .g � ˇ// ^ y D g.˛//. The reasoning above tells us that 8˛ 2 Ord 9Šy'.˛; y/. So this is the sense
in which we have defined a function on all of Ord.

§3D. A word on sequences and functions

Although much of this section has been stated in terms of functions, it’s perhaps most intuitive to think of functions
from ordinals as sequences: for each entry in a sequence, there is a subsequent entry, and there should always be a least
point in the sequence where something happens. In most other branches of math, the only sequences that appear are
those of length !, or else finite.

3D • 1. Definition
A sequence is a function f with dom.f / as an ordinal (or dom.f / D Ord, in which case f is a class). The length
of a sequence is its domain.

This notion of a sequence is incredibly important if we want to define functions with more than just finitely many
inputs. Thus far, if we wanted a function from tuples inA, B , and C toD, we’d need to consider f W A�B �C ! D.
The introduction of sequences allows us to consider tuples instead as sequences: ha; b; ci can be identified with the
function f W 3! A[B [C where f .0/ D a and f .1/ D b and f .2/ D c, identifying each entry with where it is in
the tuple. And we can generalize this, allowing us to talk about infinite products.

3D • 2. Definition
Let I be a set, and suppose ¹Ai W i 2 I º is a family of sets. Therefore the cartesian product

Q
i2I Ai is the set of

functionsf W I !
S
i2I Ai such that f .i/ 2 Ai for each i 2 I .

In particular, for ˛ an ordinal, we write A˛ D
Q
ˇ<˛ A, generalizing An D A� � � � �A (n times) for n < !. Note that

the finite product of non-empty sets is non-empty. That infinite products of non-empty sets are non-empty is equivalent
to an axiom yet to be introduced. We will have no need of it for now, but it should be noted.

Really, the inherent notion of a sequence just comes from any well-order. So we should investigate further what well-
orders exist. As it turns out, the ordinals will exhaust all the well-orders in V.
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§3E. The model theory of well-orders

We have defined what it means for a structure A D hA;Ri to be a well-order: R well-orders A D dom.R/ [ ran.R/.
This property, however, is not expressible in first-order logic alone. To see this, we use compactness and the existence
of !.

3E • 1. Result
Let � be a signature with a binary relation symbol R. Let T be a FOL.�/-theory such that T contains the axioms of
partial orders. Therefore, if T has an infinite, well-ordered model, then T has an ill-founded (i.e. not well-founded)
model. Hence being a well-order isn’t FOL-expressible.

Proof .:.

Let A � T be an infinite well-order. Using Recursion on ! (3 B • 2), define an infinite RA-increasing sequence:
let a0 be the RA-minimal element of A. By well-foundedness, for nC 1, let anC1 be the RA-least element a 2 A
such that

8i � n .A � “ai RA a”/.
Now in the expanded signature ˇ D ¹Rº[ ¹cn W n 2 !º with new constant symbols cn for each n < !, consider
the theory T 0 D T [ ¹cnC1 R cn W n < !º. Note that any model of T 0 is ill-founded. Since any model of T 0 is
also a model of T , it suffices to show that T 0 is consistent. To do this, we use Compactness (1D • 2).

For any finite subset� � T 0, there is a largest n < ! where cn occurs in a formula of�. TakingN to be this, we
can interpret � in the expansion A0 of A where cn is interpretted as aN�n: A � “aN�.nC1/ R aN�n” so clearly
A0 � “cnC1 R cn”. Since A0 � T , it follows that A0 � �, and thus � is consistent. As � was arbitrary, T 0 is
consistent. By Completeness (1D • 1), there is a model B � T 0 which then models T , but is ill-founded. a

So the property of being a well-order is a property of the the set theoretic universe. Depending on the (non-V) model
of set theory, certain sets may or may not be well-founded, because the models don’t have the set witnessing the ill-
foundedness. This is a weakness of first-order logic, but it is no challenge to the legitimacy of the concept. Really,
this idea just expresses the inadequacy of first-order formulas to properly characterize these notions. This is a common
part of logic, as even group theory is subject to the limitation: the property of being a cyclic group isn’t first-order
expressible, for example. This is merely something we must live with.

Clearly, however, being a well-order is preserved under isomorphisms. In fact, our goal here will be to show that the
ordinals are the canonical well-orders in the sense that every well-order is isomorphic to a particular ordinal (under
membership). To do this, we proceed in a similar way as when we introduced ordinals. Before this, we introduce some
definitions that should be familiar from model theory.

3E • 2. Definition
Let A D hA;<Ai and B D hB;<Bi be structures where <A and <B are relations.

• A function f W A! B is a homomorphism iff a <A a0 ! f .a/ <B f .a
0/ for every a; a0 2 A.

• A function f W A! B is an embedding iff a <A a$ f .a/ <B f .a
0/ for every a; a0 2 A and f is injective.

• A function f W A! B is an isomorphism iff f is an embedding, and f is surjective.
If A is a linear order, an initial segment of A is a substructure with universe pred<A

.a0/ D ¹a 2 A W a <A a0º for
some a0 2 A.

So for each ordinal ˛, pred2.˛/ D ˛. Now we consider the following result about well-orders. Note that for X � A
and <A � A �A, we continue to write hX;<Ai for the sake of readability when really we mean hX;<A \ .X �X/i.
Note that if A is a well-order, then its initial segments are well-orders too.

3E • 3. Lemma
Let A D hA;<Ai be a well-order. Let a 2 A. Write pred<A

.a/ for ¹x 2 A W x <A aº. Therefore hpred<A
.a/; <Ai is

a well-order.

This can be seen just by noting that all of the properties are inhereted from the well-order on A: transitivity, antisymme-
try, and totality all hold since we’re taking all variables in pred<A

.a/, and well-foundedness also clearly holds, since
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we’re taking a subset of pred<A
.a/. In fact, for any subset X � A, hX;<Ai is well-founded if hA;<Ai is.

3E • 4. Lemma
Let A D hA;<Ai be a well-order. Therefore, A 6Š hpred<A

.a/; <Ai for any a 2 A.

Proof .:.

Let f W A ! A<a be an isomorphism where A<a D hpred<A
.a/; <Ai. Consider the subset X D ¹x 2 A W

f .x/ ¤ xº. Note that X is non-empty, since a 2 X , for example: a … A<a cannot be in the image of f .
Consider the <A-least element x 2 X so that f " pred<A

.x/ D pred<A
.x/, but f .x/ ¤ x. By injectivity, it

follows that f .x/ 6<A x and thus f .x/ >A x by totality. Since f is an isomorphism, there must be some
x0 2 A where x D f .x0/. But then A<a � “f .x/ >A f .x0/” requires A � “x >A x0” as an embedding. But by
minimality, this implies f .x0/ D x0 ¤ x, a contradiction. a

Using this, we get the following, which will allow us to show that any two well-orders can be compared in the sense
that they are either isomorphic to each other, or to an initial segment. In particular, when we restrict an isomorphism
to an initial segment, we get an isomorphism between initial segments.

3E • 5. Lemma
Let A D hA;<Ai and B D hB;<Bi be well-orders. Let f W A! B be an isomorphism. Therefore, for any a 2 A,
f � pred<A

.a/ is an isomorphism between hpred<A.a/; <Ai and hpred<B.b/; <Bi for some b 2 B .

Proof .:.

Write A<a for hpred<A
.a/; <Ai and similarly for b 2 B . Let a 2 A be <A-least such that the result fails. Let b

be the least element of B nf "A<a. We will show that f "A<a D B<b , and thus that f � A<a is an isomorphism
between A<a and B<b .

Byminimality,B<b � f "A<a, so suppose the reverse doesn’t happen: there is some a0 2 A<a with f .a0/ >B b.
As an isomorphism, there is some a0 2 A with b D f .a0/ so that B � “f .a0/ >B f .a0/”. As an embedding, this
means A � “a0 >A a0” so that a0 2 A<a, contradicting that b … f "A<a. a

3E • 6. Lemma
Let A D hA;<Ai and B D hB;<Bi be two well-orders. Suppose A 6Š B, and B is not isomorphic to an initial segment
of A. Therefore there is a unique b0 2 B with A Š hpred<B

.b0/; <Bi.

Proof .:.

Write A<a for hpred<A
.a/; <Ai and similarly for b 2 B . Uniqueness clearly holds by Lemma 3E • 4: A Š B<b0

and A Š B<b1
implies B<b1

Š B<b0
. So if b1 ¤ b0, then b0 <B b1 or b1 <B b0, and we contradict Lemma

3E • 4 in either case.

Now suppose existence fails. Without loss of generality, let A be minimal in the following sense: for every
a 2 A, there is a unique b 2 B such that A<a Š B<b . (Otherwise just choose the least a 2 A where this fails,
and consider the structure A<a instead. This new structure still has B not isomorphic to an initial segment, nor
isomorphic to it as a whole.) So let f D ¹ha; bi W A<a Š B<bº be the function such that A<a Š B<f.a/. Note that
f must be injective since if x <A y, then A<x is an initial segment of A<y : thus B<f.x/ Š A<x 6Š A<y Š B<f.y/
by Lemma 3E • 4.

Claim 1
f is an embedding. Given that f is already injective, we mean x <A y ! f .x/ <B f .y/ for all x; y 2 A.
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Proof .:.

Otherwise, f .x/ �B f .y/ so that A<y Š B<f.y/ is an initial segment of B<f.x/ Š A<x . Composing the
isomorphisms, we get that A<y is isomorphic to an initial segment of A<x , contradicting Lemma 3E • 4.
Explicitly, take fy W A<y ! B<f.y/ and fx W B<f.x/ ! A<x to be isomorphisms. By Lemma 3E • 5,
fx � B<f.y/ is an isomorphism with an initial segment A<a � A<x so that fx ı fy W A<y ! A<a is an
isomorphism. a

So all that suffices is to show that f is surjective onto some initial segment. f is an isomorphism between A and
imf . Taking b0 the least element of B n imf , we get that B<b0

� imf by minimality of b0. To show that
imf � B<b0

, suppose f .a0/ >B b0 so that there is an isomorphism g W B<f.a0/ ! A<a0
. Thus g � B<b0

is
an isomorphism between B<b0

and A<a for some a 2 B by Lemma 3E • 5. But then b0 D f .a/ contradicts that
b0 … imf . Hence imf � B<b0

, and so we have equality, and thus f is an isomorphism. a

Stated more loosely, for any two well-orders, either they are isomorphic, or one is isomorphic to an initial segment of
the other. As a corollary of this, the ordinals exhaust all of the well-orderings in V.

3E • 7. Corollary
For every well-order A, there is a unique ordinal ˛ such that A Š h˛;2i.

Of course, Ord is well-ordered by 2, but Ord … V by Burali–Forti Paradox (3A • 11), so this isn’t an issue: every
quantifier ranges over sets and we’re only considering structures in V while hOrd;2i … V.

3E • 8. Definition
Let A be a well-order. The order-type of A is the unique ordinal ˛ with A Š h˛;2i.

More than just getting a unique order-type, we also get that the isomorphism is unique.
3E • 9. Result

Let A be a well-order, and f W A! ˛ and g W A! ˛ isomorphisms. Therefore, f D g.

Proof .:.

Assume not, and let a 2 A be <A-minimal such that f .a/ ¤ g.a/. For the sake of definiteness, assume
f .a/ < g.a/. Since g is an isomorphism, there is some b 2 A where g.b/ D f .a/ < g.a/. In other words,
V � “g.b/ < g.a/” so that as an embedding, A � “b <A a” so by minimality of a, f .a/ D g.b/ D f .b/,
contradicting that f is injective. a

There are, of course, other questions one can ask of well-orders in the context of model theory, like when two ordinals
are elementarily equivalent under membership, for example. But for now, we will only make use of the fact that
well-orders are isomorphic to ordinals.
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Section 4. Other Well-founded Relations

Recall Axiom (2 E • 4), the axiom of foundation. To further motivate why this axiom should be true, we will show
the following result, which holds even in the absence of foundation. In essence, the result says that all well-founded
models of set theory in V are isomorphic to transitive sets. So the axiom of foundation in some sense takes the converse
to be true: all transitive sets are well-founded.

4 • 1. Theorem (The Mostowski Collapse)
Let A D hA;<Ai (in V) be well-founded such that A satisfies the axiom of extensionality. Therefore A Š hT;2i for
a unique transitive set T .

Although we can prove the theorem outright at this point, to get a better perspective on what is going on with the proof,
we will introduce a useful idea: rank. Although all well-orders are isomorphic to ordinals, well-founded, extensional
structures are not in general. But they can still make use of ordinals according to chains, which are then well-ordered.
Really, this just means indexing the levels of the structure like with a tree.

The most fundamental idea behind rank functions is given by Transfinite Recursion (3C • 2), and so often we want the
process to stop at some ordinal. The following lemma, a consequence of the axiom of replacement, will be useful in
doing this. Note that the lemma further reinforces the idea that some collections are simply “too big” to be sets. In
essence, we will use this to say that there can’t be Ord-many levels of a well-founded set.

4 • 2. Lemma
Let A be a set. Therefore there is no surjection f W A! Ord.

Proof .:.

Otherwise, the formula '.x; y; f / given by hx; yi 2 f defines a function on A. By replacement, f "A D Ord
exists (i.e. is an element of V), contradicting Burali–Forti Paradox (3A • 11). a

The general idea of a rank function is given below.
4 • 3. Lemma

Let A D hA;<Ai be well-founded. Therefore there is a unique function f W A ! Ord such that f .a/ is 0 if a is
<A-minimal, and otherwise f .a/ D sup¹f .b/C 1 W b <A aº.

Proof .:.

Uniqueness is immediate: for f; g two such functions and a <A-minimal where f .a/ ¤ g.a/, we have that
f .a/ D sup¹f .b/C 1 W b <A aº. By minimality of a, this supremum is sup¹g.b/C 1 W b <A aº D g.a/, which
means g.a/ is f .a/, a contradiction.

We construct such an f by transfinite recursion. Firstly, as A is well-founded, define by transfinite recursion
X0 D ;

X˛C1 D

°
a 2 A W a is <A -minimal in A n

[
ˇ�˛

Xˇ

±
X D ;, for  a limit.

If X˛C1 is ever empty, then we stop, and so X˛ D A. Then we define f W A ! Ord by taking f .x/ to be the
least (and only) ˛ such that x 2 X˛C1. By Lemma 4 • 2, this process stops at some ˛ 2 Ord so that f 2 V.

Note that x; y 2 X˛ implies x and y are <A-incomparable: x 6<A y and y 6<A x (otherwise, they wouldn’t be
minimal). Hence f .x/ D f .y/ implies x and y are <A-incomparable.
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Moreover, the contrapositive then tells us that if x <A y, then f .x/ ¤ f .y/, and in fact f .x/ < f .y/, as
otherwise f .y/ < f .x/ implies x <A y is not actually <A-minimal in A n

S
ˇ<f.y/Xˇ , because x 2 A nS

ˇ<f.x/Xˇ � A n
S
ˇ<f.y/Xˇ . Therefore, f .a/ � sup¹f .b/C 1 W b <A aº for all a 2 A.

Now if f .a/ > ˇ D sup¹f .b/ C 1 W b <A aº, then by the definition of the X˛s, a wasn’t minimal in A nS
<ˇC1X , meaning that there is some b 2 A n

S
<ˇC1X with b <A a. Taking a <A-minimal such b yields

that f .b/ D ˇ C 1, contradicting the definition of ˇ. a

The point of having a rank function is to proceed by induction on the levels. Indeed, the proof above just defines the
function f by induction on the levels of A. So if we can prove something for the elements inductively by level, then
we can prove it for the whole well-founded set. So we have the following definition. By uniqueness, we are justified
in using “the” rank function, and defining the following as aspects of the structure alone, independent of any choice of
rank function.

4 • 4. Definition
For well-founded A D hA;<Ai, the rank function on A is the function rank W A! Ord such that

• rank.a/ D 0 if a is <A-minimal; and
• rank.a/ D sup¹rank.b/C 1 W b <A aº for a not <A-minimal.

A structure A D hA;<Ai is extensional iff it satisfies the axiom of extensionality:
¹z 2 A W z R xº D ¹z 2 A W z R yº implies x D y.

For A an extensional, well-founded structure, we can use the rank function to define the following.
• the levels of A are the sets lvl˛.A/ D ¹a 2 A W rank.a/ D ˛º for all ˛ 2 Ord.
• the height or length of A is ht.A/ D sup¹rank.a/C 1 W a 2 Aº D im rank.

We include the “C1” in the definition of height (and rank) to ensure that every element has a smaller rank than the
height (or rank of the element we’re considering). So the empty relation has height 0, and the set with one element
has height 1 while the single element has rank 0. Note that for A a set, Lemma 4 • 2 implies that the height of A is an
ordinal, and not just Ord itself. Note some other immediate facts.

4 • 5. Result
Let A D hA;<Ai be well-founded with rank function, rank. Therefore, the following hold.

1. If a <A b, then rank.a/ < rank.b/.
2. If a; b 2 A are comparable—i.e. a <A b or b <A a—then rank.a/ < rank.b/ iff a <A b.

Proof .:.
1. Clearly a <A b implies rank.b/ > sup¹rank.x/ W x <A bº � rank.a/ by definition of rank.
2. If a and b are comparable, then either a <A b (in which case rank.a/ < rank.b/ implies a <A b by (1)),

or b <A a (in which case rank.a/ < rank.b/ implies b <A a vacuously by (1)).

Note that we cannot ensure in general that rank.a/ < rank.b/ implies a <A b, since, for example, taking <A D
¹h0; 1i; h2; 3iº yields a well-founded relation with rank.2/ D 0, rank.1/ D 1, but 2 6<A 1. But this concept of rank
is what allows us to collapse a well-founded, extensional set to a transitive set. We cannot do with with the above
example, because it does not satisfy extensionality. It is extensionality that ensures we can uniquely describe elements
by talking about their predecessors.

Proof of The Mostowski Collapse (4 • 1) .:.

As A satisfies extensionality, there is only one <A-minimal element, a;. This is because any other a ¤ a; must
then have pred<A

.a/ ¤ pred<A
.a;/ D ;. Hence there is some element of pred<A

.a/, which means a isn’t
minimal.

Proceed by recursion on the levels of A to define an isomorphism. Since there is only one <A-minimal element
a;, define f0.a;/ D ;. At limit stage  define f D

S
˛< f˛ . At successor stage ˛ C 1, consider lvl˛C1.A/.
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Define f˛C1 by

f˛C1.x/ D

´
f˛.x/ if x 2 dom.f˛/
¹f˛.y/ W y <A xº if x 2 lvl˛C1.A/.

This process stops at ht.A/. Note that this process is well-defined: inductively, dom.f˛/ D
S
ˇ�˛ lvlˇ .A/, and if

y <A x 2 lvl˛C1.A/, then rank.y/ < rank.x/ D ˛ so that y is in the domain of f˛ . Taking f D
S
˛<ht.A/ f˛ , it

follows that f .x/ D ¹f .y/ W y <A xº for all x 2 A.

Note that T D imf is transitive: if x 2 f .a/ 2 T , then x D f .b/ for some b <A a, and thus x D f .b/ 2 T .
So it suffices to show that f is an isomorphism between A and hT;2i.

Surjectivity of f W A ! T is immediate. For injectivity, let a 2 A be <A-minimal where f .a/ D f .b/ for
some b. Let f .x/ 2 f .b/ for some x <A b so that f .x/ 2 f .a/ and thus f .x/ D f .y/ for some y <A a. By
minimality of a, y D x and therefore x <A a. The same idea shows that if x <A a then x <A b, and thus a D b
by extensionality.

Now if a <A b then f .a/ 2 ¹f .x/ W x <A bº D f .b/. Similarly, suppose f .a/ 2 f .b/. Thus f .a/ D f .x/ for
some x <A b. By injectivity, a D x and thus a <A b.

To see that T is unique, suppose g W A ! D is an isomorphism with D transitive. Let a 2 A be of least rank
such that f .a/ ¤ g.a/. Note that by extensionality and the inductive hypothesis, f .a/ D ¹f .x/ W x <A aº D
¹g.x/ W x <A aº D g.a/, a contradiction. a

So again, The Mostowski Collapse (4 • 1) should highlight the importance of transitive sets, as they allow us to con-
sider any sort of well-founded, extensionalxiv relation. This also motivates the axiom of foundation, which says that
membership is well-founded. We will not accept foundation as an axiom just yet, though.

4 • 6. Definition
Let A D hA;<Ai be well-founded and extensional. The mostowski collapsing map of A is an isomorphism � W A!

T � V defined by recursion on rank: for every a 2 A, �.a/ D ¹�.b/ W b <A aº. The transitive collapse of A is then
him�;2i.

The proof of The Mostowski Collapse (4 • 1) shows that � is well-defined, unique, and is in fact an isomorphism.

Note that there is a slightly more general version of The Mostowski Collapse (4 • 1): we don’t require that A 2 V, but
instead that at least pred<A

.a/ 2 V for each a 2 A. For example, V satisfies this, as pred2.x/ D x 2 V for each x 2 V.
The proof remains the same, as we never needed ht.A/ to be an ordinal: it could be Ord itself, as with V. The point
of this generalization is just in case we have a well-founded, partially ordered structure that is not a set. Then we can
collapse it down to a transitive class (not necessarily a set) under membership. For now, we will have no use of this
generality, but it will be incredibly important later, as we will collapse down various collections into “inner models”.

To be slightly more precise than the previous paragraph, for A and R classes, if predR.x/ is a set for each x 2 A, then
we can define the mostowski collapse as in Definition 4 • 6 as a class, and so yield the image T as a transitive class,
which is still isomorphic under membership to A under R.

§4A. Powerset and the cumulative hierarchy

As a consequence of the axiom of foundation, we have the following iterative characterization of V in the sense that
all collections are formed from things that already exist. In this sense, starting with V1 D ¹;º, we can take the set of
collections of elements in V1, which is V2 D ¹;; ¹;ºº. Then we can take the set of all collections of elements in this:
V3 D ¹;; ¹;º; ¹¹;ºº; ¹;; ¹;ººº, and so on. More precisely, by Lemma 4 • 3, there is a rank function on V. But what
exactly is this rank function? By uniqueness, we just need to give an example of one. A first stab at this would be at
stage ˛ to define the ˛C 1st level by ¹y W y � lvl˛.V/º. This seems finte, but it’s not particularly useful, as it’s unclear

xivin the sense of satisfying the axiom of extensionality
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that this results in a set. So in doing defining the rank function, we will introduce another axiom, saying that these
levels exist: we can continue to define V˛ for all ˛.

4A • 1. Definition (Axiom)
(Powerset) The poweset P .x/ D ¹y W y � xº exists: 8x 9P 8y .y 2 P $ y � x/.

Note that although comprehension allows us to say that all sorts of subsets of x exist, without the powerset axiom, we
cannot in general form the set of all of these at once. But once we know we can collect these together, we get some
immediate properties.

• x 2 P .x/, ; 2 P .x/;
• if x is transitive, x � P .x/;
• if x � y, then P .x/ � P .y/;
• P .x/ \ P .y/ D P .x \ y/;
• P .x/ [ P .y/ � P .x [ y/.

Now consider the following collection. Regardless of whether foundation holds, we can still define it in V.
4A • 2. Definition

Define the cumulative hierarchy to be the collection WF D
S
˛2Ord V˛ given by transfinite recursion:

V0 D ;, V˛C1 D P .V˛/, and V D
S
˛< V , for  a limit ordinal.

Note that WF is not a set, since we will have a surjection from WF onto the ordinals. To see this, consider the following
easy to show facts.

4A • 3. Result
For every ˛ 2 Ord, and x,

1. If x is transitive, P .x/ is transitive.
2. WF is transitive, in particular V˛ � Vˇ for ˛ < ˇ.
3. if x 2 V˛ , then ¹xº 2 V˛C1.
4. V˛ is closed under (finite) unions, intersections, and complements.
5. ˛ 2 V˛C1 for each ˛ 2 Ord, hence Ord �WF.
6. For each x 2WF, the least ˛ with x 2 V˛ is a successor ordinal.
7. hWF;2i is well-founded with rank function rank.x/ as the least ˛ with x 2 V˛C1.
8. x 2WF iff x �WF.

Proof .:.

1. Suppose x is transitive, and let z 2 y 2 P .x/, i.e. z 2 y � x. Therefore z 2 x so by transitivity, z � x, and
thus z 2 P .x/.

2. Proceed by induction on ˛ to show that V˛ is transitive. For ˛ D 0, this is immediate. For ˛C 1, use (1) and
the inductive hypothesis. For  a limit, if y 2 x 2

S
˛< V˛ , then y 2 x 2 V˛ for some ˛ <  , in which

case y 2 V˛ by the inductive hypothesis, and thus y 2 V . Hence every V˛ is transitive, and for the same
reason as with the limit ordinal, WF D

S
˛2Ord V˛ is transitive too.

3. This is clear, as ¹xº � V˛ , and thus ¹xº 2 P .V˛/ D V˛C1.

4. For any two subsets x; y � Vˇ for some ˇ < ˛, x \ y, x [ y, and x n y are all still subsets of Vˇ , and hence
are elements of VˇC1 � V˛ .

5. For ˛ D 0, clearly V1 D P .;/ D ¹;º has 0 2 V1. For the successor ˛ C 1, ˛ 2 V˛C1 so that ¹˛º 2 V˛C2

and as transitive sets, using (4), ˛ C 1 D ˛ [ ¹˛º 2 V˛C2. For limit  , ˇ 2 VˇC1 for all ˇ <  . As ˇ < 

implies ˇ C 1 <  , this means ˇ 2 V for every ˇ <  . Therefore  � V and so  2 VC1.

6. Let x 2 WF be in V˛ for ˛ least. If ˛ is a limit ordinal, then clearly x 2
S
ˇ<˛ Vˇ implies x 2 Vˇ for some

ˇ < ˛, a contradiction. Also, x … V0 D ;, hence ˛ must be a successor.

7. Write f for this function. Note that if x 2 y then clearly f .x/ � f .y/, as x 2 y 2 Vf .y/C1 implies
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x 2 Vf .y/C1. To see that f .x/ ¤ f .y/, y 2 Vf .y/C1 implies y � Vf .y/ and hence x 2 Vf .y/, implying that
f .y/ � f .x/C 1 > f .x/. So x 2 y implies f .x/ < f .y/.

Now supposeX �WF. If there is no 2-minimal element, then f "X has no 2-minimal element, contradicting
the well-foundedness of the ordinals.

To see that this function f is really a rank function, we need to show that f .x/ D ˇ D sup¹f .y/C1 W y 2 xº.
So clearly, the above argument gives that f .x/ � ˇ. And clearly, y 2 Vf .y/C1 for each y 2 x implies
x �

S
y2x Vf .y/C1 D Vˇ , and hence x 2 VˇC1 shows that f .x/ � ˇ. Therefore f .x/ D ˇ, and f is a rank

function.

8. If x 2 WF, then x � WF by transitivity. For the other direction, if x � WF, then x � V˛ for ˛ D
sup¹rank.y/ W y 2 xº. Hence x 2 V˛C1 �WF. a

We can prove more about the class WF, in particular, that it consists of well-founded transitive sets. To do this, with the
added technology of the natural numbers, we have the following definition. Note that we can still make this definition
in the absence of foundation.

4A • 4. Definition
Let x be a set. Define trcl.x/, the transitive closure of x to be

S
n2!

Sn
x, where

Sn is defined by recursion on !:S0
x D x,

SnC1
x D

S
.
Sn

x/.

Hence every set is contained in its transitive closure. Of course, the transitive closure trcl.x/ is indeed transitive, since
y 2 trcl.x/ implies y 2

Sn
x and hence y �

SnC1
x � trcl.x/. The key reason that this should be a motivation for

the axiom of foundation, is that we only every need to “go down” ! many times. Foundation will tell us that we only
need to go down < !-many times, although the number of times may be arbitrarily high. Let’s first prove some quick
results about the transitive closure.

4A • 5. Result
For every x,

1. trcl.x/ is transitive, and is the �-minimal transitive set containing x: if x � T where T is transitive, then
trcl.x/ � T .

2. If x is transitive, then trcl.x/ D x.
3. If x 2 y, then trcl.x/ � trcl.y/ (assuming foundation, trcl.x/ ¨ trcl.y/).
4. trcl.x/ D x [

S
y2x trcl.y/.

Proof .:.

1. If T is transitive and x � T , then clearly
S0

x � T . And inductively,
Sn

x � T implies
SnC1

x � T by
transitivity. Hence

S
n2!

Sn
x � T , meaning trcl.x/ � T .

2. If x is transitive, then trcl.x/ � x by (1), and since clearly x � trcl.x/, we have equality.

3. If x 2 y � trcl.y/ so that x � trcl.y/. Using (1), we again have that trcl.x/ � trcl.y/. Assuming foundation,
x … trcl.x/ (otherwise we would have a finite loop), but x 2 trcl.y/.

4. Note that T D x [
S
y2x trcl.y/ is transitive, since y 2 x implies y � trcl.y/ D T , and if y 2 T n x, then

clearly y is in a transitive set, and hence is a subset of T . Therefore, by (1), trcl.x/ � T . But T � trcl.x/,
since x � trcl.x/, and (3) implies trcl.y/ � trcl.x/ for each y 2 x. a

With this, we have the following, demonstrating why the notation “WF” is used.
4A • 6. Theorem

Let x be a transitive set. Therefore x 2WF iff hx;2i is well-founded.

Proof .:.

Suppose x 2 WF. Therefore hx;2i is well-founded, just by the fact that WF is well-founded and transitive:
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x �WF. So suppose hx;2i is well-founded.

Note that x � WF. To see this, otherwise A D x nWF has a 2-minimal element a 2 A. Thus a � WF so that
a 2WF by Result 4A • 3. But then x �WF yields x 2WF by the same reasoning. a

So if all of this was motivation, let us give the actual result.
4A • 7. Theorem

The axiom of foundation implies V DWF.

Proof .:.

Assuming the axiom of foundation, for each x 2 V, trcl.x/ is a transitive set where htrcl.x/;2i is well-founded
(just by virtue of V being well-founded). Hence trcl.x/ 2 WF. But then x � WF, and so x 2 WF. Hence every
element of the universe is an element of WF, and so the two are equal. a

With all of that out of the way, we will now finally accept the axiom of foundation as a part of the axioms of set theory.
The rank function on WF D V is incredibly useful, as it allows us to proof properties of V through induction on rank.
The cumulative hierarchy also gives a nice, stratified picture of the un0iverse, as seen below.

V0 D ;
V1 D P .V0/

V2 D P .V1/

:::

V! D
S
n<! Vn

:::

4A • 8. Figure: The set theoretic universe

The well-foundedness of the universe also gives that any model embeded in V is then well-founded as well. This is just
because any infinite decreasing sequence A � “anC1 2 an” for ¹an W n 2 !º � A implies V � “f .anC1/ 2 f .an/”
for each n 2 !, where f W A ! V is an embedding. Now this relies on a separate, stronger characterization of
well-foundedness than first-order logic alone is able to give. So we present the following meta-theoretic result.

4A • 9. Result
Let A D hA;2Ai be a structure. Consider the following propositions:

1. A is well-founded.
2. There are no infinite 2A-decreasing sequences of elements of A.
3. A satisfies the axiom of foundation.

Therefore (1) implies (2) and (3), but (3) doesn’t imply (2) and thus doesn’t imply (1) either.

Proof .:.

To see that (1) implies (2), note that any infinite 2A-decreasing sequence of elements of A is a function from
some ordinal ˛ to A. Restricting to ! yields the sequence han W n 2 !i still 2A-decreasing, which gives the set
¹an W n 2 !º 2 V with no 2A-minimal element. Hence A isn’t well-founded.

To see that (1) implies (3), if A doesn’t satisfy the axiom of foundation, then for some a 2 A, A �
“8x 2 a 9y 2 a .y 2 x/”. Hence the set ¹x 2 A W A � “x 2 a”º 2 V has no 2A-minimal predecessor. Therefore
A isn’t well-founded.

To see that (3) doesn’t imply (1) nor (2), we use compactness to give a model where (3) holds, but (2)—and

37



OTHER WELL-FOUNDED RELATIONS CH I §4A

thus (1)—fails. In particular, consider ordinal ! in V: N D h!;2i. As we saw before, the theory of this model
can be “misinterpreted” to give an ill-founded model. Clearly N satisfies the axiom of foundation, because N is
well-founded. Therefore, we can consider the theory of N:

Th.N/ D ¹' a FOL.2/-sentence W N � 'º

Now consider the additional constant symbols ¹cn W n 2 !º. Intuitively, each cn should count “backwards”.
Formalizing this, let T be the theory Th.N/ [ ¹“cnC1 2 cn” W n 2 !º. Note that T has a model by compactness:
for each finite subset� � T , there is some largest N 2 ! where cN occurs in� (because� is finite). Therefore
the model N0 interpretting c0 as N 2 !, and c1 as N � 1 and so on—meaning cNn D N � n for all n � N—has
N0 � “cnC1 2 cn”, and N0 � Th.N/, because we haven’t changed any of the structure, just given names to some
elements. So N0 is a model of �. Hence every finite subset of T has a model, and so T has a model A. Thus A
satisfies the axiom of foundation in Th.N/ � T , but A also has the infinite 2A-decreasing sequence hcAn W n 2 !i
in V. Therefore (3) holds, but neither (1) nor (2) holds for A. a

We will later see that (2) is actually equivalent to (1), but this requires the axiom of choice in the form of König’s
theorem on trees.

Let us now think about the ranks of sets, and how they can be computed. Recall that the rank of a set x is the least
˛ 2 Ord such that x 2 V˛C1. The reason for the “C1” is that V˛ for ˛ a limit is never the least such that a set appears
in it: V˛ D

S
ˇ<˛ Vˇ . So defining it in this way allows us to say that there is always a set of rank ˛ for ˛ 2 Ord.

Another, easier to remember definition is that the rank of x is the least ˛ with x � V˛ .
4A • 10. Result

For every set x and y,
• if y � x then rank.y/ � rank.x/.
• rank.trcl.x// D rank.x/;
• rank.¹xº/ D rank.x/C 1;
• rank.P .x// D rank.x/C 1; and
• rank.x [ y/ D max.rank.x/; rank.y//.
• rank.x/ D x for x 2 Ord.

Proof .:.
• The least ˛ such that x � V˛ thus also has y � V˛ .
• For x � V˛ with ˛ least,

S
x � V˛ by transitivity. Hence inductively, trcl.x/ D

S
n2!

Sn
x � V˛

and thus trcl.x/ 2 P .V˛/ D V˛C1. This establishes that rank.trcl.x// � rank.x/. Since x � trcl.x/ (1)
implies the other inequality and thus the two are equal.

• By Result 4A • 3, rank is a rank function, and thus rank.¹xº/ D rank.x/C 1.
• Since ¹xº � P .x/, it follows by (1) and (3) that rank.P .x// � rank.x/C 1. For the other direction, note
that y � x � V˛ implies y 2 V˛C1 and thus P .x/ � V˛C1 so that rank.P .x// � rank.x/C 1. Hence the
two are equal.

• Let rank.x/ < rank.y/ D ˛. Therefore x; y � V˛ and thus x[y � V˛ , implying rank.x[y/ � ˛. Since
y � x [ y, (1) implies the other inequality.

• Proceed by induction on ˛. For ˛ D 0, this is clear. For ˛ C 1,
rank.˛ [ ¹˛º/ D max.rank.˛/; rank.¹˛º// D rank.˛/C 1 D ˛ C 1

by (3) and the inductive hypothesis. For limit ˛, as a rank function, rank.˛/ D supˇ<˛.rank.ˇ/ C 1/ D
supˇ<˛.ˇ C 1/ D ˛. a

At this point, calculating ranks might seem completely worthless, but they help to understand just how the universe
is built up, and at what stages certain sets come into play. For now, we don’t have much use for it, but later on, the
levels of the cumulative hierarchy (and other hierarchies) will play a big role in understanding their larger structure
through the use of reflection properties—properties of the larger structure holding in smaller parts. For example, just by
calculating ranks, one can see that for limit ˛, V˛ is closed under the powerset operation as well as taking unions, pairs,
cartesian products, and so on. In this sense, which we will make precise later, the levels of the cumulative hierarchy
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model a great portion of set theory.
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Section 5. Ordinals and Cardinality

It is nearly impossible to have a discussion about set theory that doesn’t eventually devolve into a discussion about
cardinals. What are cardinals? What is cardinality? These are things that need to be addressed, but to address them,
we need a better understanding of ordinals.

§5A. Ordinal arithmetic

Recall that we can add 1 to ordinals: ˛ C 1 D ˛ [ ¹˛º. Using Transfinite Recursion (3C • 2), we can also define
addition between ordinals in general. The motivating picture is that ˛Cˇ is just the order of ˛ placed before the order
of ˇ. In particular, we could define ˛Cˇ to be the unique ordinal corresponding to this well-order via Corollary 3 E • 7.
But instead, we have the following definition.

5A • 1. Definition
DefineC W Ord � Ord! Ord as follows: for each ˛ 2 Ord,

• ˛ C 0 D ˛;
• ˛ C .ˇ C 1/ D .˛ C ˇ/C 1;
• ˛ C  D supˇ< ˛ C ˇ for  a limit.

Define � W Ord � Ord! Ord as follows: for each ˛ 2 Ord,
• ˛ � 0 D 0;
• ˛ � .ˇ C 1/ D .˛ � ˇ/C ˛;
• ˛ �  D supˇ< ˛ � ˇ for  a limit.

Really, we’ve defined the class C˛ W Ord ! Ord for each ˛ 2 Ord by Transfinite Recursion (3C • 2), and so have C
defined as the class ¹hh˛; ˇi; i W C˛.ˇ/ D º. So the more formally-minded can be put at ease by knowing that these
classes are well-definedxv

Note that these definitions (restricted to !) then coincide with the definitions of addition and multiplication on the
natural numbers. In particular, given these definitions, that 0 isn’t a successor, and Induction on ! (3 B • 1), all of the
axioms of peano arithmetic are satisfied by ! under these interpretations. Formally, this means the following.

5A • 2. Theorem
ZFC ` PA! , where PA! is the set of axioms of peano arithmetic with all quantifiers restricted to !, and C; �; 0; 1
replaced by the defining FOL.2/-formulas. In particular, ZFC ` Con.PA/ by Completeness (1D • 1).

We haven’t quite made precise what all of this means (which we will get to in the next couple sections), but the idea is
just that ZFC will show things like the commutativity of C and � on !. But unlike normal addition, we don’t have the
same sort of cancellation laws for general ordinals, and in fact, commutativity does not hold in general.

5A • 3. Lemma
For each ˛; ˇ;  2 Ord, if ˇ <  , then ˛ C ˇ < ˛ C  . However, it’s possible that ˇ C ˛ D  C ˛.

Proof .:.

The example to the second sentence can be given easily: take ˛ D ! with ˇ D 1 < 2 D  . As a limit ordinal,
ˇ C ˛ D supn2! 1C n D ! D supn2! 2C n D !.

xvAnd of course, the same idea applies to multiplication.
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To show the first, proceed by induction on  . For  D 0, this is immediate. For  C 1, ˇ <  C 1 implies
˛ C ˇ � ˛ C  by the inductive hypothesis. By definition, this is strictly less than .˛ C /C 1 D ˛ C . C 1/.
For  a limit, ˇ <  implies ˛ C ˇ < .˛ C ˇ/C 1 D ˛ C .ˇ C 1/ � ˛ C  . a

5A • 4. Corollary
Let ˛; ˇ;  2 Ord. Therefore ˛ C ˇ D ˛ C  iff ˇ D  .

Proof .:.

One direction is immediate. If ˇ ¤  , say ˇ <  , then ˛ C ˇ < ˛ C  , and so the two are unequal. a

We can characterize ˛ C ˇ as a copy of ˛ followed by a copy of ˇ. This is formalized by a long definition, but the
idea is to produce a copy of ˛ disjoint from a copy of ˇ by considering ˛ � ¹0º and ˇ � ¹1º instead. We use the map
x 7! hx; 0i to define the isomorphic order on ˛ � ¹0º, and similarly for ˇ � ¹1º. This means hx; 0i < hy; 0i iff x < y,
and similarly with a 1 in place of a 0, so we are justified in calling them “copies”. We put these two orders together
just by saying every element of the copy of ˇ is above all elements of the copy of ˛. So this is how we formalize this
“copy of ˛ followed by a copy of ˇ”. The characterization is then easy, although very formal.

5A • 5. Theorem
For each ˛; ˇ 2 Ord, ˛ C ˇ is the order-type of <A˛;ˇ

on A˛;ˇ D .˛ � ¹0º/ [ .ˇ � ¹1º/ given by
h; ni <A hı;mi iff .n D 0 ^m D 1/ _ .n D m ^  < ı/.

Proof .:.

Note that for each  < ˇ; A˛; D A˛;ˇ n ¹hı; 1i W  � ı < ˇº. Similarly, the uniform definition of the
ordering yields that A˛; is an <A˛;ˇ

-initial segment of A˛;ˇ , and in fact the order <A˛;
is equal to <A˛;ˇC1

\.A˛;ˇ � A˛;ˇ /.

Proceed by induction on ˇ. For ˇ D 0, this is immediate: A˛;ˇ D ˛ � ¹0º and <A˛;ˇ
is the same as the order on

˛ D ˛ C 0 D ˛ C ˇ.

For ˇC 1, Note that hˇ; 1i is<A˛;ˇC1
-maximal. If we consider A˛;ˇC1 n ¹hˇ; 1iº, we get A˛;ˇ . By the inductive

hypothesis, and the idea above, it follows that˝
pred<A˛;ˇC1

.hˇ; 1i/; <A˛;ˇC1

˛
D hA˛;ˇ ; <A˛;ˇ

i Š ˛ C ˇ.

Hence adding on a single element at the end yields ˛ C .ˇ C 1/ D .˛ C ˇ/C 1 Š hA˛;ˇC1; <A˛;ˇC1
i.

For limit ˇ, it should be obvious that A˛;ˇ D
S
<ˇ A˛; and <A˛;ˇ

D
S
<ˇ <A˛;

. The inductive hypothesis
tells us that the order-type of A˛;ˇ D hA˛;ˇ ; <A˛;ˇ

i, say � , is at least sup<ˇ ˛ C  D ˛ C ˇ. Moreover, if
� > ˛ C ˇ, then there must be some initial segment of � and thus of A˛;ˇ which has order-type ˛ C ˇ, which
contradicts that each initial segment has order-type ˛ C  for  < ˇ.

We have similar sorts of properties for multiplication. The characterization for ordinal multiplication in that ˛ �ˇ is the
order-type of ˇ copies of ˛: ! � 4 D ! C ! C ! C !, for example.

5A • 6. Lemma
For each ˛; ˇ;  2 Ord, if ˛ > 0, then ˇ <  , then ˛ � ˇ < ˛ �  . However, it’s possible that ˇ � ˛ D  � ˛.

Proof .:.

Again, the example to the second sentence can be given easily: 2 �! D supn2! 2 �n D ! D 1 �! although 1 < 2.

Proceed by induction on  . For  D 0, the statement is vacuously true. For  C 1, by the inductive hypothesis,
˛ � ˇ � ˛ �  D ˛ �  C 0 < ˛ �  C ˛ D ˛ � . C 1/. For  a limit, we easily have ˇ C 1 <  and hence
˛ � ˇ < ˛ � ˇ C ˛ D ˛ � .ˇ C 1/ � ˛ �  . a
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5A • 7. Corollary
For each ˛; ˇ;  2 Ord, if ˛ > 0, then ˛ � ˇ D ˛ �  iff ˇ D  .

Proof .:.

One direction is immediate. Now if ˇ ¤  , say ˇ <  , then ˛ � ˇ < ˛ �  , and so the two are unequal. a

Implicit in the restriction that ˛ > 0 in Lemma 5A • 6 is that this doesn’t work for ˛ D 0. This is, of course, true, since
˛ � ˇ D 0 for all ˇ when ˛ D 0. Although Definition 5A • 1 only states ˇ � 0 D 0 for all ˇ, we can inductively show
0 � ˇ D 0 easily: ˇ D 0 is immediate, and since 0 � .ˇ C 1/ D 0 � ˇ C 0 D 0C 0 D 0, it holds at successors, and so
trivially at limits.

The characterization of ˛ � ˇ as ˇ copies of ˛, like addition before, relies on a very formal construction to make these
“copies” precise. We do this as before by tagging each copy of ˛: the  th copy of ˛ is ˛ � ¹º. Hence we’re ordering
˛ �ˇ. We ensure the 0th copy of ˛ is completely before the 1th copy of ˛ whenever 0 < 1 < ˇ by a complicated
definition. But once one understands the construction, the idea is easy.

5A • 8. Theorem
Let ˛; ˇ 2 Ord. Therefore ˛ � ˇ is order-type of <˛�ˇ on ˛ � ˇ defined by

h˛0; ˇ0i <˛�ˇ h˛1; ˇ1i iff .ˇ0 < ˇ1/ _ .ˇ0 D ˇ1 ^ ˛0 < ˛1/.

Proof .:.

Note that for each  < ˇ, ˛� D .˛�ˇ/n .˛� .ˇ n//. Similarly, the uniform definition of the ordering yields
that ˛ �  and its order form an <˛�ˇ -initial segment of ˛ � ˇ. In fact, <˛� D <˛�ˇ \ ..˛ � / � .˛ � //.

Proceed by induction on ˇ. For ˇ D 0, this is immediate, as both ˛ �ˇ and ˛�ˇ are ;. For ˇC1, by the inductive
hypothesis, ˛ � .ˇC 1/ is just the order on ˛ � ˇ followed by the normal order on ˛ � ¹ˇº, which is isomorphic
to ˛ � ˇ followed by ˛ (using Theorem 5A • 5 for the formal details). Hence this is just ˛ � ˇ C ˛ D ˛ � .ˇ C 1/.
The limit case follows similarly as before. a

We can continue to define further ordinal operations. In particular, ordinal exponentiation. This will be the last one we
develop, as it is hardly every used, but it does give a good picture of the ordinals and how we can describe them.

5A • 9. Definition
Define ordinal exponentiation as follows: for each ˛ 2 Ord,

• ˛0 D 1;
• ˛ˇC1 D .˛ˇ / � ˛;
• ˛ D supˇ< a

ˇ for  a limit.

There is another characterization of ordinal exponentiation in terms of functions with finite support, but it is almost
never used in practice, and is instead left to the exercises. But the point is that ordinal exponentiation allows us to
express more and more ordinals. In particular, we have the following picture of ordinals, beginning with the natural
numbers, and buiding from there using our operations.

0 1 2
� � �

! ! C 1
� � �
! C !

� � �
! C ! C !

� � �
! � !

� � �
! � ! � !

� � �

!2
� � �
!!
� � �

And this picture, of course, never ends: we can continue to add and multiply ordinals to get larger and larger ordinals
like !!! , !!!!

, and so on. Actually, taking the supremum of these exponentials—! raised to ! n-times for n < !—
yields a truly gargantuan ordinal called "0 that satisfies !"0 D "0.

Now I would like to raise the question, which ordinals are important? Obviously, this isn’t something inherent to the
ordinals themselves but instead how we view them. But the question is still one that warrants an answer, given that the
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ordinals are the canonical well-orders. Are there any other ordinals that are “canonical” in a sense? The answer turns
out to be yes. We will take two approaches to answer this question: one the easier route working in V, and a harder
route where we deprive ourselves of an important axiom to show that certain things exist or hold in general.

§5B. Cardinals with choice

This picture of the ordinals is useful as it provides a clear idea of “counting” in set-theoretic terms: we proceed lining
up the elements of a given set with ordinals just as a child (or adult) might count something by lining it up with their
fingers, associating each finger with a number.

The ordinals play the role of the fingers when counting. The issue is that it doesn’t follow from the other axioms that
every set can be counted in this way. To motivate the axiom of choice, which we need to demonstrate this, consider
the following argument.

For some ordinal ˛ < ˇ, consider the set X˛ ¤ ;. Since each X˛ is non-empty, consider some x˛ 2 X˛ . Thus
¹x˛ W ˛ < ˇº exists. This is equivalent to the axiom of choice. Although we can ensure each X˛ has an element, our
finite notion of proof can’t ensure give these x˛s all at once if there are infinitely many X˛s.

To further motivate the idea, consider the following definition, extending a previous one.
5B • 1. Definition

Let A and B be sets. Write A �size B iff there is an injection f W A! B . Write A �size B iff there is a surjection
f W A! B . Write A Dsize B iff there is a bijection f W A! B .

It should be clear that A �size B reflects the notion that A has fewer (or as many) elements than B , because any such
injective f W A! B is really just a bijection f W A! im.f / where im.f / � B . Given that A and im.f / have the
same size, and im.f / � B , it makes sense to say that A is no bigger than B .

Similarly, it should be clear that A �size B reflects the notion that A has more (or as many) elements than B , since a
surjection covers all of B with the transformed elements of A (and many elements of A might be forced to go to the
same element of B just to fit inside).

It should also be intuitive that A �size B and A �size B implies A Dsize B . Proving this with what we know thus far,
however, is quite difficult, being impossible. So consider the following axiom that allows us to show that this is true.

5B • 2. Definition (Axiom)
(Choice) for any family of non-empty family of disjoint sets F , there is a set C which has chosen one element from
each z 2 F :

8F .; … F ^ 8x; y 2 F .x \ y D ;/! 9C 8x 2 F Šy .y 2 x \ C/.

We call such a setC a choice set.xvi Really this axiom is just due to the fact that all of our proofs and formulas are finite.
In the real world, each x 2 F is non-empty, so there is an element ax 2 x. So then we can consider C D ¹ax W x 2 F º
as a perfectly good set by replacement. The issue is that the finite nature of proofs and formulas cannot incorporate all
of this in a finite number of formulas: it requires a potentially infinite number of existential instantiations. But once
we have this axiom, we can show that A �size B and A �size B implies A Dsize B . With this, we have the following.

5B • 3. Result
Moreover, for f W B ! A a surjection, there is an injection f 0 W A! B such that f .f 0.a// D a for all a 2 A.

Proof .:.

For each a 2 A, consider the set f �1.a/ D ¹b 2 B W f .b/ D aº. As f is surjective, f �1.a/ is non-empty for
each a 2 A. Hence the family, which exists by replacement, ¹f �1.a/ W a 2 Aº D F is a family of non-empty
sets. Let C then be as in the axiom of choice: for each f �1.a/, there is exactly one b 2 C \ f �1.a/. Now

xviYou will occasionally see “choice function” as well, since this defines the function taking x 2 F n ¹;º to the unique element of x \C .
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consider the function
f 0
D ¹ha; bi 2 A � B W a 2 A ^ b 2 C \ f �1.a/º.

This is an injection a ¤ a0 2 A requires f �1.a/ \ f �1.a0/ D ; (any common element b would need to have
a D f .b/ D a0). Moreover, f 0 is defined on all of A, since C \ f �1.a/ is has an element for each a; and
f .f 0.a// D a because f 0.a/ 2 f �1.a/ so that f .f 0.a// D a. a

This implies the otherwise intuitive fact below.
5B • 4. Corollary

For all sets A and B , A �size B iff B �size A.

Proof .:.

If B �size A, then Result 5 B • 3 tells us that A �size B . Cleraly if A �size B , as witnessed by the injection
f W A! B , then for any fixed a0 2 A, we get a surjection g W B ! A defined by

g.b/ D

´
f �1.b/ if b 2 imf

a0 otherwise.

This is a surjection, because A D domf D imf �1 � img � A implies img D A. a

One of the important consequences of choice is that it allows us to count.
5B • 5. Theorem

For each set A, there is an ordinal ˛ such that A Dsize ˛.

Proof .:.

We construct a bijection by transfinite recursion, using the axiom of choice just once. In particular, we define a
sequence of approximations to a bijection f W ˛ ! A where f �ˇD fˇ W ˇ ! A such that fˇ � f for ˇ <  .
The way to understand the process is just that we use the axiom of choice to choose the “next” element from A.
Starting from ; and taking unions at limit stages, this defines the whole process.

Formally, we consider P .A/ n ¹;º. Because this isn’t necessarily a family of disjoint sets, consider P 0.A/ D

¹x � ¹xº W x 2 P .A/ n ¹;ºº, tagging each element with names for each subset it appears in. Thus each subset
X � A can be identified with X � ¹Xº D ¹hy;Xi W y 2 Xº. This P 0.A/ is a family of non-empty, disjoint sets,
and thus there is a set C as in the axiom of choice. Note that this defines a choice function � W P .A/ n ¹;º ! A

by taking � .X/ to be the unique y where hy;Xi 2 .X � ¹Xº/ \ C . Using this C , we can define our sequence
of f˛s. In particular, f0 D ; is an injection, and for  a limit, define f D

S
ˇ< fˇ . For the successor

case, suppose f˛ W ˛ ! A has been defined. If A D imf˛ , we let f D f˛ and are done. Otherwise, let
f˛C1.˛/ D � .A n imf˛/.

Note that this process has to stop at some point, because otherwise there is a surjection g W A! Ord defined by
taking g.a/ to be the least ordinal ˛ 2 Ord where a 2 imf˛ , or else g.a/ D 0. Replacement implies img D Ord
is a set, contradicting Burali–Forti Paradox (3A • 11).

So once imf˛ D A, define f D f˛ . Consider the following easy to see facts about f :
• when f˛ is defined, dom.f˛/ D ˛.
• In particular, dom.f / is an ordinal, and f˛ is defined iff ˛ � dom.f /.
• f˛ � fˇ for all ˛ < ˇ � dom.f /.
• Hence f˛ D f � ˛ and so imf˛ D f "˛.

By construction f .˛/ 2 Anf "˛. In particular, f is injective, since for ˛ < ˇ, f .ˇ/ 2 Anf "ˇ, yet f .˛/ 2 f "ˇ.
Since f is injective by construction, f is thus a bijection between an ordinal and A. a

Note that this ordinal is not necessarily unique. For example, A D !C 1 has the same size as !, because we can send
! 7! 0 and for n 2 !, we can send n 7! nC 1. This is clearly surjective onto !, and it’s injective too. So really, just
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reordering the elements allows us to see that the two have the same size regardless of orderxvii. The notion of couting
given by the ordinals is incredibly important, and leads to the next idea of size: cardinality, being the smallest ordinal
of the same size.

5B • 6. Definition
Let A be a set. Define the cardinality of A, written jAj, to be the least ordinal ˛ such that A Dsize ˛. An ordinal � is
a cardinal iff � D j�j.

Hence A Dsize B is equivalent to jAj D jBj. So in particular, ! C 1 is not a cardinal. We have a number of other
examples of cardinals: the finite numbers and !, for instance. To show this, note the following easy to see facts about
cardinality.

5B • 7. Result
For sets A and B , writing A <size B for A �size B while A ¤size B ,

1. A �size B iff jAj � jBj.
2. A �size B iff B �size A (from Corollary 5B • 4).
3. A �size B and A �size B implies A Dsize B .
4. A Dsize B , A <size B , or B <size A.
5. For ˛ � ˇ 2 Ord, j˛j � jˇj.

Proof .:.

1. Let f W A ! B be injective. Let cA W A ! jAj and cB W B ! jBj be bijections. Define the function
g W jAj ! jBj by taking g.˛/ to be the least ˇ such that ˇ … .cB ı f ı c�1

A /"˛. Note that g is therefore order
preserving and hence is an embedding from jAj to jBj. If g is bijective, then it is an isomorphism and hence
jAj Dsize jBj, giving that jAj D jBj. Otherwise, by Lemma 3E • 6, jAj is then isomorphic to an intial segment
of jBj, and as a cardinal, jAj must be this initial segment, meaning jAj < jBj.

For the other direction, if jAj � jBj, then bijections cA W A ! jAj and cB W B ! jBj yield the injection
c�1
B ı cA W A! B .

3. This is immediate from (1) and (2): A �size B implies jAj � jBj. A �size B is equivalent to A �size B which
is just saying jAj � jBj, and therefore jAj D jBj. Using bijections cA W A ! jAj and cB W B ! jBj D jAj
yields the bijection c�1

B ı cA W A! B telling us that A Dsize B .

4. This follows from the same relation happening for ordinals.

5. Clearly ˛ �size ˇ since the identity function id � ˛ D ¹hx; xi 2 ˛ � ˛ W x 2 ˛º is an injection from ˛ to ˇ.
So by (1), j˛j � jˇj. a

So this notion of counting gives some very nice properties regarding size, most of which should be expected, and allows
us to write jAj � jBj instead ofA �size B and so forth. So we will abandon the “size” inequalities until we develop the
theory of cardinals without the axiom of choice. Beyond the above results, we also get the following famous principle.

5B • 8. Corollary (The Pigeonhole Principle)
For all sets A and B , suppose jAj < jBj. Therefore, if f W B ! A, then f is not injective. Moreover, any
f W A! B is not surjective.

Proof .:.

If f W B ! A is injective, then B �size A and hence jBj � jAj, contradicting that jAj < jBj. Similarly, if
f W A! B is surjective, then jAj � jBj, again a contradiction. a

Now let’s get on to proving what the cardinals are. Examples of non-cardinals are abundant. For example, ! C ! can
xviiClearly ! and ! C 1 are not isomorphic as orders, but disregarding order, they have the same size.
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be put in bijection with ! since we can rename the first copy of ! with even numbers, and the second copy of ! with
the odd numbers. It will be a goal to show that there exist larger cardinals than !, since even ! � ! can be shown to
have cardinality !. Firstly, we have that every natural number is a cardinal number.

5B • 9. Result
Let n 2 !. Therefore n is a cardinal.
Proof .:.

Proceed by induction on n. For n D 0 this is immediate: a bijection f W 0 ! m will have f � 0 � m D ; so
that f D ; and thus 0 D ; D imf D m.

For nC 1, it suffices to show that jnC 1j > n by (5) of Result 5 B • 7. So suppose f W nC 1! n is a bijection.
Consider f "n which then has size n. But f "n D n n ¹f .n/º. Now we show that this is impossible. If n D 0 or
n D 1, this is clearly impossible, because n D 0 has f D ;, and n D 1 has 1 n ¹f .1/º D ;, which requires that
f � 1 W 1! ; is a bijection.

For n D n� C 1 where n� � 1, there is a clear bijection between n� and n n ¹f .n/º, as we will show. Explicitly,
take g W n� ! n n ¹f .n/º where

g.k/ D

´
k if k < f .n/
k C 1 if k � f .n/.

This is a bijection. Clearly it’s injective, so it suffices to show surjectivity. To see this, any k 2 n n ¹f .n/º has
k ¤ f .n/ and k � n�. If k < f .n/ � n� then we obviously have g.k/ D k 2 img. If f .n/ < k � n�, then
k > 0 and hence there is some k� 2 ! where k D k� C 1 (this is where we use the fact that ! is the least limit
ordinal) and this satisfies f .n/ � k�. Hence g.k�/ D k� C 1 D k. So g is surjective, meaning g is a bijection
between n n ¹f .n/º and n�. Since f � n W n ! n n ¹f .n/º is a bijection, we have a bijection between n and
n� < n, contradicting the inductive hypothesis. Therefore no such f can exist. a

We also have that ! is a cardinal.
5B • 10. Result

The supremum of cardinals is a cardinal. In particular ! D supn2! n is a cardinal.

Proof .:.

Let X be a set of cardinals with � D supX . Clearly if X has a maximal element, then � is this, and so � 2 X is
a cardinal. So suppose X has no maximal element. If j�j < �, then there is some cardinal � 2 X with j�j � �.
But since there is some larger cardinal � 2 X with then � � � > �, it follows by (5) from Result 5 B • 7 that
j�j � � > � � j�j, a contradiction. Therefore j�j � �. We always have by definition of cardinality that j�j � �,
and so j�j D �. a

Hence we have a dichotomy between ! and the smaller sets, which has already been talked about. Formally, we have
the following.

5B • 11. Definition
A set A is finite iff jAj < !. A set is infinite iff jAj � !.

So this gives us limit cardinals like !. But what comes after !? Certainly there are no infinite cardinals that are
successor ordinals.

5B • 12. Result
Let � be an infinite cardinal. Therefore � is not a successor ordinal.
Proof .:.

Let ˛ C 1 be a successor ordinal. Write j˛j D �. Consider a bijection b W ˛ ! �. Now consider the bijection
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defined by

f .�/ D

8̂<̂
:
b.� C 1/ if � 2 !
b.0/ if � D ˛
b.�/ otherwise.

This has f W ˛ C 1! � � ˛ as a bijection, meaning j˛ C 1j ¤ ˛ C 1. a

But are there any cardinals larger than !? The answer to this question is an emphatic yes. In fact, there are just as
many cardinals as there are ordinals. And consistently, there are just as many ordinals as there are sets. To generate
these cardinals, consider the following theorem, often considered the result that gave birth to the field of set theory,
and inspired Russell’s Paradox (2 • 6).

5B • 13. Theorem (Cantor's Theorem)
Let X be a set. Therefore jX j < jP .X/j.

Proof .:.

Let f W X ! P .X/. Consider the set A D ¹x 2 X W x … f .x/º. This is a definable subset of X , and so clearly
A 2 P .X/. If f were surjective, then A D f .a/ for some a 2 A. So we can ask whether a 2 A or not. If a 2 A,
then it meets the definition: a … f .a/ D A, which is a contradiction. Hence a … A. But this means a doesn’t
meet the definition: a 2 f .a/ D A. Again, we have a contradiction, and so A 2 P .X/ n im.f /. a

Therefore j!j < jP .!/j, and thus there are larger cardinals than !. In fact, this theorem gives that there is no largest
cardinal, since any cardinal � has P .�/ > �. With this information under our belt, consider the following definition.

5B • 14. Definition
Define by transfinite recursion the infinite cardinals.

ℵ0 D !
ℵ˛C1 D the least cardinal greater than ℵ˛

ℵ D sup
ˇ<

ℵˇ , for  a limit.

Although the two are the same as sets, when referring to ℵ˛ as an ordinal rather than a cardinal, write !˛ .

So this allows us to consider truly large sets: ℵ2, ℵ!1
, ℵ!!

, and so on.
5B • 15. Corollary

The sequence of n < ! and ℵ˛s exhausts all of the cardinals and cardinalities.
Proof .:.

Proceed by induction on ˛ where ˛ D j˛j. Clearly if ˛ < ! then we’re done. Otherwise, considerX D ¹ˇ < ˛ W
jˇj D ˇº. This is a set of cardinals, and its supremum � is then a cardinal by Result 5 B • 10. Note that inductively
each ˇ 2 X has ˇ D ℵ for some  . In particular, for ı D sup¹C 1 W ℵ 2 Xº, we have thatX D ¹ℵ W  < ıº
and thus supX D ℵı . Because ˛ � supX , either ˛ D supX D ℵı , or ˛ > supX , and is thus the least cardinal
greater than ℵı , meaning ˛ D ℵıC1. a

But the definition of the alephs raises the question that allowed us to even consider larger cardinals: what is jP .!/j?
Where on the long line of alephs is this? Note that the above tells us that jP .!/j � ℵ1, but it’s not clear whether this
equality holds or not. The statement that jP .!/j D ℵ1 is often referred to as the continuum hypothesis or CH. Many set
theorists have—often very complicated—reasons for thinking that CH is false and instead that jP .!/j D ℵ2.xviii We
will return to this question after investigating what cardinality looks like in a world without choice.
xviiiMost of this will not be covered in this book, but for those interested, a search for PFA will lead one in the right direction. Be warned, however,
that the proof that ZFC ` PFA ! jP .!/j D ℵ2 is incredibly long, dealing with complicated set theoretic postulates independent of the other
axioms, and full of a technical method called “forcing”.
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§5C. Cardinality without choice

In the world of choice, the equivalence relation of Dsize has canonical representatives in the form of ordinals called
cardinals, and so every set can be compared in size. In particular, �size, �size and Dsize are all just different parts of
a single linear order: modulo Dsize, �size (the existence of an injection) is one direction and �size (the existence of a
surjection) is the reverse direction.

In general, Dsize is still an equivalence relation, and �size is still a partial order modulo Dsize, but it’s not necessarily
the case that it’s linear, nor that A �size B is equivalent to B �size A. How, then, do we define cardinality? How do we
choose canonical representatives for the equivalences classes ofDsize? The issue is that we can’t, and so in a choiceless
context, we don’t even try to define representatives of theDsize equivalence classes in general. We can still do this for
ordinals, yielding the same notion of what a cardinal is, but this is only because the ordinals have a canonical order on
them. Without choice, there isn’t always a well-order on sets.

5C • 1. Lemma
The axiom of choice (AC) is equivalent to the statement that every set has a well-order.

Proof .:.

Let X be an arbitrary set, and suppose AC holds. By Theorem 5B • 5, there is a bijection f W X ! ˛ for some
˛ 2 Ord. Hence the order W D ¹hx; yi 2 X � X W f .x/ < f .y/º induced by f makes f an isomorphism
between hX;W i and h˛;2i, meaning W is a well-order.

Now suppose every set can be well-ordered. Let F be an arbitrary set of disjoint, non-empty sets. Consider
X D

S
F . This has a well-order W . Hence each x 2 F has a W -least element, called ax 2 x. Moreover,

ax … y for each y 2 F n ¹xº since the elements of F are pairwise disjoint. Therefore, the set C D ¹ax W x 2 F º
works as a choice set for F . a

5C • 2. Corollary
AC holds for families of sets of ordinals. Hence all parts of Result 5 B • 7 holds for A;B 2 Ord.

Ostensibly, as with choice, for arbitrary X we can take the 2-least element of ¹˛ 2 Ord W ˛ Dsize Xº and thus arrive
at a cardinality for X as before. The issue is that it’s not clear this set is non-empty, and in fact, if choice fails then this
will be empty for some X as Lemma 5C • 1 shows.

5C • 3. Definition
Let X be a set. The choiceless-cardinality of X is the equivalence class ŒX�size D ¹A W A Dsize Xº.
A cardinal is still an ordinal � such that � is <-minimal in Ord \ Œ��size.

Note that ŒX�size will be a class rather than a set. With these concepts, we still have the following results about �size.
Namely, that �size is antisymmetric modulo Dsize. A similar result was shown with choice: Result 5 B • 7 (3), where
A �size B andA �size B impliesA Dsize B . But this was done by comparing cardinality rather than defining a bijection
outright.

5C • 4. Theorem (Cantor–Bernstein)
Let A and B be sets. Suppose A �size B and B �size A. Therefore A Dsize B .

Proof .:.

Let A W A! B and B W B ! A be injections, witnessing the hypothesis. We will categorize the elements of B
in the following way. Call elements b 2 B n im.A/ starting points.

For each starting point b0 2 B , we can then identify the path it takes by going to A via B, then then back to B via
A. Write .A ı B/n for .A ı B/ ı .A ı B/ ı � � � ı .A ı B/, meaning A ı B composed n-times for each n 2 N. So a
point b 2 B is on the path of b0 iff b D .A ı B/n.b0/ for some n 2 N, possibly 0. Now we define f W A! B
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via replacement by

f .a/ D

´
B�1.a/ if A.a/ is on the path of a starting point,
A.a/ otherwise.

This makes sense as B is injective: B�1 is a function. To see this, if ha; bi; ha; b0i 2 B�1 for b ¤ b0, then
B.b/ D B.b0/ D a contradicts injectivity. Hence f is a function defined on all of A, and clearly imf � B .

So it suffices to show that f is injective, and surjective.
Claim 1

f is injective.

Proof .:.

Suppose f .a/ D f .a0/ for a ¤ a0. If both A.a/ and A.a0/ are on the path of a starting point, then
f .a/ D B�1.a/ D f .a0/ D B�1.a0/. This contradicts that B is a function: ha; bi; ha0; bi 2 B�1 implies
B.b/ is both a and a0. So this case can’t happen. Similarly, if neither A.a/ nor A.a0/ is on the path of a
starting point, then f .a/ D A.a/ D f .a0/ D A.a0/ contradicts the injectivity of A.

So suppose for the sake of definiteness that A.a/ is on the path of a starting point, but A.a0/ isn’t. Note that
f .a/ is then on the path of a starting point, because A ı B.f .a// D A ı B.B�1.a// D A.a/ on the path of
a starting point. A.a/ of course is not itself a starting point, since it’s in the image of A, but f .a/ might be.
Anyway, f .a/ being on a path means that f .a/ D f .a0/ D A.a0/ is too, a contradiction. a

All that remains to be shown is that f is surjective. To do this, let b 2 B . If b is on the path of a starting point,
a D B.b/ yields f .a/ D b. If b is not on the path of a starting point, then certainly b itself is not a starting point,
meaning b 2 im.A/. So taking such an a with A.a/ D b yields that A isn’t on the path of a starting point, and
thus f .a/ D A.a/ D b. Thus f is surjective, and so a bijection. a

As detailed above, it’s tempting for each X to define ¹˛ 2 Ord W ˛ Dsize Xº, and then take jX j to be the <-least
element of this class. Although we can’t do this because the class might be empty, we still at least have the following
result, showing that the ordinals can still overtake any set in the �size-ordering.

5C • 5. Theorem (Hartogg's Number)
Let X be a set. Therefore there is a cardinal � such that � 6�size X .

Proof .:.

Consider the approximations to a well-order of X . In particular, consider the set
W D ¹W 2 P .X �X/ W W is a well-order of dom.W / [ ran.W /.º

Now by Corollary 3 E • 7, we can consider the set of the corresponding order-types.
O D ¹˛ 2 Ord W 9W 2 W.h˛;2i Š hdom.W / [ ran.W /;W i/º.

Note that O must be an ordinal, since it is transitive: ˇ < ˛ 2 O has that the well-orderW 2 W with order-type
˛ can be restricted to an initial segment with order-type ˇ and thus ˇ 2 O. So it suffices to show that O 6�size X .

Suppose f W O ! X is an injection. Therefore the order W D ¹hf .˛/; f .ˇ/i 2 X � X W ˛ < ˇº yields a
well-order of a subset of X that is isomorphic to O. In particular, W 2 W and O 2 O, contradicting that the
ordinals are well-founded. a

If choice holds, the cardinal described above is just any cardinal greater than jX j. But without choice, it’s not clear
that X Dsize ˛ for any ˛ < �, as this would guarantee by Cantor–Bernstein (5 C • 4) that X can be well-ordered, and
thus any family F � P .X/ would have a choice set just by selecting the least-elements in the non-empty sets. So if
every X has a cardinality, then we always get choice sets, and thus the axiom of choice holds.

Hartogg’s Number (5 C • 5) is especially useful in confirming the other properties of the cardinals that we know from
Subsection 5B. There, !1 was shown to exist from a well-order of P .!/. But without choice, it’s possible for P .!/
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to have no well-order. How then do we show that there are larger cardinalities? We use Hartogg’s Number (5 C • 5).
Note that we still have the usual properties of �size due to choice holding on the ordinals by Corollary 5C • 2.

5C • 6. Corollary
For each cardinal � 2 Ord, there is a cardinal � > �.

Hence without choice we can still define ℵ1, ℵ2, � � �, ℵ! , and so on. It’s just that not every set needs to be in bijection
with one of these.

§5D. cofinality and cardinal arithmetic

We now return to the world of choice, although often it is unnecessary for this subsection. There will be times when it
is needed, but mostly this is just in requiring that functions from � to � can be well-ordered for � and � ordinals.

As introduced before, there are operations defined on ordinal numbers: addition, multiplication, and exponentiation,
for example. We have similar operations on cardinals, although they do not obey the same rules. It will happen that
everything becomes either dramatically simpler, or else impossible to know. We begin with some notable properties
of cardinals. We begin with addition.

5D • 1. Definition
Let X and Y be sets. Write X t Y for .X � ¹0º/ [ .Y � ¹1º/ the disjoint union.
Let � and � be cardinals. Define � C � to be the cardinality of � t �. Define � � � to be the cardinality of � � �.

Note that the cardinality of the ordinal addition �C� is the cardinal addition �C�. To make this more apparent what
is meant, j! C !1j D ℵ0 C ℵ1 for example. Unlike with ordinal addition, where ! C 1 ¤ !, both of these cardinal
operations simplify to just being the maximum of the two cardinals. First we have some immediate properties about
these operations, just following from the existence of easy to find injections or surjections. Below, for �, �, and �
cardinals:

• Cardinal addition and multiplication are commutative.
• � < � implies � � � � � � � and � C � � � C � (possibly with equality, as we shall see).
• � C 0 D �, and � � 0 D 0.
• � C 1 D �, and � � 1 D �.
• � C � � � � � when � ¤ 0.
• ˛ � ℵ˛ (possibly with equality, as we shall see).

Trivially, however, these facts won’t be important to know, since we will get that �C� D � �� D max.�; �/. To show
this, we first consider the case where � D �.

5D • 2. Lemma
Let � be an infinite cardinal. Therefore � � � D � C � D �.

Proof .:.

Clearly � � � C � � � � � so it suffices to show � � � � �. We consider the following ordering on Ord � Ord.
Write h˛0; ˇ0i � h˛1; ˇ1i iff

1. max.˛0; ˇ0/ < max.˛1; ˇ1/; or else
2. ˛0 < ˛1; or else
3. ˇ0 < ˇ1.

In essence, we have a lexicographic order where things in the square  �  always precede things in the square
ı � ı for  < ı. As a result, this means we follow the edges of increasingly bigger squares.

Claim 1
� is a (class) well-order of Ord � Ord.
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Proof .:.

That� is a linear order should be easy to see from the definition: transitivity follows from from progressing
through the cases each time, and the other requirements follow from< being a linear order on Ord. To show
that � is well-founded, let X be a set of pairs of ordinals. Consider the set Y D ¹max.˛; ˇ/ W h˛; ˇi 2 Xº.
This has a 2-least element ˛0 2 Y so consider the class ¹h˛; ˇi 2 X W max.˛; ˇ/ D ˛0º. Now we similarly
choose the 2-least first entry in this set, and of those entries with the same max and same first entry, we
conside the 2-least second entry. This gives a �-least element of X just by definition of �. a

Proceed by induction on  to show ℵ � ℵ D ℵ by showing � D �\ ..ℵ � ℵ /� .ℵ � ℵ // has order-type
ℵ . Because we prioritize smaller squares, for each h˛; ˇi 2 Ord�Ord, pred�.h˛; ˇi/ is a set, and in particular,
it has order-type at most (using ordinal multiplication) max.˛; ˇ/ � max.˛; ˇ/. So for ˛; ˇ < ℵ , the inductive
hypothesis tells us that this pred�.h˛; ˇi/ has cardinality jmax.˛; ˇ/j � jmax.˛; ˇ/j D jmax.˛; ˇ/j < ℵ , and
thus the order-type of this initial segment is an ordinal strictly less than ℵ . Thus every initial segment of � has
order-type strictly less than ℵ , and therefore the order-type of� is at most ℵ . Since clearly the order-type is at
least ℵ (consider ¹h˛; 0i W ˛ < ℵº, still well-ordered by � and isomorphic to hℵ ; <i, and use Lemma 3E • 6),
we have equality and thus jℵ � ℵ j D ℵ . a

We can then conclude that � � � D � C � D max.�; �/ for infinite cardinals � and �.
5D • 3. Corollary

Let � < � be cardinals with � infinite. Therefore � � � D � C � D �.

Proof .:.

� D 1 � � � � � � � � � � D � by Lemma 5D • 2, and similarly for addition. a

Now we will discuss some aspects of cardinal arithmetic that are more complicated in the sense that it’s impossible to
write down precisely which ℵ˛ the answer is. But there are still interesting results we can give.

5D • 4. Definition
Let A and B be sets. Define AB D ¹f 2 P .A � B/ W f is a function from A to Bº.
For � and � cardinals, define �� D j��j.
We often write �<� for sup�<� �

� .

We will interchangeably write X<! D
S
n<! X

n or <!X D
S
n<!

nX , which can be identified in a similar way. In
particular, rather than the n-tuple hx0; � � � ; xn�1i 2 X

n, we can think of this as instead a function specifying the value
of the kth entry: f W n! X where f .k/ D xk for k < n. Similarly for a function f W n! X , we can think of this
as a tuple that merely lists out the values of f : hf .0/; � � � ; f .n� 1/i. So mixing up the two only slightly changes the
implementation of the same idea: finite lists of elements from X .

Now obviously we get the following facts about exponentiation: for all cardinals �; �; � 2 Ord, and all sets A,
• ;A D ¹;º, 1A D 1 � A.
• � < � implies �� � ��;
• � < � implies �� � �� ;
• �0 D 1, �1 D �.
• �2 D � � �, and so successively, �n D � for each n 2 !, if � is infinite. Therefore �<! D �.

The notation of exponentiation makes sense for this operation because if f W A t B ! C , meaning f 2 AtBC , then
we can view f according to how it acts on A and how it acts on B . In particular, every function in AtBC can be
viewed as a pair of functions in AC � BC , and vice versa (because we’re taking the disjoint union). Moreover, the
idea of evaluation just gives that A.BC/ is effectively the same as A�BC in that every function f W A ! BC can be
uniquely identified with the map g W A � B ! C where g.a; b/ D f .a/.b/. Hence we get the following facts about
cardinal exponentiation.
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5D • 5. Result
Let �, �, and � be cardinals. Therefore,

1. ��C� D �� � ��.
2. .��/� D ����.

Moreover, these concepts also allow us to view the powerset as exponentiation.
5D • 6. Result

Let X be a set. Therefore jP .X/j D jX2j D 2jX j.

Proof .:.

Each subset corresponds to its characteristic function: A � X yields �A W X ! 2 where �A.x/ D 1 iff x 2 A
and otherwise �A.x/ D 0. Hence ��1

A .1/ D A for all A � X . In particular, if �A D �B then they both have the
same preimage of 1 and so A D B . Similarly, every function f W X ! 2 yields a unique subset of X just by the
preimage of 1: Af D ¹x 2 X W f .x/ D 1º D f �1.1/ and so �Af

D f . Hence the map F W P .X/! X2 where
A 7! �A is a bijection. Therefore jP .X/j D jX2j which is just 2jX j by definition. a

In particular, jP .ℵ0/j D 2ℵ0 > ℵ0 by Cantor’s Theorem (5B • 13), which more generally gives the following.
5D • 7. Corollary

Let � be a cardinal. Therefore 2� > �.

Note that �� D 2� for infinite �, since
2� � �� � .2�/� D 2���

D 2� .
Another proof that 2� > � follows from a very useful theorem. First, note that we can generalize exponentiation to
other products, and we generalize multiplication to other sums.

5D • 8. Definition
Let I be a set, and let ¹�i W i 2 I º be a set of ordinals. The cardinal sum

P
i2I �i is the cardinality of the unionS

i2I �i � ¹iº.
The cardinal product

Q
i2I �i is the cardinality of the cartesian product

Q
i2I �i .

Obviously we have
P
i2I �i �

Q
i2I �i just by looking at the map sending h˛; ii 2

S
i2I �i � ¹iº to the function in

the cartesian product
Q
i2I �i where i 7! ˛ and j 7! 0 for every j 2 I with j ¤ i . We also have the following easy

to confirm properties.
• I � J with ¹�j W j 2 J º a set of cardinals implies

P
i2I �i �

P
j2J �j ; and

• if in addition, ; … J ,
Q
i2I �i �

Q
j2J �j .

• �i � �i implies
P
i2I �i �

P
i2I �i , and similarly for products.

•
P
i2I 1 D jI j and

Q
i2I 2 D 2

jI j; and more generally,
•
P
i2I � D jI j � � and

Q
i2I � D �

jI j.
Mostly we will look at sums as given by partitions: if we can cover a set, then the cardinality is given by how many
pieces we need, and how big the pieces are.

5D • 9. Result
Let X be a set, and P � P .X/ a partition of X such that jP j is infinite. Therefore jX j D

P
Y2P jY j D jP j �

supY2P jY j.

Proof .:.

SinceX can be written as the disjoint unionX D
S
Y2P Y , it’s clear that ¹jY j W Y 2 P º is a set of cardinals, andS

Y2P jY j � ¹Y º is in bijection with X , just by sending h˛; Y i to the fY .˛/ where fY W jY j ! Y is a bijection.
As a result, jX j D

P
Y2P jY j.

This is the same as jP j � supY2P jY j, since jP j D
P
Y2P 1 �

P
Y2P jY j �

P
Y2P jP j D jP j � jP j D jP j. a

Infinite sums in general work like this.
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5D • 10. Corollary
Let I be a set, and ¹�i W i 2 I º a set of cardinals. Therefore

P
i2I �i D jI j � supi2I �i .

A less trivial theorem is the following.xix giving an alternative proof of Cantor’s Theorem (5B • 13).
5D • 11. Theorem (König's Theorem)

Let I be a set (used only as an index), and let ¹�i W i 2 I º and ¹�i W i 2 I º be two sets of cardinals. Suppose �i < �i
for all i 2 I . Therefore

P
i2I �i <

Q
i2I �i .

Proof .:.

Without loss of generality, instead consider the situation where we have pairwise disjoint families
¹Ki W i 2 I º, jKi j D �i
¹‚i W i 2 I º, j‚i j D �i .

For example, Ki D �i � ¹iº and ‚i D �i � ¹iº works. Let K D
S
i2I Ki , and ‚ equal the cartesian productQ

i2I ‚i (i.e. the set of all functions f from I with f .i/ 2 ‚i ). It’s clear that there’s an injection from K to ‚,
just because �i < �i : send h˛; ii 2 K to the map f 2 ‚ defined by, for j 2 I ,

f .j / D

´
h˛; j i if j D i
h˛ C 1; j i if j ¤ i .

Now suppose we had a surjection F W K! ‚. We will diagonalize out of this using evaluation maps: for x 2 I
and f 2 ‚, �x.f / D f .x/. Let Fi D .�i ı F / � Ki , a function from Ki to

S
i2I ‚i .

Since j‚i j > jKi j, as a function from Ki , Fi can never cover ‚i . So let g.i/ 2 ‚i n im.Fi / for each i 2 I .
The resulting function g cannot be in the image of F . To see this, if we let k 2 K be such that F.k/ D g, then
we know k 2 Ki for exactly one i 2 I . Hence k 2 dom.Fi / and so g.i/ 2 ‚i n ¹Fi .k/º by construction. Yet
Fi .k/ D .�i ı F /.k/ D F.k/.i/ D g.i/, a contradiction. a

5D • 12. Corollary
Let � be a cardinal. Therefore 2� > �.
Proof .:.

Since 2 > 1, � D
P
i2� 1 <

Q
i2� 2 D 2

� by König’s Theorem (5D • 11). a

This raises the question, how much more can we know about 2� , and �� more generally? Because cardinal exponenti-
ation grows in both arguments, we at least know that 2� D �� since 2� � �� � .2�/� D 2��� D 2� by Result 5D • 5
and Lemma 5D • 2. For now, the question we will address is just when does 2� cross from being below � to being
above? To give the best possible answer we can give, we need a new concept.

5D • 13. Definition
A poset is a structure A D hA;<Ai where <A is a partial order over A.
Let A D hA;<Ai be a poset. A subset X � A is cofinal in A iff 8a 2 A 9x 2 X .a D x _ a <A x/.
For ˛ an ordinal, the cofinality of ˛, written cof.˛/, is the least order-type of a cofinal subset of ˛.

If ˛ is an ordinal, we say that X � ˛ has order-type ˇ for the more formal statement that hX;2i has order-type hˇ;2i.
For linear orders, being cofinal is the same as being unbounded. So cof.˛/ is also the least order-type of an unbounded
subset of ˛. One may expect that if ˛ > ˇ > cof.˛/, then there is a cofinal subset of ˛ with order-type ˇ. But this may
not be true, paradoxically. The main reason is that after using cof.˛/ many elements of ˇ, we might run out of room
to place the other elements of ˇ while preserving the order. First, note the following easy examples: for ˛ an ordinal,

• cof.˛ C 1/ D 1, as witnessed by ¹˛º � ˛ C 1.
• cof.ℵ!/ D !, as witnessed by ¹ℵn W n < !º.
• cof.ℵ˛/ D cof.˛/ for ˛ a limit, by the same reason.
• cof.ℵ0/ D !.

xixnamed after Kőnig Gyula who often published under the pseudonym “Julius König”.
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• cof.˛/ � ˛ for each ordinal ˛.
An arguably easier way to characterize cofinality is with functions.

5D • 14. Definition
An ordinal � is cofinal in ˛ 2 Ord iff there is an increasing function f W �! ˛ such that imf is cofinal in ˛.

This is an alternative way to characterize it in the following sense.
5D • 15. Result

Let ˛ be an ordinal. There is a subset of ˛ of order-type ˇ iff ˇ is cofinal in ˛.

Proof .:.

Obviously if ˇ is cofinal in ˛, then there is a subset of ˛ of order-type ˇ: imf where f W ˇ ! ˛ is increasing.
So suppose X � ˛ has order-type ˇ. Thus there is a function f W ˇ ! X which is an isomorphism and thus
order preserving, and increasing in particular. It follows that f witnesses that ˇ is cofinal in ˛. a

Let’s investigate what kinds of ordinals can be cofinalities. Note that being unbounded in an ordinal isn’t unique: for ˛
an ordinal, obviously both cof.˛/ and ˛ itself have unbounded sequences in ˛. For a less trivial example, ! C ! C !
has ¹! C ! C n W n 2 !º as a subset with order-type !, ¹! C ˛ Cm W ˛ � ! ^m 2 !º as a subset with order-type
! C !, and both are unbounded in ! C ! C !.

Nevertheless, we do get a kind of uniqueness in the following sense.
5D • 16. Lemma

Let ˇ be cofinal in ˛. Therefore cof.ˇ/ D cof.˛/

Proof .:.

Enumerate X D ¹x� W � < ˇº, and let Y D ¹y� W � < cof.˛/º be cofinal by definition of cof.˛/. For each
y 2 Y � ˛, asX is cofinal in ˛, there is some x 2 X with y < x. So for y� 2 Y , let x0

�
2 X be the least element

of X such that y� < x0
�
. Hence ¹x0

�
W � < cof.˛/º is a subset of X that is cofinal with order-type cof.˛/. Since

hX;<i Š hˇ;<i, taking the relevant transformation of the x0
�
s yields then that cof.ˇ/ � cof.˛/.

But any cofinal subset of ˇ of order-type cof.ˇ/ yields a cofinal subset of X of order-type cof.ˇ/, and thus a
cofinal subset of ˛ of order-type cof.ˇ/. So by minimality of ˛, cof.˛/ � cof.ˇ/. Therefore cof.ˇ/ D cof.˛/.a

As a result, cofinalities are their own cofinality.
5D • 17. Corollary

Let ˛ be an ordinal. Therefore cof.cof.˛// D cof.˛/.

More than just this, it turns out that they will be cardinals.
5D • 18. Theorem

Let ˛ be an ordinal. Therefore cof.˛/ is a cardinal.

Proof .:.

Let � D j cof.˛/j with b W � ! cof.˛/ a bijection. For each � < �, define f .�/ to be the least element of cof.˛/
larger than max.sup<� b./; sup<� f .//.

This is well defined, since the max will always be less than cof.˛/. To see this, otherwise, If either supremum
(take f for definiteness) has sup<� f ./ D cof.˛/, then ¹f ./ W  < �º is a cofinal subset of cof.˛/ with
order-type � so that cof.˛/ D cof.�/ � � < � � cof.˛/, which is a contradiction. Therefore f .�/ is always
defined for � < �.

By definition, f is increasing. Moreover, imf is cofinal in cof.˛/, since b is a bijection: each � < cof.˛/ has
b./ D � for some  < � so that f . C 1/ > b./ D �. Because imf has order-type �, cof.˛/ D cof.�/ �
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� � cof.˛/. Hence � D cof.˛/ is a cardinal. a

Hence being a cofinality is a property of cardinals. We also introduce some notation.
5D • 19. Definition

Let � be a cardinal. � is regular iff cof.�/ D �. � is singular iff cof.�/ < �.
For � a cardinal, �C is the least cardinal greater than �.

Note that regular cardinals appear all over the place, as do singular cardinals. In particular, all successor cardinals are
regular.

5D • 20. Result
Let � be a cardinal. Therefore �C is regular.

Proof .:.

Let X � �C be cofinal with order-type ˛ D cof.�C/ < �C. By Theorem 5D • 18, ˛ � �. Note that X actually
forms a partition of �C by looking at the spaces between elements of X . For now, write

Œˇ; ˛/ D ¹� � ˛ W ˇ � � < ˛º D ˛ n ˇtext:

Define ˛ � ˇ iff X \ Œˇ; ˛/ D ; and X \ Œ˛; ˇ/ D ;, meaning ˛ � ˇ iff (for ˛ < ˇ) ˛ … X and there are
no elements of X strictly between ˛ and ˇ. Note that this is an equivalence relation: it’s clearly symmetric and
reflexive. � is transitive since if ˛ � ˇ �  with ˛ <  , then one of the following holds:

• ˇ < ˛ <  , in which case Œ˛; / \X � Œˇ; / \X D ;;
• ˛ <  < ˇ, in which case Œ˛; / \X � Œ˛; ˇ/ \X D ;;
• ˛ < ˇ <  , in which case Œ˛; / D Œ˛; ˇ/ [ Œ˛; / so that the intersection with X is ; [ ; D ;.

Note that each equivalence class of � has size at most �, since a class C is bounded by an element of X as it’s
cofinal: C � supC C 1 < supX D �C.

Since the number of equivalence classes is j�C

=�
j D jX j D j˛j D ˛, it follows that as the partition covers �C,

�C
�

X
C2�

C

=�

jC j �
X
C2�

C

=�

� D j�C

=�
j � � D ˛ � � D max.˛; �/ < �C,

a contradiction. Thus ˛ D cof.�C/ � �C, and so we have equality. a

Where does all of this talk of regularity get us? Recall that we started this rabbit hole with a question: for which � is
2� > �? It turns out that the answer to this question is unknowable in the sense that different models of set theory will
give different answers. But, we do know at least the following, which is often also referred to as “König’s theorem”.

5D • 21. Theorem (König's Cofinality Theorem)
Let � be a cardinal. Therefore � < �cof.�/. Moreover, � < cof.2�/.

Proof .:.

LetX D ¹x˛ W ˛ < cof.�/º be an increasing enumeration of a cofinal subset of �. By König’s Theorem (5D • 11)
and Corollary 5D • 10, we get that

� D sup
˛<cof.�/

x˛ D
X

˛<cof.�/

x˛ <
Y

˛<cof.�/

� D �cof.�/.

Moreover, if we instead choose a �-length increasing enumeration Y D ¹y˛ W ˛ < �º � 2� , we get that
sup
˛<�

y˛ �
X
˛<�

y˛ <
Y
˛<�

2� D .2�/� D 2���
D 2� .

Hence Y isn’t cofinal in 2� , and therefore cof.2�/ > �. a

The concept of cofinality also is the source of many other results about regular cardinals, especially successor cardinals.
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5D • 22. Lemma
Let ˛ be an ordinal and X � ˛. If jX j < cof.˛/ then supX < ˛.

Proof .:.

If supX D ˛ then for ˇ the order-type of X , noting that then ˇ � jX j, we have by Lemma 5D • 16 that
cof.˛/ D cof.ˇ/ � jX j < cof.˛/, a contradiction. a

5D • 23. Corollary
Let � be a regular cardinal. Suppose 2<� D �. Therefore �<� D �.

Proof .:.

�<� is the cardinality of
S
ˇ2�

ˇ�. Because functions from ˇ to � are bounded in � by Lemma 5D • 22, each
such function is a function from ˇ to some ˛ < �. In particular,

S
ˇ2�

ˇ� D
S
˛;ˇ2�

ˇ˛. Thus

�<� � � � sup
˛;ˇ

j˛jjˇ j
� � � sup

˛;ˇ2�

2j˛j�jˇ j
D � � 2<� D � a

The hypothesis that 2<� D � is an odd one, and seems very strong. This is really a statement similar to the continuum
hypothesis, a very useful hypothesis regardless of its truth value.

§5E. The continuum hypothesis

We know that 2ℵ0 is some cardinal, and thus is ℵ˛ for some ˛. Cantor’s Theorem (5B • 13) tells us that 2ℵ0 � ℵ1.
König’s Cofinality Theorem (5D • 21) tells us that cof.2ℵ0/ � ℵ1 as well. But this is really all we can know.

5E • 1. Definition
CH is the statement that 2ℵ0 D ℵ1.

Without choice, it’s not clear that P .!/ has an ordinal cardinality. So there are a number of formulations of CH that
are equivalent under choice, and we must be careful which we choose if we are in a choiceless context.

Now we introduce a term that is so essential to much of mathematics, it’s a wonder we have gotten so far without its
introduction.

5E • 2. Definition
Let X be a set. X is countable iff jX j � ℵ0.

5E • 3. Result
CH is equivalent to the statement CH0: for every X � P .!/, either X is countable, or X Dsize P .!/.

Proof .:.

If CH is true, every X � P .!/ has jX j � ℵ1 and therefore jX j < ℵ1 or jX j � ℵ0. If CH fails, then 2ℵ0 > ℵ1. So
the bijection b W P .!/! 2ℵ0 yields a preimage b�1"ℵ1 of size ℵ1 that is a subset of P .!/. Hence CH0 fails. a

CH0 is in essence an equivalent formulation of CH, but it is often more appropriate of a formulation, because we can
ask if it holds in restricted contexts. Really, CH is a statement about well-orders while CH0 is a statement more about
subsets of P .!/. As such, we can ask which families X � P .P .!// have an analogous version of CH0 hold of them.
We will see later that CH0 holds of closed subsets of R, for instance: every closed subset is either countable or of size
2ℵ0 .

First, we note that R has size 2ℵ0 so that the analogous version of CH0 makes sense for subsets of P .R/ rather than just
P .P .!//. To be formal, this requires a specific construction of the real numbers, which is not done here. Instead, we
rely on a more informal knowledge of real numbers as decimal expansions.
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5E • 4. Theorem
jRj D 2ℵ0 .

Proof .:.

It suffices to show that jRj D ℵℵ0

0 since this is equal to 2ℵ0 . Each real r 2 R can be identified with a decimal
expansion: r D r0:r1r2r3 � � �, meaning an !C 1-length sequence in !, where r0 2 ! and rn 2 10 for n > 0. The
number of such sequences is ℵ0 � 10ℵ0 , and so there are that many real numbers. But

2ℵ0 � 10ℵ0 � ℵℵ0

0 � .2
ℵ0/ℵ0 D 2ℵ0 ,

and thus jRj D ℵ0 � 2ℵ0 D 2ℵ0 . a

Really this just says that R Dsize P .!/ which is clearly 2ℵ0 by the above argument. In a choiceless context, we still
get that R Dsize P .!/ Dsize

!2, but it’s not clear that this has an ordinal cardinality: that it can be well-ordered.

One has to have a little care about the decimal expansion in the proof of Theorem 5E • 4 to ensure that it is unique, for
example, 1:000 � � � D 0:999 � � �.xx But this can be done just by specifying that each decimal expansion should end in
an infinite sequence of 0s if it has one that ends in 9s.

5E • 5. Definition
GCH is the statement that for all cardinals �, 2� D �C.

A much stronger statement than CH, GCH imposes a kind of regularity property on cardinal exponentiation.
5E • 6. Theorem

GCH implies that for any cardinals � > 1, � > 0 with at least one infinite,
• � � � implies �� D �C;
• cof.�/ � � < � implies �� D �C;
• � < cof.�/ implies �� D �

Proof .:.
• We have �C � �� by Cantor’s Theorem (5B • 13). Simple combinatorics yields �� � �� � .2�/� D 2� D
�C.

• We have � < �� by König’s Cofinality Theorem (5D • 21) and thus �C � �� � �� D 2� D �C.
• Proceed by induction on �. The first place we can have � < cof.�/ with at least one of the two infinite
is for � D ℵ0, which is clear: �n D � for any n < !. For � > ℵ0, since � < cof.�/, any function
from � to � is bounded, and therefore �� D sup˛<� j

�˛j. By the previous two results and induction, each
j�˛j � max.˛; �/C � � and therefore �� � � � �� . a

This can be summed up with the following figure where � and cof.�/ are fixed and the exponentiation �� is calculated
for each interval � is in.

� �
�

��
cof.�/

�� �C �C

5E • 7. Figure: Calculating �� under GCH

In general, there’s very little that can be said about cardinal exponentiation, so GCH seems to dramatically simplify the
situation. We will see later that this combinatorial property is very useful if perhaps unlikely.

xxTo see this, note that r0:r1r2 � � � is formally just
P

n2! rn � 10�n and 0:99999 � � � is then equal to

lim
N !!

NX
nD1

9

10n
D lim

N !!

10N � 1

10N
D lim

N !!
1�

1

10N
D 1.
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With this section, we have introduced all of the axioms of what is commonly referred to as set theory.xxi The whole
collection of axioms (as well as their actual first-order formulas) are written at the beginning of the document.

xxiThere are two notions of “set theory”: one is just “set theory” in the sense of “the axioms of sets”; and the other is the field of study with the
same name. Often I will use “set theory” as a more informal way of writing ZFC or some sufficiently large fragment of it.
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Section 6. Another Look at Model Theory

Some have described the field of set theory as being more about the model theory of set theory. Regardless of opinion
about this, it does note of a relationship between the two. With the ideas of cardinality at our disposal, we may
investigate further some properties of first-order logic. Then we will look more precisely at how these theorems interact
with ideas surrounding set theory.

§6A. Further into first-order logic and model theory

The first result we will consider is the idea of a model generated by a set, and formulas. There are two or three versions
of this theorem. The first two versions are certainly useful for logic, and have the most applications outside of logic,
especially algebra, in detailing what is first-order expressible. The third version is the most useful for our purposes,
and implies the other two. First we introduce a definition.

6A • 1. Definition
Let A, and B be FOL.�/-models.
A is a submodel of B, written A � B, iff the interpretations of A are the same in B, but restricted to being functions
and relations over A.
A is an elementary submodel of B, written A 4 B or A 4� B if the signature is unclear, iff A � B , and for all
FOLp.�/-formulas with parameters in A \ B D A, we have A � ' iff B � '.

It should be clear that being an elementary submodel implies being a submodel just by looking at the atomic FOLp.�/-
formulas. But being a submodel does not entail being elementary. For example, the order of the real numbers on the
unit interval h.0; 1/;�i is the same as for the closed unit interval hŒ0; 1�;�i so that they are submodels: h.0; 1/;�i �
hŒ0; 1�;�i. But hŒ0; 1�; <i � “9x8y.y � x/” while h.0; 1/;�i 6� “9x8y.y � x/”: hŒ0; 1�;�i has a maximal element
whereas h.0; 1/;�i does not. In essence, being an elementary submodel is the strongest amount of agreement two
models can have on first-order formulas. So note the following properties of elementary submodels: for all FOL.�/-
models A, B, and C;

• A 4 A.
• A 4 B 4 A iff A D B (since A � B � A, and they interpret the signature the same way).
• A 4 B 4 C implies A 4 C.
• A 4 C and B 4 C implies A 4 B$ A � B .

The next theorem, one of the versions of the Löwenheim–Skolem theorem, then tells us that we can generate elementary
submodels using arbitrary subsets of the original model we start with.

6A • 2. Theorem (Taking a Skolem Hull)
Let A be an infinite FOL.�/-model, and X � A. Therefore there is a model HullA.X/ called the skolem hull of X ,
such that

1. X � HullA.X/ � A;
2. jHullA.X/j � jX j � j� j � ℵ0;
3. HullA.X/ 4 A.

Most of the time, HullA.X/ will not be unique. So despite the calling it the skolem hull, we really are interested in any
model with the properties (1)–(3).xxii

xxiiAnd sometimes we also care about some nice properties given from the construction of such models. In particular, the elements of the hull are
generated from FOLp-formulas, and so we can get representations of these elements by FOL-formulas and parameters. This is sometimes used in the
literature, but will not be used explicitly here.
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To prove this result, we essentially do a careful proof of Completeness (1D • 1), building up a model fromX by closing
under the functions of � and whatever witnesses existential statements need from A. So the following combinatorial
result will be useful in showing that we do not add too many elements in building up the skolem hull.

6A • 3. Lemma
Let X be a set. Let f be a function with X � domf . Therefore the closure of X under f—meaning the �-least
set Y with X � Y and f "Y � Y—has size at most jX j � ℵ0.
Proof .:.

Write X0 D X , and define XnC1 D Xn [ f "Xn. Let Y D
S
n2! Xn. Note that for each x 2 Y , f .x/ 2 XnC1

where x 2 Xn. Hence f .x/ 2 Y . Thus Y is closed under f . Moreover, for each n 2 !, jXnC1j � jXnjCjXnj D

2jXnj because jf "Xnj � jXnj. Therefore, inductively, jXnj � ℵ0 � jX j for each n 2 !. Therefore the union Y
has jX j � jY j � ℵ0 � ℵ0 � jX j D ℵ0 � jX j. Regardless of whether Y is the �-least set containing X , any Z � Y
which is the real closure of X has jZj � jX j � ℵ0. a

As a result, we can close under entire sets of functions as well, and still we can bound the size of the resulting set.
6A • 4. Corollary

Let X be a set. Let � be a set of functions with X � domf for each f 2 � . Therefore the closure of X under
�—meaning the �-least set Y with X � y and f "Y � Y for each f 2 �—has size at most jX j � j� j � ℵ0.
Proof .:.

As before, write X0 D X , and define
XnC1 D Xn [

[
f 2�

.the closure of Xn under f /.

Thus by Lemma 6A • 3, jXnC1j � jXnj C jXnj � j� j � ℵ0 D jXnj � j� j � ℵ0 For each n 2 !. So inductively, it
follows that jXnj � jX j � j� jn � ℵ0 D jX j � j� j � ℵ0. Taking the union Y D

S
n2! Xn yields that Y is closed under

each f 2 � as in Lemma 6A • 3, and moreover, jY j � jX j � j� j � ℵ20. a

Therefore, when we build up the skolem hull, we aren’t adding too many elements to X . Note that in the following
proof of Taking a Skolem Hull (6A • 2), indirectly confirm that we have an elementary submodel by the idea of skolem
functions: functions which map existential statements to elements that witness them. This allows us to see that the
agreement between A and HullA.X/ includes existential statements. The propositional connectives are practically free,
and so by induction on formulas, this implies the hull is an elementary submodel.

Proof of Taking a Skolem Hull (6 A • 2) .:.

For each existential FOL.�/-formula  .Ex/ being 9v'.v; Ex/, add the function symbol f (with arity being the
length of Ex) to the signature. Thus we now consider the signature

� 0
D � [ ¹f W  is an existential FOL.�/-formulaº.

We interpret the functions f in the model A by the axiom of choice: for  .Ex/ being “9v '.v; Ex/”, if A �
“9v '.v; Ex/”, choose f A

 .Ex/ 2 A such that A � “'.f A
 .Ex/; Ex/”. Obviously, if A 6� “9v '.v; Ex/”, then we can

set f A
 .Ex/ to be any particular, fixed element of A that we want (this is only done to ensure that f A

 is indeed
a function defined over all of A). Hence we can consider the FOL.� 0/-model A0 with these new interpretations,
noting that we have only added interpretations: we still have X � A0 D A, for instance.

With this, by Corollary 6A • 4, we can consider the closure ofX under the functions of � 0, yieldingHullA.X/. This
clearly hasX � HullA.X/ � A, meaning (1) holds. Moreover, by Corollary 6A • 4, jHullA.X/j � jX j � j� j � jℵ0j,
meaning (2) holds.

Now we take the model HullA.X/ to have the same function and relation interpretations as A, but restricted to
HullA.X/. To show (3), supposew0; � � � ; wn 2 HullA.X/. We proceed by induction on the FOL.�/-formula '.Ex/
to show that HullA.X/ � “'. Ew/” iff A � “'. Ew/”.
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• For '.Ex/ atomic, the result is immediate by definition.
• For '.Ex/ being : .Ex/, the inductive hypothesis clearly give the result.
• For '.Ex/ being  .Ex/ ^ �.Ex/, A � “ . Ew/ ^ �. Ew/” iff it models each individually. By the inductive
hypothesis, this is equivalent to HullA.X/ modeling each individually, meaning HullA.X/ � “'. Ew/”.

• For '.Ex/ being 9v  .v; Ex/, A � “9v  .v; Ew/” iff A � “ .f A
' . Ew/; Ew/”. Since Hull

A.X/ is closed under
these skolem functions, by the inductive hypothesis, this is equivalent to HullA.X/ � “ .f A

' . Ew/; Ew/”, iff
HullA.X/ � “9v  .v; Ew/”.

Hence by induction on FOL.�/-formulas, it follows that HullA.X/ 4 A, and thus (1)–(3) hold. a

This method of taking skolem hulls, which are effectively the models first-order generated by the set X we look at, is
incredibly powerful, and yields the next result, which has some counter intuitive consequences.

6A • 5. Theorem (Löwenheim–Skolem)
Let T be a FOL.�/-theory with an infinite model. Therefore, for every cardinal � � j� j � ℵ0, there is a modelM � T

with jM j D �.

Proof .:.

Let A � T be an infinite model. For the downward version, supposej� j � ℵ0 � � � jAj, and let X � A be a
subset of size �. Therefore, by Taking a Skolem Hull (6A • 2), there is a hull HullA.X/ 4 A with X � HullA.X/
meaning � � jHullA.X/j. Moreover, jHullA.X/j � � � j� j � ℵ0 D � so that the hull has size �. By elementarity,
each sentence ' 2 T has A � ' iff HullΑ.X/ � '. Therefore HullA.X/ � T , and so the hull works.

For the upward version, we use compactness: let � > jAj. Consider the expanded signature � 0 D � [ �,
where each ordinal < � is a constant symbol (devoid of its meaning as an ordinal). Now consider the theory
T 0 D T [ ¹“˛ ¤ ˇ” W ˛ ¤ ˇ < �º. Any FOL.� 0/-model B � T 0 has B � T and must have at least � many
elements: the interpretations of the ordinal symbols which are all different. T 0 has a model by Compactness
(1D • 2): every finite subset� � T is modeled by an expansion A0 of A by interpretting the finitely many ordinal-
symbols in � as just different elements of A. Since A has infinitely many elements, we can always do this.
Therefore A0 � �, and so T 0 has a model, which is then of size � � � � j� j �ℵ0. Using the downward statement,
it follows that we have a model M � T 0 of size exactly �. a

Some immediate consequences of this are that if ZFC is consistent, then there is a countable model in addition to a
model of size ℵ1, and models of every cardinality. One might be very confused about this, since supposedly ! and
thus P .!/ >size ℵ0 should be in the model, but this isn’t necessarily true: the model will contain fewer subsets than
in the real world, as not every subset of ! can be described by formulas, and Löwenheim–Skolem (6A • 5) really only
deals with what is minimally required of the formulas of FOL. In essence, the model won’t realize its P .!/ is small,
because it doesn’t conain the necessary bijection between its interpretation of P .!/ and ℵ0.

Now often in model theory, one deals with chains of elementary submodels. So it’s nice to have the following theorem.
6A • 6. Theorem (Tarski–Vaught Theorem)

Let A˛ be a FOL.�/-model for each ˛ <  2 Ord with  a limit ordinal. Suppose A˛ 4 Aˇ for all ˛ < ˇ <  .
Therefore there is a model

S
˛< A˛ where A˛ 4

S
ˇ< Aˇ for all ˛ <  .

Proof .:.

The “direct limit”
S
˛2 A˛ is just given by the union of the corresponding models: the universe the union of

the universes, the relations are the unions of the relations, and the functions are the unions of the functions. The
constants are necessarily the constants as interpreted by A0.

Using this, any FOLp.�/-formula ' with parameters in A˛ that is atomic clearly has A˛ � ' iff
S
ˇ< Aˇ � '.

Similarly, the propositional connectives follow easily. For the existential case, it should be clear that A˛ �
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“9x '.x/” implies A˛ � “'.a/” for some a 2 A˛ and thus by the inductive hypothesis,
S
ˇ< Aˇ � “'.a/” and

thus
S
ˇ< Aˇ � “9x '.x/”. For the reverse direction, since

S
ˇ< Aˇ � “'.a/” for some a 2

S
ˇ< Aˇ , we

have that a 2 Aˇ for some ˇ <  . Therefore by the inductive hypothesis, Aˇ � “'.a/” and thusAˇ � “9x '.x/”.
But by elementarity, it follows that A˛ � “9x '.x/”. a

Often we don’t want to consider an elementary submodel directly, but instead a model which maps to an elementary
submodel by way of an embedding.

6A • 7. Definition
Let A and B be FOL.�/-models. For f W A ! B an injective map, the structure f "A is the structure with universe
f "A and with interpretations of � given by f applied to the interpretations in A.
f W A! B is an embedding (A is embedded in B) iff f "A � B.
f W A! B is an elementary embedding (A is elementarily embedded in B) iff f "A 4 B.

An alternative characterization of being an elementary embedding would be that for every FOL.�/-formula '.Ex/ and
Ea members of A, A � “'.Ea/” iff B � “'.f .Ea//”. This characterization is arguably a better way of thinking about it.
Similarly, f is an embedding iff A � “R.Ea/” iff B � “R.f .Ea//” for every relation R and Ea in A, and similarly for
functions: A � “F.Ea/ D a0” iff B � “F.f .Ea// D f .a0/”.

But with this added concept, we also can generalize the union model of Tarski–Vaught Theorem (6A • 6) to the direct
limit proper. The direct limit is essentially a least upper bound with respect to embedability. The figure below represents
the general idea: anyM with embeddings following the diagram is “larger” than the direct limit in that the direct limit
embeds in M.

A

C dir limF A M

B

fA;C

fA;1

fA;M

fC;1

fB;C

fB;1

fB;M

6A • 8. Figure: The direct limit embeddings

And here the diagram commutes.
6A • 9. Definition

Let A be a set of FOL.�/-models and F be a set of (elementary) embeddings between models of A. hA;F i is called
a directed system of (elementary) embeddings iff

• for each A;B 2 A, there is at most one f W A! B in F , denoted fA;B with fA;A D id � A;
• for each A;B 2 A there is some C 2 A with fA;C; fB;C 2 F ; and
• if fA;B; fB;C 2 F , then there is an (elementary) embedding fA;C 2 F with fB;C ı fA;B D fA;C.

For hA;F i a directed system of embeddings, the direct limit is the FOL.�/-model dir limF A such that
1. there is an embedding fA;1 W A! dir limF A such that fB;1 ı fA;B D fA;1 whenever fA;B exists; and
2. for every model M satisfying (1) in place of dir limF A, there is an embedding f W dir limF A ! M such

that f ı fA;1 D fA;M for all A 2 A.

The general idea behind directed systems of embeddings is that we can continually embedd things in a “larger” model,
and we can do so in a way where the embeddings work well together. The idea behind the direct limit is that there
should be an upper bound to this: one where everything in A embedds into it (in a way that works nicely with ), and
it’s the “least” such model. So the direct limit should be thought of as a least upper bound on a posetxxiii hA; Ri where
xxiiiThe directed set doesn't necessarily form a poset, since the existence of embeddings need not be antisymmetric, but it will at least be reflexive
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A R B iff fA;B 2 F , although the least upper bound isn’t necessarily in A.

Of course, we should confirm that every directed system of embeddings has a direct limit, which mostly just amounts
to checking that a certain construction works. The general idea behind the construction is that we just take the disjoint
copies of all the models, and then take the union as in Tarski–Vaught Theorem (6A • 6). From there, we mod out by
“eventual equivalence” when transformed by elements of F .

6A • 10. Result
Let hA;F i be a directed system of embeddings between FOL.�/-models. Therefore the direct limit dir limF A D D
exists, and is isomorphic to the disjoint union of A modulo eventual equivalence through the embeddings of F .

Proof .:.

Without loss of generality, each A \ B D ; for A;B 2 A just by replacing A with the isomorphic model A0

with universe A� ¹Aº, tagging each element of the universe with the model it comes from. This ensures that the
union

S
A is a disjoint union. This union is defined as in Tarski–Vaught Theorem (6A • 6): the universe is the

disjoint union
S

A2AA, and the relations and functions are the disjoint unions of the corresponding relations and
functions. This union model does not interpret the constant symbols of � . To form a FOL.�/-model D, consider
the relation on

S
A2AA defined by (for x 2 A and y 2 B) x � y iff there is some C where fA;C.x/ D fB;C.y/,

meaning that x and y are eventually equal in the embeddings.
Claim 1

�, eventual equivalence through the embeddings of F , is an equivalence relation on
S

A2AA.

Proof .:.

Clearly � is reflexive (take fA;A D id to witness this) and symmetric (by symmetry of D). � is transitive,
since if fA;B.x/ D fA0;B.y/ and fA0;C.y/ � fA00;C.z/, then for some M with fB;M; fC;M 2 F , it follows by
injectivity and the embeddings working well together that

fA;M.x/ D fB;M ı fA;B.x/

D fB;M ı fA0;B.y/

D fA0;M.y/

D fC;M ı fA0;C.y/

D fC;M ı fA00;C.z/ D fA00;M.z/.
Hence� is transitive, and so an equivalence relation. a

Now consider the model D with universe .
S

A2AA/=�—the equivalence classes of �—and corresponding rela-
tion and function interpretations as per Result 2 C • 11: RD.Œx0��; � � � ; Œxn��/ iff for xi 2 Ai and B 2 A such that
fAi ;B 2 F for each i � n, RB.fAi ;B.x0/ � � � ; fAn;B.xn//. As the f 2 F are embeddings and so respect R, this
will be well-defined. We do the same process for the functions of � . Note that the constant symbols work out
nicely after modding out by �: each constant symbol c of � is interpreted as ŒcA�� for any A 2 A. As embed-
dings, the constant symbols are mapped to the corresponding constant symbols, and thus eventual equivalence
always holds between cA and cB. This completes the construction of D. Now we must show that D is the direct
limit.

Firstly, note that each A 2 A has an embedding fA;D W A ! D defined by a 7! Œa�=. This is an embedding,
because for a0; � � � ; an 2 A, RD.Œa0��; � � � ; Œan��/ by definition is equivalen to RB.fA;B.a0/; � � � ; fA;B.an// for
some B with fA;B 2 A. In particular, for B D A, this is just RA.a0; � � � ; an/. The same idea applies for functions
and constants to show that fA;D is an embedding. Moreover, this embedding plays nicely with the f 2 F , since
eventual equivalence yields fA;B.a/ � a so that fB;D ı fA;B.a/ D ŒfA;B.a/�� D Œa�� D fA;D.a/. So (1) holds of
Definition 6A • 9.

To see that D is the least such model—that (2) holds of Definition 6A • 9—supposeM has the same property. Let

and transitive.
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fD;M be defined by, for x 2 A and A 2 A, fD;M.Œx��/ D fA;M.x/. This is well defined since if x � fB;A.x/ then
fD;M.fB;A.x// D fB;M ı fA;B.x/ D fA;M.x/ D fD;M.x/

for any B 2 A with fA;B 2 F . In fact, fD;M will be injective since Œx�� ¤ Œy�� implies the transformations of
x and y by f 2 F are always different so that applying the embedding fA;M where A contains transformations
of both x and y, the transformations are still different in M. The reverse direction holds in the same way. To
see that fD;M respects the relations, functions, and constant symbols of � , suppose c is a constant symbol of � .
fD;M.c

D/ D fA;M.c
A/ D cM for any A 2 A as fA;M is an embedding and cD D ŒcA��. For the relation R, if

RD.Œx0��; � � � ; Œxn��/, then RA holds of the transformations of the Ex where A contains all of these transformed
eleemnts. But then applying fA;M yields that the relation holds of the fA;M transformations of the Ex so that the
relation holds of the fD;M transformations. The reverse direction is the same, and the argument for functions
proceeds similarly. Therefore fD;M is an embedding, and so D is the direct limit. a

Thus Tarski–VaughtTheorem (6A • 6) can be reformulated as saying that if we have a chain of elementary embeddings,
then each is elementarily embedded in the direct limit. So to generalize this, we have the following result, whose proof
is precisely the same as Tarski–Vaught Theorem (6A • 6), although translated through the elementary embeddings of
F instead of the elements themselves.

6A • 11. Corollary
Let hA;F i be a directed system of elementary embeddings. Therefore A is elementarily embedded in dir limF A for
each A 2 A.

The point of all of this talk about elementary embeddings will become clear in the next chapter. But it is an important
idea if we want to learn about V, as the first-order truths of V are then reflected in any model it elementarily embeds
into. So-called large cardinals often state the existence of elementary embeddings from V into another model, and so
commonly uses the techniques of this subsection.

§6B. Logic within set theory

One might worry that, since the above ideas depend on set theory, although the meta-theoretic ZFC can prove the above
results about first-order logic the formalxxiv ZFC can’t. Readers worried about this can put their minds at ease. But
although objects in ZFC are hereditarily sets, we can still code non-set things like formulas using sets.

Rather than give a tedious account of the syntax of first-order logic, and an even more tedious account of how to
formalize this, we merely give an impression on how these things are formalized in ZFC.

6B • 1. Definition
The logical symbols of formal first-order logic is the set !, consisting of the codes for logical symbols

‘^’ D 0, ‘:’ D 1, ‘9’ D 2, ‘.’ D 3, ‘/’ D 4, ‘;’ D 5
and variables ‘vn’ D nC 6 for n < !.
For A a set, a variable assignment for A is a function f W ¹‘vn’ W n 2 !º ! A, i.e. a function f W ! n 6! A.
For � a set of relations, functions, and constants, a � -formula is a ' 2 .! t �/<! obeying the usual syntax rules.
For � a set of relations, functions, and constants, a � -proof is a finite sequence of � -formulas that obeys the usual
syntax rules for proofs.

Once we have the syntax of first-order logic in ZFC, we can start to address the satisfaction relation. This is done by
induction on formulas. Firstly, we have a couple definitions that allows us to more precisely see why we can do this in
ZFC: the relations are well-founded.

6B • 2. Definition
Suppose 6n is a linear order on Bn for each n 2 !. Then the length-prioritized lexicographic ordering 6lex �S
N2!

QN
nD0 Bn is the order defined by, for f W n!

S
k2! Bk and g W m!

S
k2! Bk where n;m 2 !,

f 6lex g$ f D g _ jf j < jgj _ .jf j D jgj ^ the least k 2 ! with f .k/ ¤ g.k/ has f .k/ <k g.k//.

xxiv“Formal” here means relating to formulas, i.e. “syntactic”, rather than the opposite of casual.
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This is really just the dictionary order on <!B where each component potentially has its own ordering. This is best
understood when each<n is the same ordering on B D Bn. In particular, working with triplets, � D <0 D <1 D <2,
6lex just orders 3B as follows: ha; b; ci <lex ha

0; b0; c0i iff
• a � a0; or
• a D a0 and b � b0; or
• a D a0 and b D b0 and c � c0.

Sequences of different lengths are compared in the same way, but the longer one comes after in the order. To save
space, we would also write the above as the more intelligible conditions:

• a � a0; or else
• b � b0; or else
• c � c0.

Definition 6B • 2 just generalizes this to larger product sequences with more relations. What’s important for us is when
this is a well-ordering.

6B • 3. Lemma
Suppose each 6n � Bn � Bn is a well-order of Bn. Therefore 6lex is a well-order of

S
N2!

QN
nD0 Bn.

Proof .:.

It should be clear that 6lex is a linear order of B<! : transitivity follows since each <n is transitive. Totality
clearly holds since any two distinct sequences differ somewhere, and since each <n is total, wherever they differ
is ordered. Clearly anti-symmetry holds by anti-symmetry of each <n. So 6lex is clearly linear, and all that
suffices is to show well-foundedness.

Let hfn W n 2 !i be <lex-decreasing. Therefore hdom.fn/ W n 2 !i is non-increasing. So without loss of
generality, we can assume each dom.fn/ < k for some k 2 !. For each m < k consider hfn.m/ W n < ! ^m 2
dom.fn/i. If each of these is finite or eventually stabilizes, then eventually fnC1 is an intial segment of fn. If
this were the case, then the only way for hfn W n 2 !i to be <lex-decreasing is for their lengths to be decreasing,
contradicting the well-foundedness of !. Thus for some m, hfn.m/ W n < ! ^ dom.fn/i is infinite and doesn’t
stabilize. Take the leastm 2 ! for which this happens. Therefore, eventually, fnC1.m/ <m fn.m/, contradicting
the well-foundedness of <m. a

The point of having <lex prioritize length is to ensure that inductive hypotheses hold for subformulas: for  a subfor-
mula of ',  6lex '. Hence, we can proceed by induction on formulas.

6B • 4. Corollary
For any signature � well-ordered by <� , the � -formulas are well-ordered by <lex.

Proof .:.

Strictly speaking, the order is on ! [ � where were merely place all elements of ! before � . In other words, for
˛ the order-type of h�;<� i, the order on ! t � is given by ! C ˛. Hence <lex well-orders .! t �/<! , which
contain all of the � -formulas. a

For set structures, V can define the satisfaction relation by induction on formulas (the property of being a subformula
is well-founded, as formulas are certain finite sequences of an alphabet). In fact, we can define this relation uniformly.

6B • 5. Definition
For A a set, and � a signature, an interpretation of � in A is a map & with � D dom.&/ where for R an n-placed
relation, &.R/ D RA � An, and similarly for functions and constants.

6B • 6. Theorem
Let � be a signature, A be a set, v a variable assignment for A, & an interpretation of � in A, and x a � tA-formula
coding the real-world formula  . Ey/. Therefore, there is a FOL.2/-formula “models.�; A; &; v; x/” such that

hA; &i � “ .v. Ey//” iff V � “models.�; A; &; v; x/”.
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Proof .:.

In particular, models.�; A; &; v; x/ iff
• x is a � t A-formula;
• & is a set of relations, functions, and constants over A;
• v is a variable assignment, a function mapping variables to elements of A;
• there is a function fv W .A [ �/<! ! ¹0; 1º such that for any z 2 .A [ �/<! ,

– z is of the form “R. Ey/” where R 2 � is a relation symbol, and v. Ey/ 2 &.R/$ fv.z/ D 1,
– z is of the form “y0 D y1” and v.y0/ D v.y1/$ fv.z/ D 1,
– z is of the form “ ^ �” and fv.z/ D 1 iff both fv.“ ”/ D 1 and fv.“�”/ D 1.
– z is of the form “: ” and f .“ ”/ D 1 iff f .z/ D 0, and
– z is of the form “8t  . Ey; t/” and f .z/ D 1 iff any function hw obeying these rules for all z0 6lex z—
where w is any variable assignment w for A with v n ¹ha; v.a/iº � w—has hw.“ .a; t/”/ D 1;
and

• fv.x0/ D 1 where x0 has every free variable y in x replaced by v.y/. a

The above is really only a partial proof, since it only applies to signatures with no function symbols. But this isn’t an
issue with the result, it just makes the defining formula even longer to have an auxiliary function interpreting terms
through the variable assignment.

Doing this then allows us to confirm by the same sort of proofs before that Completeness (1D • 1), Compactness
(1D • 2), and so forth hold. But the important thing about Theorem 6B • 6 is that ZFC has the ability to understand
when something is true in a given set model. We will often use Theorem 6B • 6 without stating so, because the idea
of a formula being true of a (set) structure is so widely used. Of course, we may not have access to classes since they
aren’t objects in the universe.

§6C. Common applications to set theory

For now, our main application will be with respect to Taking a Skolem Hull (6A • 2) and elementarity. The great thing
about taking skolem hulls of transitive sets is that we end up with well-founded sets, and thus can collapse them.

6C • 1. Result
Let A D hA;Ri be well-founded. Therefore any B D hB;R0i embedded in A is also well-founded.

Proof .:.

Let f W B ! A be an embedding and let X � B be arbitrary. Since A is well-founded, f "X � A has an
R-minimal element a 2 f "X . Thus for every y 2 f "X , :y R a. As an embedding, :.f �1.y/ R0 f �1.a//

for each y 2 f "X , meaning :.x R0 f �1.a// for each x 2 X . Therefore f �1.a/ is R0-minimal. Thus B is also
well-founded. a

6C • 2. Corollary
Let T be a transitive set and X � T . Therefore HullhT;2i.X/ is well-founded, and is isomorphic to the transi-
tive collapse cHullhT;2i.X/, which is then elementarily embedded in hT;2i. Moreover, if X is transitive, X is left
uncollapsed: the collapsing map � W HullhT;2i.X/! cHullhT;2i.X/ has � � X D id � X .

Proof .:.

Write T 0 for cHullhT;2i.X/. By Taking a Skolem Hull (6A • 2), HullhT;2i.X/ 4 hT;2i so that the hull is well-
founded. By elementarity, the hull satisfies the axiom of extensionality. By The Mostowski Collapse (4 • 1), the
hull is isomorphic to the transitive hT 0;2i by the map inductively defined by �.x/ D ¹�.a/ W HullhT;2i.X/ �
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“a 2 x”º. Note that as a substructure of V, for a; x 2 H , HullhT;2i.X/ � “a 2 x” iff a 2 x. Moreover,
HullhT;2i.X/ � “a 2 x” implies a 2 H just by virtue of the semantics. Therefore HullhT;2i.X/ � “a 2 x”
iff a 2 x \ H and thus �.x/ is equal to ¹�.a/ W a 2 x \ H º. In particular, if X is transitive, the inductive
hypothesis tells us that �.x/ for x 2 X is equal to ¹�.a/ W a 2 x \H º D ¹a W a 2 x \H º D x \H . Since X is
transitive, x � X � H so that x\H D x. Therefore �.x/ D x and so � � X D id � X by induction on rank.a

Note that the use of “collapse” especially makes sense here, because every �.x/ 2 cHullT.X/ has rank.�.x// �
rank.x/. Of course, strict inequality requires that x 6� HullT.X/. Using Tarski–Vaught Theorem (6A • 6) and direct
limits in general, we can build up skolem hulls to have less and less collapsed while still being relatively small.

In particular, if we take the hull that includes all of an ordinal, we get a model that contains all of the ordinals below it.
Using the elementary chains, this allows us to conclude the following, showing we can get ordinals in our uncollapsed
model before collapsing.

6C • 3. Corollary
Let T be a transitive set with � 2 T an uncountable, regular cardinal and X � T of size < �. Therefore, there is an
elementary H 4 hT;2i withH \ Ord an ordinal, jH j < �, and X � H .

Proof .:.

Take the skolem hull H0 D HullhT;2i.X/. This may not have H0 \ Ord as an ordinal although it will satisfy
that H0 4 hT;2i and jH0j � ℵ0 � 1 � jX j < �. For Hn already defined, if Hn \ Ord is an ordinal, then stop
the process, and take H D Hn. Otherwise let HnC1 D HullhT;2i.Hn [ sup.Hn \ Ord//. As a regular cardinal,
sup.Hn \ Ord/ < � because inductively jHnj < �, which also tells us that jHnC1j < �. Define H! to be the
direct limit of the Hns for n < ! as in Tarski–Vaught Theorem (6A • 6).

Note that H! 4 hT;2i with X � H! and jH! j � ℵ0 � supn2! jHnj. As each jHnj < � and � has cofinality
� > !, it follows that supn2! jHnj < � and thus jH! j < �. To see thatH!\Ord is an ordinal, it suffices to show
thatH! \Ord is transitive. For ˇ 2 H! \Ord, it follows that ˇ 2 Hn \Ord for some n < !. Thus ˇ � HnC1

and so ˇ � H! \ Ord. a

Theorems and ideas like this will play a big role in what we can do with small models of fragments of set theory as
well as inner models (which haven’t been defined yet). To proceed further in this direction, we will need to consider
the FOLp agreement between V and other transitive sets in the next section.
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Section 7. Absoluteness

Absoluteness in some sense refers to how correct our definitions of concepts are. Formally, a definition is absolute
between two models if the two agree on what the definition applies to. For example, x 2 y is absolute between any
two transitive models containing x and y: A � “x 2 y” iff B � “x 2 y” since they both interpret membership the
same way.

7 • 1. Definition
Let '.Ex/ be a FOL-formula. Let A and B be models. We say that ' is absolute between A and B iff A � '.Ea/ iff
B � '.Ea/ whenever Ea are parameters belonging to both A and B .

7 • 2. Corollary
If A and B model some theory T , and if T ` “8Ex .' $  /”, then ' is absolute between A and B iff  is.

This general definition isn’t much to work with. It does, however, tell us that many of our set-theoretic conceptions are
not absolute between models of set theory. For example, the argument in Result 4A • 9 shows that well-foundedness
isn’t absolute. A similar argument shows that even a set being infinite isn’t even absolute between models of set theory:
consider any particular infinite set A 2 V and the signature � [A[¹‘A’º where we have a constant symbolf for A and
every element ofA. Then consider the theory T D ZFCC¹“a 2 A ^ A is finite” W a 2 Aº. We can always interpret the
symbol ‘A’ as some finite subset of A, and in particular, for any finite subtheory of T , the set of all constants appearing
in the subtheory. This shows that each finite subset of T is satisfiable, and thus that T has a model where A is finite.

So these ideas mean first-order logic on its own doesn’t tell us much about the deeper structure of V. They only tell us
is that asking whether something is absolute in general, without any further restrictions, is not a good question to ask.
So for the most part, we will restrict our view to models which are transitive. And in doing so, we also can refine this
notion a bit. Note that we are assuming, as structures, that the models are non-empty.

7 • 3. Definition
For A � V transitive, write A for hA;2i, and call A a transitive model. Let A � B be two transitive models, and let
'.Ex/ be a FOL-formula.

• ' is downward-absolute between A and B iff B � '.Ea/ implies A � '.Ea/ whenever Ea are in A \ B D A.
• ' is upward-absolute between A and B iff A � '.Ea/ implies B � '.Ea/ whenever Ea are in A.
• ' is downward-absolute iff ' is downward-absolute between all transitive models and submodels.
• ' is upward-absolute iff ' is upward-absolute between all transitive models and submodels.
• ' is absolute iff ' is absolute between all transitive models.

Equivalently, ' is absolute iff ' is absolute between V and its transitive submodels. Because membership for transitive
models is always the same, we get that “x 2 y” is absolute. “x D ;” is absolute: for A transitive with x 2 A, x is non-
empty iff there is a y 2 x � A. By absoluteness of “y 2 x” and transitivity, this is equivalent to A � “9y .y 2 x/”,
which just says A � “x ¤ ;”. Hence “x ¤ ;” (and thus “x D ;”) is absolute.

The above idea should indicate that absoluteness can often be proven in a kind of inductive way, beginning with
simple formulas like “x 2 y” and working with increasingly more complex formulas. We can prove a great number
of absoluteness results by studying this kind of complexity, which is mostly just due to the number of quantifiers. But
because we’re working with transitive models, bounded quantifiers do not increase complexity: a bounded quantifier
Qx 2 X ranges over the same elements (namely the elements of X ) in V as in the transitive model A, because both
properly understand what it means to be a member of X . And this is really the best understanding of transitivity:
properly understanding membership. The following hierarchy of formulas is called the Lévy hierarchy after Azriel
Lévy עזריאל) .(לוי
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7 • 4. Definition
Let ' be a FOL-formula. A bounded quantifier is a quantifier of the form “9x 2 X” or “8x 2 X” for some x and X ,
being short-hand for “9x.x 2 X ^ � � � /” and “8x.x 2 X ! � � � /” respectively.

• ' is †0 (and…0) iff all quantifiers occurring in ' are bounded.
• ' is †nC1 iff ' is of the form 9x  where  is…n.
• ' is…n iff ' is of the form : where  is †n.

Note that the X in “9x 2 X” is a variable rather than a parameter. We also get a variant hierarchy where we allow
parameters. In particular, something is †n.A/ iff it satisfies the same definition, but allows parameters in A. If we
allow parameters, we get more formulas. For example, we could bound quantifiers by elements of A, allowing more
†0.A/-formulas than the standard †0-formulas.xxv

This is the first hierarchy of formulas we will encounter, although we will encounter many more later revolving around
R and N. The fact that transitive sets understand bounded quantifiers (when they contain the parameters), tells us that
†0-formulas are absolute. Note that we can formalize this by first noting that truth in transitive classes can be known
by V, just by bounding quantifiers.

7 • 5. Definition
Let C be a (FOLp-definable) transitive class and ' a FOLp-formula with parameters in C. The formula 'C is the
formula where each quantifier “9x” and “8x” is replaced by “9x 2 C” and “8x 2 C”, respectively.

Alternatively, we can define 'C by induction on ':
“.x D y/C” is “x D y”;
“.x 2 y/C” is “x 2 y”;
“.:'/C” is “:'C”;
“.' ^  /C” is “.'C ^  C/”;
“.9x '/C” is “9x 2 C '”; and
“.8x '/C” is “8x 2 C '”.

More explicitly, since membership in C is really a formula, for C is defined by , then “.9x '/C” is “9x . .x/ ^ 'C/”.
The same idea applies to C a set with  .x/ just being “x 2 C ”. Note that if we already have a bounded quantifier, the
restriction of “9x 2 X” to C then gives “9x 2 X \ C”, and similarly “8x 2 X” maps to “8x 2 X \ C”. Therefore,
we can recast truth about ' in C as truth of 'C in V. Note that we already knew how to do with with sets by Theorem
6B • 6, but not classes in general.

7 • 6. Lemma
Let C be a transitive class and ' a FOLp-formula with parameters in C. Therefore hC;2i D C � ' iff V � 'C.

Proof .:.

Proceed by induction on formula complexity. As a transitive class, C � “x 2 y” iff V � “x 2 y” so that the result
holds if ' is atomic. The sentential connectives follow easily from the inductive hypothesis. So suppose ' is of
the form 9x  .

• If C � “9x  ”, then C � “ .c/” for some c 2 C and thus inductively—since  C.c/ is . .c//C—
V � “ C.c/”. Thus V � “9x 2 C  C” which is just to say that V � “'C”.

• Conversely, if V � “9x 2 C  C”, then for some c 2 C, V � “ C.c/”, which inductively says C � “ .c/”
and thus C � '. a

xxvNote that, a priori, not every formula can be placed in the Lévy hierarchy as we've stated it here. Other sources will do away with this issue
by allowing blocks of quantifiers rather than single ones. This is avoided here both to show the importance of the background assumptions, and to
show how to get around the issue. In particular, “9x9y.x 2 y/” can't be placed in the hierarchy. It is only by assuming some additional set theory
that this formula is equivalent to one in the Lévy hierarchy.
More precisely, every formula is equivalent to one in prenex normal form: all quantifiers appear at the beginning of the formula. Assuming some

basic set theory, each block of quantifiers of the form Qx0 Qx1 � � �Qxn' can instead be written as Qx.x D hx0; � � � ; xni ^ '0/ where '0

replaces each xi with the defined notion of being the i th entry in x, something which can be said using only bounded quantifiers. This allows us to
show each formula is equivalent to one in the Lévy hierarchy. In this sense, we say that ' is…n (or †n) iff ' is equivalent to a formula which is
…n (or†n). In doing so, however, we need to specify the theory they are equivalent under.
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So just by rewriting the definition, we get the following, alternative characterization of absolutenesswhich is a statement
just about V. Note that this statement isn’t something that V can evaluate though: what transitive classes exist depends
on V, but V cannot quantify over all transitive classes.

7 • 7. Corollary
Let ' be a FOL-formula. Therefore ' is absolute iff V � “' $ 'C” for each transitive class C.

§7A. Easy absoluteness results

Important examples of absolute formulas include all of the †0-formulas of the Lévy hierarchy.
7A • 1. Result

Let ' be a †0-formula. Therefore ' is absolute.

Proof .:.

Proceed by structural induction on '. Since all quantifiers in ' are bounded, and 8x 2 X  is equivalent to
:9x 2 X : , we only need to consider the sentential operations and the bounded quantifier 9x 2 X  . The
sentential operations are immediate by induction. So it suffices to consider bounded quantification: suppose ' is
9x 2 X  . Let A be an arbitrary, transitive model with X 2 A so that X � A. Inductively, for all a 2 A,  A.a/
holds iff  .a/ holds.

• Since X � A, if there is an a 2 X such that  .a/ holds then there is an a 2 A such that a 2 X and  A.a/
holds, i.e. 'A holds.

• Conversely, if 'A holds, then there is some a 2 X \ A D X such that  A.a/ holds. Inductively, this
means  .a/ holds and thus 9x 2 X  . a

More generally, this says that if ' is absolute between transitive A and B, then “9x 2 X '” is absolute between them
as well when X is in both. And of course, boolean combinationsxxvi of absolute formulas are absolute as well. This is
stated as follows with the same proof as Result 7A • 1.

7A • 2. Result
Let A be a transitive model. Therefore the set of FOLp-formulas absolute between A and V is closed under bounded
quantification, conjunctions, and negations.

7A • 3. Corollary
The following axioms are absolute, because they are true in all non-empty, transitive models:

• the axiom of extensionality,
• the axiom of the empty set, and
• the axiom of foundation.

Proof .:.

Since all of these are true in V, the only way for these to fail to be absolute is if they are false in some transitive
model. So we will show this does’t happen. All of these can be shown through careful analysis of the forms of
the axioms.

• Extensionality says that for every x and y, “x D y $ 8v 2 x .x 2 y/ ^ 8v 2 y .v 2 x/” holds. The prop-
erty of extensionality holding at x; y is †0 and thus absolute. So if it holds for all x; y 2 V, then it holds
for all x; y 2 C for any class C. Therefore extensionality holds in C, and is thus absolute.

• By (3) of Corollary 2 E • 5, the universe has the empty set in it. By the argument just after Definition 7 • 3,
“x D ;” is absolute and thus the axiom of the empty set is satisfied and thus absolute: “9x .x D ;/” is
absolute.

• The axiom of foundation says that for every x ¤ ;, 9y 2 x 8z 2 y.z … x/. Since “x ¤ ;” is absolute and
the other part is †0, foundation holding for x is absolute, meaning for every x 2 C, C believes foundation

xxvimeaning formulas built up from the sentential connectives starting from some given formulas
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holds for x, because it holds in V. Therefore C must satisfy foundation. a

Result 7A • 1 gives a great number of absoluteness results. For the most part, we will not give the completely formal
definitions that show these are †0. Instead, like with much of first-order logic, we will resort to giving impressions
and instructions that allow one to carefully check that they are. The following are absolute all because they are defined
by †0-formulas.

• x being an (un-ordered) pair: everything in x is either some y 2 x or z 2 x.
• x being an ordered pair.
• x being the first-coordinate of an ordered pair y: there is a z 2 y such that for every w 2 z, w D x.
• x being a relation.
• x being the domain of R: for every z 2 x, there is a pair hz; yi 2 R, and vice versa.
• x being the range of R.
• x being a function: for every y in the domain of x, there is a unique z in the range of x with hy; zi 2 x.
• x being the output of a function f with input y, i.e. x D f .y/.
• x being an injective function.
• x being a surjective function.
• x being a subset of y: every z 2 x is in y.
• x being transitive: every z 2 x is a subset of x.
• x being an ordinal: x is transitive, and 2 linearly orders x.

And many, many more concepts are absolute by Result 7A • 1. As a result of the above absoluteness examples, we
have some nice consequences about what it means for transitive sets to model the axioms of set theory. Most of the
axioms of set theory state the closure of the universe under certain sets. Pair, for example, says that for every x and y,
¹x; yº exists. Now while the property of being an (un-ordered) pair is absolute, this doesn’t tell us that the existence of
un-ordered pairs is absolute. Similarly, being a subset is absolute, but being the powerset isn’t, because a model might
contain fewer subsets than another: 4 D ¹0; 1; 2; 3º thinks P .2/ exists and is 3 D ¹0; 1; ¹0; 1ºº, because every subset
of 2 that 4 contains is in 3: ¹1º … 4 although ¹1º � 2.

But we can have a better picture of what these sorts of defined sets will look like, because their defining formulas are
absolute. Really, the following is just another way to state absoluteness.

7A • 4. Result
Let ' be a FOLp-formula absolute between a transitive model M and V. Therefore ¹x W '.x/ºM D ¹x W '.x/º \M .

Proof .:.

M � “'.x/” iff x 2M and 'M .x/ holds. By absoluteness, this is equivalent to x 2M and '.x/. a

As a result, P M.X/ D P .X/ \M , OrdM D Ord \M , and so on. This idea also gives an understanding of when
transitive models satisfy (some of the) axioms of set theory.

7A • 5. Corollary
Let A be a transitive model. Therefore,

• A � Union iff x 2 A implies
S
x 2 A.

• A � Pair iff x; y 2 A implies ¹x; yº 2 A.
• A � Comp iff ¹x 2 y W 'A.x/º 2 A for each y 2 A and FOLp-formula '.
• A � P iff x 2 A implies P .x/ \ A 2 A.
• A � Inf if ! 2 A.

Proof .:.

ForUnion, Pair, andComp, by absoluteness, the onlywayA can interpret “x D
S
y” and “x D ¹y; zº” is the same

way V does. The only way A can interpret “x D ¹y 2 z W '.y/º” is the way V interprets “x D ¹y 2 z W 'A.y/º”.
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Hence A being closed under unions, pairing, or comprehension as A interprets it (i.e. satisfying Union, Pair, or
Comp) is the same as being closed under unions, pairing, or comprehension as V interprets it.

For P, note that being a subset is absolute. Hence
P A.x/ D ¹y 2 A W A � “y � x”º D ¹y 2 A W y � xº D P .x/ \ A.

Hence being closed under powersets (i.e. satisfying P) is the same as being closed under powersets intersected
with the universe.

For Inf, clearly if ! 2 A, then by the absoluteness results above, A satisfies Inf. The reverse may not hold, since
! [ ¹¹1º C n W n < !º [

®
! [ ¹¹1º C n W n < !º

¯
,

where x C 1 D x [ ¹xº and x C n D ..x C 1/C � � � /C 1, is a transitive set that models the axiom of infinity,
but ! is merely a subset of the universe (and a subset of a set in the universe), not a set inside it. a

Of course, not everything turns out to be absolute, but we can get partial absoluteness for some formulas, as we’ve
used in Corollary 7A • 3. For example, we have the following easy consequences of Result 7A • 1.

7A • 6. Result
…1-formulas are downward absolute. †1-formulas are upward absolute.

Proof .:.

Let ' be 8x � where � is †0. If V � 8x � , then, in particular, �.a/ holds for every a 2 C. By absoluteness,
�.a/$ �C.a/ and thus C � 8x � .

Let  be 9x � where � is †0. Thus : , being 8x :� is downward absolute. Taking the contrapositive means
that  is upward absolute: V � “: ! : C” implies V � “ C !  ”. a

Again, more generally, when ' is absolute between A � B, then 9x ' is upward absolute between them and 8x ' is
downward absolute between them. We cannot ask for stronger than this mere partial absoluteness. For example, the
existence of !—meaning the axiom of infinity—is †1:

“9N.; 2 N ^ 8x 2 N.x [ ¹xº 2 N//”,
but the transitive set ¹;º doesn’t have such an N although V does. So upward absoluteness is all we can say about
†1-formulas in general. Similarly, in ¹;º, we have the…1-sentence “8x .x D ;/” as true although it’s false for V. So
downward absoluteness is all we can say about…1-formulas in general.

§7B. The Lévy hierarchy and absoluteness with some set theory

As Corollary 7A • 3 shows, relatively few things will be absolute, especially if they require more axioms of set theory
to even state properly. For example, while being the union of two sets is absolute, the existence of such a set isn’t
absolute. For example, ¹0; 1; ¹1ºº is transitive, but 2 D ¹1º [ 1 isn’t in the set. So often it will be useful to restrict our
attention to transitive models of some fragment of ZFC.

7B • 1. Definition
Let T be a theory, and ' a FOL-formula.
We say that ' is †Tn (or…T

n ) iff T ` “' $  ” for some †n (or…n) formula  .
We say that ' is �Tn iff ' is both †Tn and…T

n .

As a result, †;
n just consists of all formulas logically equivalent to†n-formulas, and similarly for…;

n. As a result, the
placement of a formula ' isn’t unique: if ' is a †Tn -sentence, then “8x'”—just adding on a dummy quantifier—is a
…T
nC1-sentence that is logically equivalent to '.

Note also that if ' is †Tn and T � T 0, then ' is †T 0

n as well. Hence absoluteness results for T � ZFC extend to
absoluteness results for ZFC.
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7B • 2. Corollary
�;
1-formulas are absolute.

Proof .:.

If ' is a �;
1-formula, then ' is…;

1 and thus downward absolute by Result 7A • 6; and ' is †;
1 and thus upward

absolute by Result 7A • 6. a

7B • 3. Corollary
Well-foundedness is absolute between transitive models of Lemma 4 • 3, e.g. of ZF � P.

Proof .:.

Well-foundedness is downward absolute because a relation R is ill-founded iff the following †1-formula holds:
9x 8y 2 x 9z 2 x .z R y/. This means well-foundedness is…1, and thus downward absolute.

Upward absoluteness holds as it is †T1 for T such a theory as in the statement of the corollary: it states the
existence of a pair: a function and an ordinal which constitute a rank function. By Lemma 4 • 3: if R � A � A
is well-founded in a model C of this, then C believes that there is a rank function f W A ! OrdC. Since the
following are †0 and so absolute between transitive models:

• being a function, and being f .x/;
• being an ordinal—which implies OrdC D Ord \ C;
• being 0;
• being R-minimal—which is †0 as seen by “8y 2 A .:y R x/”;
• being x C 1; and
• being the supremum of a set of ordinals,

it follows that f W A ! Ord \ C is still a rank function in V. Hence there can be no infinite R-decreasing
sequence in A without the ranks decreasing and so violating the well-foundedness of the ordinals. Therefore,
well-foundedness is upward absolute between such models, and hence absolute between such models. a

We also get that functions and sets defined by transfinite recursion using absolute notions will be absolute.
7B • 4. Theorem

Suppose “F.x/ D y” is absolute between transitive models of ZF � P. Let G W Ord ! V be defined by transfinite
recursion: G.ˇ/ D F.G � ˇ/. Therefore “G.x/ D y” is absolute between transitive models of ZF � P.

Proof .:.

Applying transfinite recursion in M, GM is such that for every ordinal ˛ 2 Ord \M , GM.˛/ D FM.GM � ˛/.
By transfinite induction on ˛, the inductive hypothesis that GM � ˛ D G � ˛ and the absoluteness of F implies
GM.˛/ D F.G � ˛/ D G.˛/, as desired. Hence GM D G \M . a

As a result, the rank of a set is absolute between transitive models of ZF � P being defined by transfinite recursion.
7B • 5. Corollary

“rank.x/ D ˛” is absolute between transitive models of ZF � P. Hence VM
˛ D V˛ \ M for transitive models

M � ZF � P.
Proof .:.

rank.x/ D ˛ is absolute between such models as a consequence of Lemma 4 • 3 where we take membership to
be the well-founded relation. As noted, the proof works just as well for classes as for sets, since it just relies on
transfinite induction and recursion.

To show VM
˛ D V˛ \M , just note that we can define x 2 V˛ iff rank.x/ < ˛, which is absolute. a
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Some of the most common axioms satisfied are those of basic set theory.
7B • 6. Definition

Basic set theory (BST) consists of the following axioms:
1. extensionality, empty set, foundation;
2. comprehension, pairing, union; and
3. the existence of cartesian products: 8x 8y 9z 8w .w 2 z $ 9a 2 x 9b 2 y .w D ha; bi//.

We know from Corollary 7A • 3 that (1) is already absolute and satisfied by all transitive sets. So the addition of (2)
adds more absoluteness between models we care about. (3) is not an explicit axiom of ZFC, but it does follow from
both powerset and replacement. Since we will work in contexts in which either might be missing, we use the weaker
result that cartesian products exist.

The reason for this is that under BST, a greater number of things are equivalent, and the Lévy hierarchy will be closed
under various operations. What we mean by this is that for T a theory, a formula ' is †Tn iff ' is equivalent over T
to a †n formula. So we mean that †BST

n is a much larger class than †;
n. For the most part, we will just need slight

weakenings of ZFC, but working in more generality will help later. In particular, †BST
1 is closed under existential

quantification: 9y 9x  for  being †0 is equivalent to 9z 9y 2 z 9x 2 z  by pairing in BST. Similarly, …BST
1 is

closed under universal quantification in addition to _ and ^.
7B • 7. Result

For each n < !, †BST
n is closed under existential quantification, disjunction, and conjunction.

…BST
n is closed under universal quantification, disjunction, and conjunction.

�BST
n is closed under bounded quantification, disjunction, conjunction, and negation.

To get more than this, we need more set theory. For example, in full ZFC, each †ZFC
n is closed under existential quan-

tification and both bounded quantifiers (and similarly for…ZFC
n and universal quantification). Showing this, however,

requires some complicated tricks better suited for the end of the chapter.

But these calculations give some partial absoluteness about cardinality and cofinality.
7B • 8. Result

Being a cardinal is…BST
1 and therefore downward absolute between models of BST.

� being singular is †BST
1 and therefore upward absolute between models of BST. Hence being regular is …BST

1 and
so downward absolute between models of BST.
Proof .:.

� being a cardinal is equivalent to being an ordinal (which is †0) and
“8x 8f .x 2 � ^ f is a function from x to � ! f is not bijective/„ ƒ‚ …

†0„ ƒ‚ …
…1„ ƒ‚ …

…BST
1

”.

The calculation above shows that this is equivalent over BST to a…1-formula.

� being singular is equivalent to there being an increasing function whose image is cofinal in � and whose domain
is an ordinal less than �:

“9x 9f .x < � ^ f is a function from x to � ^ f is increasing ^ imf is unbounded in �„ ƒ‚ …
†0

/

„ ƒ‚ …
†BST

1

” a

It should be noted that any T � BST also has these absoluteness results because T will prove the equivalences that
BST does. But we can do more of these kinds of calculations to get that ! is absolute when ! is in the model.

74



ABSOLUTENESS CH I §7C

7B • 9. Result
Finiteness is absolute between transitive models of BST.
Proof .:.

1. x D y [ ¹yº D y C 1 is an absolute relation.
2. x being a limit ordinal is equivalent to x being an ordinal (absolute between transitive models) and 8y 2
x .y [ ¹yº 2 x/, which is absolute by (1).

3. x being the least ordinal of a set of ordinalsX is absolute. To see this, the least ordinal ofX can be defined
by a †0-formula: x is the least ordinal of X iff x is an ordinal and x 2 X and 8y 2 X.yis an ordinal!
x D y _ x 2 y/, which is †0.

4. x being ! is the same as being the least ordinal in the class of limit ordinals (if there are any).
5. x being n < ! is just defined by iteratively considering (1).

x being finite is just to say that there is some n 2 ! with a bijection f W x ! n. This form is †BST
1 and thus

upward absolute between transitive models of BST. For downward absoluteness, suppose A � BST with x 2 A.
If x is really finite, then there is some n < ! where we can then write out that x D ¹x0; � � � ; xn�1º and so define
f by f D ¹hx0; 0i; � � � ; hxn�1; n � 1iº, just using a single †0-formula. Since n 2 A by pairing and union, it
follows by cartesian products and comprehension that f 2 A and thus f W x ! n is a bijection showing x is
finite in A. a

BST is mostly brought up because almost every model we would like to consider will be a model of it. With stronger
theories, like ZF, we get more absoluteness, and learn more about V.

§7C. Toy models for set theory

So far we’ve investigated the absoluteness between models of various fragments of set theory, but we haven’t given
many concrete examples of what these models look like. Firstly, the levels of the cumulative hierarchy serve as a nice
introduction to models of (fragments of) set theory. Just by their form, we immediately get some axioms holding in
them.

7C • 1. Result
Let ˛ 2 Ord. Therefore V˛ D hV˛;2i � BST � Pair � “the existence of cartesian products”.

Proof .:.

Extensionality, empty set, and foundation all hold by Corollary 7A • 3, because V˛ is transitive. It suffices by
Corollary 7A • 5 to show that V˛ is closed under pairing, unions, and subsets. But just by the rank argument
given in Result 4A • 10, x; y 2 V˛ implies x [ y 2 V˛ , and y � x 2 V˛ implies y 2 V˛ . In particular,
¹z 2 x W 'V˛ .z/º 2 V˛ . a

The issue with pairing and the existence of cartesian products is that they increase rank. Thus for V˛ to be closed under
these, ˛ should be a limit ordinal. If this is the case, then V˛ models much more than just BST. In particular, V˛ models
almost all of ZFC.

7C • 2. Result
Let ˛ be a limit ordinal. Therefore V˛ D hV˛;2i � ZFC � Rep � Inf.

Proof .:.

Recall that Vˇ � V for ˇ <  . Hence as a limit ordinal, VˇCn � V˛ for any ˇ < ˛ and n < !. Let x 2 V˛xC1

and y 2 V˛yC1 be arbitrary with ˛x ; ˛y < ˛.
• For Pair, x; y 2 Vmax.˛x ;˛y/C1 and thus ¹x; yº 2 Vmax.˛x ;˛y/C2. As a limit ordinal, ˛x ; ˛y < ˛ implies

max.˛x ; ˛y/C 2 < ˛ and thus ¹x; yº 2 V˛ . So by Corollary 7A • 5, V˛ � Pair.
V˛ satisfies Comp trivially, since any subset y � x 2 V˛xC1 (like y D ¹z 2 x W 'V˛ .z/º) has y � x �
V˛x

and thus y 2 V˛xC1 by definition of cumulative hierarchy. In fact, P .x/ 2 V˛xC2 � V˛ . So since
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P V˛ .x/ D P .x/ \ V˛ D P .x/, it follows that V˛ � P too.
• For Union, if x 2 V˛xC1, then rank.x/ > sup¹rank.y/C 1 W y 2 xº Hence y � V˛xC1 for each y 2 x.
Therefore

S
x � V˛xC1 and so

S
x 2 V˛xC2. By Corollary 7A • 5, V˛ � Union. As a result, the

existence of cartesian products holds, since x � y 2 P .P .P .x [ y/// 2 V˛ for each x; y 2 V˛ , and being
the cartesian product is absolute.

• For AC, for any non-empty family of non-empty, disjoint sets F 2 V˛ , there is a set C in V that has chosen
one element from each set in F . Note that C 2 P .

S
F / 2 V˛ so that C 2 V˛ . a

So by Corollary 7A • 5, since rank.!/ D !, V˛ � Inf whenever ˛ > ! is a limit. This should be taken to be evidence
of the consistency of ZFC; the two independent hurdles to this being the axiom of infinity, and replacement.

7C • 3. Corollary
Let ˛ > ! be a limit ordinal. Therefore V˛ � ZFC � Rep. Moreover, V! � ZFC � Inf, and in fact V! � :Inf.

Proof .:.

! 2 V˛ implies V˛ � ZFC � Rep by Result 7 C • 2 and Corollary 7A • 5. As for V! , note that every element
of V! is finite: by induction, V0 D ;, and jVnC1j D 2jVnjC1 is finite as well. Hence V! D

S
n<! Vn has no

infinite set in it and so V! � :Inf, as any set following such a definition would be infinite (in V).

To see that V! � Rep, suppose ' is a FOLp-formula that defines a function overD 2 V! , which is to say
V! � “8x 2 D 9Šy '.x; y/”.

We now wish to show that the image of ' is in V! . Note that in V, there is then a function f W D ! V! . As D
is finite, there is some finite subset R � V! with f W D ! R. As each r 2 R has rank nr < ! and R is finite, it
follows that the rank of R is max¹nr C 1 W r 2 Rº < ! and thus R 2 V! . Hence V! � Rep. a

Of course, by Gödel’s incompleteness theorem—assuming that ZFC is consistent—we can’t construct from ZFC alone
a model of ZFC, as this would imply ZFC ` Con.ZFC/. But the issues with replacement and the axiom of infinity can
be dealt with at the cost of the powerset axiom.

Note that in the proof of Corollary 7C • 3, the reason why replacement holds in V! is due to rank being bounded: the
domain is small enough, and so the outputs are bounded. If we could ensure that our toy model was “regular” in a
similar sense as withV! , we can ensure replacement holds. Tomake this idea precise, we have the following definition.

7C • 4. Definition
Let � � ℵ0 be a cardinal. Let H� be the set of hereditarily < �-sized sets defined by x 2 H� iff jxj < � and every
y 2 trcl.x/ has jyj < �.

To give a concrete example, V! D Hℵ0
by similar reasoning as in Corollary 7C • 3. There’s an alternative characteri-

zation of H� for regular �. For the most part, we will not be interested inH� for singular �, since it will not model as
much set theory as with regular cardinals.

7C • 5. Result
For � � ℵ0 a regular cardinal, x 2 H� iff j trcl.x/j < �.

Proof .:.

If j trcl.x/j < �, then clearly each y 2 trcl.x/ has jyj < � because the transitive closure is transitive: y � trcl.x/.
So suppose jxj < � and every y 2 trcl.x/ has jyj < �. Note that trcl.x/ D

S
n<

Sn
x. Clearly j

S0
xj D jxj <

�. Inductively, j
Sn

xj < � so that
SnC1

x D
S
.
Sn

x/ is the union of < �-many sets of size < �. As a regular
cardinal, it follows that this has size < �. Hence trcl.x/, being the union of countably many sets of size < �, has
size < �. a

Clearly H� � H� for � < �, and these are all transitive. Now just by it’s definition, it’s not clear that H� is a set. But
by dealing just with regular cardinals—for each singular cardinal �, H� � H�C—we can show that each H� is a set.
The proof of this is non-trivial, and we be the first real use of The Mostowski Collapse (4 • 1).
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7C • 6. Result
For � � ℵ0 a regular cardinal, H� � V� is a set.

Proof .:.

Let x 2 H� be arbitrary. Write T D trcl.x [ ¹xº/. Proceed by induction on rank to show every y 2 T has rank
less than �. For y D ;, this is obvious. For y of rank ˛ C 1 with ˛ < �, because � is a limit ordinal, ˛ C 1 < �
so y has rank < �.

For y of rank  a limit,  D sup¹rank.z/C 1 W z 2 yº. Note that jyj < �, and each rank.z/C 1 < � for z 2 y by
induction. In other words, we have a function from jyj < � to �. This is then bounded in �, because � is regular.
Hence  , being at most this bound, is less than �.

Thus each y 2 T has rank < �, and in particular, x 2 T has rank < �. Therefore H� � V� . a

Let’s now investigate how much set theory H� will satisfy. We of couse have the basics.
7C • 7. Lemma

Let � � ℵ0 be a regular cardinal. Therefore H� D hH� ;2i � BSTC Rep.

Proof .:.
• For Pair, note that trcl.¹x; yº/ D trcl.x/ [ trcl.y/ [ ¹x; yº by (4) of Result 4A • 5. So if x; y 2 H� , then
j trcl.¹x; yº/j < � C � C � D � and therefore ¹x; yº 2 H� .

• For Union, trcl.
S
x/ � trcl.x/ so if x 2 H� , then trcl.

S
x/ has size � j trcl.x/j < � and thus

S
x 2 H� .

• For Comp, since y � x implies trcl.y/ � trcl.x/, it follows that x 2 H� impies y 2 H� . Hence P .x/ � H� .
In particular, all definable subsets x are in H� , and thus H� � Comp.

• For replacement, we argue as with V! . Suppose ' defines a function from D 2 H� . We wish to show that
the image of ' under D, being R, is in H� . As each r 2 R has j trcl.r/j < � and jRj � jDj < �, it follows
that trcl.R/ D R [

S
r2R trcl.r/ has size < �, being the union of < �-many sets each of size < �. Therefore

R 2 H� so that H� � Rep.
• The existence of cartesian products follows from replacement. a

More than just basic set theory, we get all of the axioms, except perhaps for powerset. The issue with powerset is
Cantor’s Theorem (5B • 13): the powerset will have a higher cardinality. For example, Hℵ1

, the hereditarily countable
sets, will contain !, but P .!/ \ Hℵ1

D P .!/ will not be a set in Hℵ1
because it will be too large: jP .!/j � ℵ1.

Now as we’ve seen, Hℵ0
D V! � ZFC � Inf. With uncountable �, however, we gain Inf at the expense of P.

7C • 8. Theorem
Let � > ℵ0 be a regular cardinal. Therefore H� � ZFC � P.

Proof .:.

As trcl.!/ D ! < �, ! 2 H� so that H� � Inf. For AC, for any non-empty family F 2 H� of non-empty, disjoint
sets, a choice set C 2 V has C 2 P .

S
F / � H� so that C 2 H� . The rest follow from Lemma 7C • 7. a

As a result, if a regular cardinal � > ℵ0 has H� D V� , then V� � ZFC. So the existence of such � cannot be proven
to exist just within ZFC. Such axioms stating the existence of such � are effectively stronger axioms of infinity, since
ZFC � Inf cannot prove the existence of a model of ZFC � Inf although ZFC can. The analogy being that ZFC cannot
prove the existence of a model of ZFC although ZFCC LC (LC standing for “large cardinals”) can.

7C • 9. Definition
A cardinal � is weakly inaccessible iff � is regular and a limit cardinal: � < � implies �C < �.
A cardinal � is strongly inaccessible or just inaccessible iff � is regular and a strong limit cardinal: � < � implies
2� < �.

Note that being weakly or strongly inaccessible is downward absolute between models of ZF: being regular is down-

77



ABSOLUTENESS CH I §7D

ward absolute, and being a limit cardinal is equivalent to ¹˛ < � W j˛j D ˛º being unbounded in �, which is clearly
downward absolute. Similarly, being a strong limit is downward absolute between models of ZFC.

7C • 10. Corollary
Let � be strongly inaccessible. Therefore V� D H� and V� � ZFC.

Proof .:.

We already know that H� � V� since � is regular. So it suffices to show that V� � H� . Firstly, note that jV˛j < �
for ˛ < �. This is obvious for ˛ D 0. For ˛ < �, inductively jV˛j D � < � implies jV˛C1j D 2� < � as �
is strongly inaccessible. Similarly, if  < � is a limit, jV j D sup˛< jV˛j. Since  < � and inductively each
jV˛j < � for ˛ <  , this must have size jV j < � since � is regular.

But for any x 2 V˛C1 with ˛ < �, it follows that trcl.x/ 2 V˛C1 and thus j trcl.x/j � jV˛C1j < � and therefore
x 2 H� . By Theorem 7C • 8, all axioms of ZFC except possibly P are satisfied by V� D H� . By Result 7 C • 2, P
is satisfied too, and thus all axioms of ZFC. a

Weakly inaccessible cardinals will have their uses later: L� � ZFC for weakly inaccessible �, for example.

§7D. Reflection theorems

The levels of V are able to capture a lot of information about V itself. This idea generalizes to other classes M � V
that have a similar construction as the cumulative hierarchy.

7D • 1. Definition
A transitive class M is stratified iff there is a (class) function mapping ˛ 2 Ord to M˛ 2 V such that

• M D
S
˛2Ord M˛ and M D

S
˛< M for limit  ;

• ˛ � ˇ implies M˛ � Mˇ ;
• M˛ 2 M for each ˛ 2 Ord;
• Each M˛ is transitive.

Note that, for example V is stratified as witnessed by the cumulative hierarchy. Being stratified entails thatM satisfies
some weakenings of the axioms of ZFC. In particular, M might not satisfy comprehension. So whereas the following
axioms are equivalent to the usual axioms under the theory ¹Comp; Extº, they are weaker in its absence.

7D • 2. Definition
• (wPair) ¹x; yº � z for some z: 8x 8y 9z .x 2 z ^ y 2 z/.
• (wUnion)

S
F � z for some z: 8F 9U 8v .9x.x 2 F ^ v 2 x/! v 2 U/.

• (wP) for each x, P .x/ � z for some z: 8x 9P 8v .v � x ! v 2 P /.
• (wRep) the image of a function over a set is contained a set: for each FOL.2/-formula ',

8w0 � � � 8wn 8D
�
8x 2 D 9Šy '.x; y; Ew//! 9R 8x 2 D 9y 2 R '.x; y; Ew/

�
.

Writing wZFC for ZFC (and similarly wZF for ZF) replacing axioms with these weak versions, we have the following.
Note that wZFC is equivalent to ZFC in the sense that wZFC ` ' for each ' 2 ZFC and vice versa. But if we remove
axioms like comprehension—as we do below—then the resulting theories are not equivalent.

7D • 3. Result
If M is stratified, then M � wZF � Comp � Inf

Proof .:.

Extensionality, empty set, and foundation all hold by virtue of M being stratified.
• For wPair, if x; y 2 M, then x 2 M˛ and y 2 Mˇ for some ordinals ˛; ˇ 2 Ord. Therefore, as M˛;Mˇ �

Mmax.˛;ˇ/, we have x; y 2 Mmax.˛;ˇ/ 2 M witnessing the axiom.
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• For wUnion, if x 2 M, then x 2 M˛ for some ˛ 2 Ord and as a transitive set with x � M˛ ,
S
x �

trcl.x/ � M˛ and therefore M˛ 2 M witnesses the axiom.
• For wP, suppose x 2 M. For each y 2 P .x/ \M, let ˛y be the least ˛ with y 2 M˛ . In V, we can thus
consider the supremum ˇ D supy2P .x/\M ˛y . Hence P .x/ \M � Mˇ 2 M witnesses the axiom.

• For wRep, suppose ' defines a function in M on some D 2 M. For x 2 D, let ˛x be the least ˛ with
y 2 M˛ , where y is the output of x. By replacement in V, the supremum ˇ D supx2D ˛x < Ord. But then
Mˇ contains the pointwise output ofD. Therefore Mˇ 2 M witnesses the axiom. a

For any stratified M, we get that the levels of M reflect the truth of M itself. To show this, we need some restricted
versions of Tarski–Vaught Theorem (6A • 6).

7D • 4. Lemma
Let ' be a FOLp-formula andM0 �M be non-empty, transitive classes. Therefore the following are equivalent:

1. ' and all of its subformulas are absolute between M0 and M.
2. for each subformula of ' (possibly including ' itself) of the form “9y  .Ex; y/”, for all Ex 2M<! ,

9y 2M  M .Ex; y/! 9y 2M0  
M .Ex; y/.

Proof .:.

The same proof for Tarski–Vaught Theorem (6A • 6) applies to show that (1) implies (2).

So assume (2) holds. Proceeding by induction on subformulas, given a subformula  of ', we can assume each
proper subformula of is absolute betweenM0 andM. If is atomic or of the form “� ^ �” or “:�” then clearly
 is absolute between M0 and M.

So consider the subformula “9y  ”. Note that then  M iff  M0 by the inductive hypothesis. Therefore, 9y 2
M0  

M0 implies 9y 2 M0  
M and therefore 9y 2 M  M . By (2), the reverse implications hold. So we know

for any Em inM ,
M � “9y  . Em; y/” iff 9y 2M  M . Em; y/ iff 9y 2M0  

M0. Em; y/ a

This allows us to perform an induction on formulas so that when we close under the property of (2), we get absoluteness.
7D • 5. Theorem (The Reflection Principle)

Let M be stratified, and let ' be a FOLp-formula. Therefore, there are arbitrarily large ˛ 2 Ord where ' is absolute
between M and M˛ .

Proof .:.

Proceed by induction on ' to show the variant result that ' and all of its subformulas are absolute betweenM and
M˛ for arbitrarily large ˛ 2 Ord. For ' being “x D y” or “x 2 y”, this is obvious, as they are absolute between
all transitive models, which M and M˛ are. Similarly the propositional connectives are obvious assuming the
result holds of their subformulas.

Let ˇ 2 Ord be arbitrary. For each subformula of ' of the form “9y  ”, we will show there is an ˛ > ˇ where
M � “8Ex

�
9y  .Ex; y/! 9y 2M˛  .Ex; y/

�
”

and thus by (2) of Lemma 7D • 4, conclude that ' and its subformulas are absolute between M and M˛ .

For each subformula “9y  ” and Ex 2 M , let F .Ex/ be the least ordinal ˛ 2 Ord such that 9y 2 M˛  
M.Ex; y/

(if there is no such ordinal, set ˛ D 0). Such an ordinal¤ 0 will exist ifM � “9y  .Ex; y/”, since M is stratified.
So F points to a level where there is a witness to  .

For ˛ 2 Ord, consider
G.˛/ D sup¹F .Ex/ W Ex 2 M<!

˛ ^ “9y  ”is one of the existential subformulas of 'º.
This means that inM, every input in M has its witness to  M somewhere in MG./. So now we just continually
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apply G and then union up to get a model closed under this.

Take ˛0 > ˇ arbitrary. Let ˛nC1 D max.G.˛n/; ˛n C 1/ and set ˛ D supn<! ˛n. Clearly ˛ is a limit ordinal
and hence M˛ D

S
n<! M˛n

. But then any Ex 2 M<!
˛ has Ex 2 M<!

˛n
for some n < ! and therefore if there is a y

where  M.Ex; y/, there is a y in M˛nC1
. Therefore M˛ and M satisfy (2) of Lemma 7D • 4. Hence ' and all of its

subformulas are absolute between M˛ and M, and ˛ > ˇ. a

An alternative proof of The Reflection Principle (7D • 5) can be given by more combinatorial meansxxvii, but this is
not done here, since the relevant concepts will not be introduced until Chapter II. Note that The Reflection Principle
(7D • 5) is equivalent to the result holding for finitely many formulas ', as we can just take the single formula which
is the conjunction of the finitely many. In particular, we have the following.

7D • 6. Corollary
ZFC is not finitely axiomatizable: there is no finite set of FOL.2/-formulas T such that T ` ' iff ZFC ` '.

Proof .:.

For each model M � ZFC, the hierarchy VM
˛ witnesses that M is stratefied in M. If there were such a finite

collection, the conjunction of these finitely many formulas is a formula '. By The Reflection Principle (7D • 5)
inM, sinceM � ', there is some VM

˛ � ' and therefore VM
˛ � ZFC. Consider the (according toM) least ˛ 2 OrdM

where VM
˛ � '. By the same argument above, by the absoluteness of rank and thus the V˛s between transitive

submodels of M, there is some ˇ 2 VM
˛ where VV˛

ˇ
D VM

ˇ � ', contradicting the minimality of ˛ in M. a

The above corollary highlights an important idea regarding the relativity of transitivity. In principle, everything we’ve
done thus far has been in an arbitrary model of ZFC, and so the notions of “transitive”, “well-founded”, and so forth
are notions relative to this background model. In particular, for M � ZFC,

• A model N is transitive in M iff trclM.N / D N .
• A relation R is well-founded in M iff there is no m 2M with M � “8x 2 m 9y 2 m .y R x/”.

As we’ve seen, these can differ between different models of set theory. But the same absoluteness results above hold;
it’s just that they are restricted to transitive models of our given model rather than the more philosophically based notion
of V.

Corollary 7D • 6 also highlights an important distinction between a theorem and a theorem scheme. The Reflection
Principle (7D • 5) is a theorem scheme in that for each ', we get a different theorem. The Reflection Principle (7D • 5)
is not equivalent to any single formula by the same sort of reasoning as in Corollary 7D • 6. That said, we’re still
effectively working in an arbitrary model of ZFC, and so a coded version ofThe Reflection Principle (7D • 5) still holds
in an arbitrary model of ZFC, it’s just that the coded notion of “formula” etc. in a non-standard model may not agree
with the actual universe, just like well-foundedness.

In particular, if M has h!M;2Mi 6Š h!;2i, then M will have an n 2 !M that M thinks is a coded formula, but doesn’t
correspond to any real-world formula, because n isn’t even an actual natural number. For a more concrete example,
ZFC 6` Con.ZFC/ implies there are models of ZFC where :Con.ZFC/. In such a model M, the coded proof that
ZFC ` “' ^ :'” corresponds to one of these “natural numbers” of M, and not the code of an actual proof.

We can actually get a slightly stronger reflection theorem. Note that for � D Ord—and thus writing M� for M—this is
the same as The Reflection Principle (7D • 5).

7D • 7. Theorem (The Reflection Theorem)
Let M be stratified. Let � > ℵ0 be a regular cardinal (allowing for � D Ord). Let ' be a FOLp-formula. Therefore,
there are arbitrarily large ˛ < � where ' is absolute between M� and M˛ .

xxviiIn particular, each formula is absolute betweenM˛ andM on a club of ˛ 2 Ord. Since the intersection of two clubs is a club, the propositional
connectives are dealt with easily in the induction on formulas. The existential case “9x  ” can be dealt with by considering the map sending
parameters to the least ˇ with a witness in Mˇ . Taking the supremum of such ˇ s and then closing the club for under this yields another club that
gets the job done, similar to the approach taken above, but avoiding Lemma 7D • 4 at the cost of giving a background on clubs.
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Proof .:.

Proceed by induction on '. Let ˇ 2 Ord be arbitrary. As before, we only need to deal with the existential
subformulas of '. For each subformula of ' of the form “9y  ”, we will show there is an ˛ with ˇ < ˛ < �

where
“8Ex 2 M�

�
9y 2 M�  

M� .Ex; y/! 9y 2M˛  .Ex; y/
�
”.

For Ex 2 M , let F .Ex/ be the least ordinal ˛ < � such that 9y 2 M˛  
M� .Ex; y/ (if there is no such ordinal, set

˛ D 0). So F points to a level where there is a witness to  (if there is one). For ˛ < �, consider
G.˛/ D sup¹F .Ex/ W Ex 2 M<!

˛ ^ “9y  ”is one of the existential subformulas of 'º.
As before, we just continually apply G and then union up to get a model closed under this.

Take ˛0 to be arbitrary such that ˇ < ˛0 < �. Let ˛nC1 D max.G.˛n/; ˛n C 1/ and set ˛ D supn<! ˛n. As
cof.�/ > ! and inductively each ˛n < �, it follows that ˛ < �. Consider M˛ D

S
n<! M˛n

� M� . As before,
M˛ and M� satisfy (2) of Lemma 7D • 4. Hence ' and all of its subformulas are absolute between M˛ and M� ,
and � > ˛ > ˇ. a

The point of this will be to have the ability to take skolem hulls of the levels of a stratified model, and end up with
smaller models of the same statements. With The Reflection Principle (7D • 5), we can’t take a skolem hull of M and
expect it to be in the model of set theory, since M is a proper class, and not a set. But M� for � 2 Ord is a set, and so
we can take the skolem hull.

A useful result of The Reflection Principle (7D • 5) with Taking a Skolem Hull (6A • 2) gives the following.
7D • 8. Corollary

Let � � ZFC be a finite subset. Therefore there are countable, transitive models of �. In fact, for any hereditarily
countableM 2 Hℵ1

, there is a countable, transitive model M0 � � withM �M 0 2 Hℵ1
.

Proof .:.

Let trcl.M/ � Vˇ for some ˇ. SinceM 2 Hℵ1
, trcl.M/ is countable. ByThe Reflection Principle (7D • 5), there

is some ˛ > ˇ where V˛ � � iff V � �, meaning V˛ � �. By Corollary 6C • 2, cHullV˛ .trcl.M// is transitive,
countable, containsM , and satisfies �. a
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Section 8. The First Inner Models

We begin with the definition of an inner model. The general picture of an inner model is just a “skinny” version of the
background model V, where the class of all ordinals constitutes the “backbone” of the universe.

Ord M V

V1
V2

:::

V!

:::

8 • 1. Figure: An inner model
8 • 2. Definition

A class M � V is an inner model iff
• M is transitive;
• Ord � M; and
• M D hM;2i � ZFC

If we replace ZFC in the last condition with some theory T , we say M is an inner model of T .

So clearly V is an inner model. Moreover, as we’ve defined things, for any model W � ZFC � Found, WFW � W is
an inner model of ZFC. Of course, in V, both of these are just V. So these examples are not particularly illuminating
for us. The goal of this section is to introduce two more inner models: one of which is very rigid, and one of which is
very flexible.

Note that being an inner model is a scheme, and not a singular formula. It’s saying that Ord � M is transitive (a single
sentence) and that M � ' for each ' 2 ZFC (infinitely many sentences).

§8A. The constructible universe and definability

Recall that the levels of V were defined by iteratively taking the powerset operation. Gödel’s definition of the con-
structible universe, L, does the same, but restricts to subsets which are definable over the previous levels.

8A • 1. Definition
Let L D

S
˛<Ord L˛ where ˛ 7! L˛ is defined by transfinite recursion: L0 D ;, L D

S
˛< L˛ for  a limit, and

L˛C1 D ¹x 2 P .L˛/ W x is definable over hL˛;2iº.
Here, x being definable over L˛ means that there is a FOLp-formula '.y/ where L˛ � “'.y/” iff y 2 x.

Keep in mind that L˛ is usually not VL
˛ D V˛ \ L: the levels L˛ are formed in a fairly different way from the levels

V˛ \ L. It may be that to define a subset x of !, we need to talk about some really large ordinals, and so while
x 2 V!C1 \ L, we might not have x 2 L!C1. This is just a caution to not conflate the notation L˛ with VL

˛ .

The importance of L to set theory is hard to overstate. There are three main ideas why. Firstly, every transitive model of
enough set theory has an interpretation of L, and this interpretation is the same across all transitive models of ZF � P.
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Secondly, it’s the only model with this property, demonstrating a strong minimality condition. In fact, it’s defining
formula is so rigid that any transitive model elementarily equivalent to one of the L˛ levels is actually one of the L˛
levels. Thirdly, as a result of all of this, L is always the smallest inner model. And thus it can be seen as the transitive
model “generated” by the theory of ZFC. This is analogous to the situation with arithmetic, where N is the smallest
model of the peano axioms, PA, and so can be thought of as being generated by them.

To confirm all of this, we begin with showing that L � ZFC. First we will show that L is stratified, which gives a
great portion of set theory. Note that L˛ 2 L˛C1 as witnessed by the formula “x D x”. Furthermore, because we’re
allowing parameters, L˛ � Lˇ for ˛ � ˇ. One might think the only thing needed to confirm that L is stratified is that
each L˛ is transitive. But in fact, we need to ensure that the function taking ˛ to L˛ is definable: that L is a class.

To do this, we need to understand how to formalize definability within set theory. We know fromTheorem 6B • 6 that
we can do a lot of the work based on this in ZF, since we can look at the full powerset, and then restrict to those subsets
which have a first-order definition as per Theorem 6B • 6. But to help us later, it will be useful to work in ZF�P, which
requires instead a reliance on the replacement axiom. So rather than rely on Theorem 6B • 6, we will instead think of
closing a given set under operations corresponding to the logical operations.

8A • 2. Definition
Let A be a set. For n;m; k 2 !, define

• ExistsnA.D/ D ¹� 2 A
n W 9x 2 A .�_x 2 D/º;

• Membn;m;kA D ¹� 2 Ak W n;m 2 dom.�/ ^ �.n/ 2 �.m/º;
• Equaln;m;kA D ¹� 2 Ak W n;m 2 dom.�/ ^ �.n/ D �.m/º

Define FOL.A/ to be the closure of ¹Membn;mA ;Equaln;mA W n;m 2 !º under ExistsnA, intersections, and complements
in An for n < !.

Note that ExistsnA.D/ corresponds to the existential quantificatier while Membn;m;kA and Equaln;m;kA correspond to
membership and equality. Similarly, intersections correspond to conjunction. Complements correspond to negations.
Hence starting with the atomic formulas and closing under existential quantification, conjunction, and relative com-
plement, we get all of the first-order formulas, and this corresponds precisely to looking at their defined sets, closing
under these operations. Hence FOL.A/ corresponds to the FOL-defined subsets of A<! .

Note that we can define FOL.A/ by finitary recursion, just repeatedly applying the operations to the sets in the previous
stage, starting with the first stage of ¹Membn;mA ;Equaln;mA W n;m 2 !º. Thus without powerset, FOL.A/ exists.

8A • 3. Definition
Let A be a set. For � 2 An where n < !, define FOL� .A/ to be the closure of FOL.A/ under the operations of
Definition 8A • 2 and the operation

Param�
A.D/ D ¹� 2 A

n
W �_� 2 Dº.

Define FOLp.A/ to be
S
�2A<! FOL� .A/, the set of all subsets of A<! that are FOLp-definable.xxviii

As before, in ZF � P, FOLp.A/ exists.
8A • 4. Corollary

The function ˛ 7! L˛ is definable, and hence L is a class: x 2 L iff 9˛ 2 Ord.x 2 L˛/.

Proof .:.

Using Definition 8A • 3 we can talk about which sets are FOLp-definable over L˛ . So we can define recursively
x D L˛ iff there exists a function L with dom.L/ D ˛ C 1 and L.˛/ D x such that

• L.0/ D ;;

xxviiiIn principle, we should be a bit careful arguing about FOLp.A/ as the FOLp-definable subsets of A, since FOLp.A/ is a formally defined
concept that may not mesh with the real world notions. For example, in model with a non-standard !, it's not immediately obvious that all “finite”
subsets of A are in FOLp.A/, even though all the actual finite subsets are. The proof that all the subsets of size < !M are in FOLpM.A/ for any
M is a bit tedious, going through the details of FOLp.A/ being defined as a closure of certain operations. It is not particularly difficult, but it is not
particularly enlightening, and doesn't serve to help understand the general ideas.
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• for every ˇ < ˛, L.ˇ C 1/ D ¹y 2 FOLp.L.ˇ// W y � Lˇ º.
• for every limit ordinal  � ˛, L./ D

S
ˇ< L.ˇ/. a

Now we can show that L is stratified, and hence get a large portion of ZFC by Result 7D • 3
8A • 5. Lemma

For each ˛ 2 Ord, L˛ is transitive, and hence L is stratified.

Proof .:.

Proceed by induction on ˛. For ˛ D 0, L0 D ; is obviously transitive. For ˛ C 1, each x 2 L˛C1 is a subset of
L˛ . Clearly each a 2 L˛ is in L˛C1 defined by the FOLp-formula “y 2 a”: a D ¹y 2 L˛ W y 2 aº 2 FOLp.L˛/.
Hence x � L˛ � L˛C1. The result for limits holds clearly by the inductive hypothesis. a

Thus by Result 7D • 3, L � wZF � Comp � Inf. To confirm that L � Inf, we will show Ord � L and thus ! 2 L
showing Inf holds by Corollary 7A • 5.

8A • 6. Lemma
Ord � L so that L � Inf.

Proof .:.

We show by induction that ˛ 2 L˛C1 n L˛ . For ˛ D 0, L0 D ;. Since L˛ 2 L˛C1 for each ˛, it follows that
0 2 L0C1 D L1 n L0. Inductively, ˛ 2 L˛C1 n L˛ . Therefore ˛ C 1 D ˛ [ ¹˛º � L˛C1 is FOLp-definable over
L˛C1 by “x < ˛ _ x D ˛”, showing ˛C1 2 L˛C2. Since ˛ … L˛C1, ˛C1 … L˛C1 so that ˛C1 2 L˛C2 nL˛C1.
This deals with the successor case.

For the limit case, the inductive hypothesis tells us that ˛ � L˛ and that ˛ is the least ordinal not in L˛ (˛ … Lˇ
for any ˇ < ˛ as otherwise this would imply by transitivity of Lˇ that ˇ 2 Lˇ ). Therefore ˛ is definable over L˛
by “x is an ordinal”. Hence ˛ 2 L˛C1. Hence each ordinal ˛ is in L˛C1 � L so that Ord � L. a

Hence we only need to show that comprehension and choice hold in L. To do this, we use Corollary 7A • 5.
8A • 7. Theorem

L � Comp and therefore L is an inner model of ZF.

Proof .:.

Let ' be arbitrary. We want to show that for each A 2 L, A' D ¹x 2 A W 'L.x/º 2 L. To see this, note that
A 2 L˛ for some ˛ 2 Ord. Note that there are arbitrarily large ˇ 2 Ord where ' is absolute between L and L˛
by The Reflection Principle (7D • 5). In particular, there is some Lˇ where A 2 Lˇ , and 8x .'Lˇ .x/$ 'L.x//.
As a result, ' defines A' over Lˇ and thus A' 2 LˇC1 � L. Therefore, L � Comp so that L � wZF. As wZF is
equivalent to ZF, L � ZF. a

So all that remains is the axiom of choice. Note that all of the above work on L didn’t use the axiom of choice. So if
we were to start in a universe W � ZFC:AC, we would still have hLW;2Wi � ZFC. The basic idea behind the proof
is to well-order all of the sets in L according to the formulas that defined the sets.xxix

8A • 8. Theorem
L is an inner model of ZFC.
Proof .:.

It suffices to show L � AC. For each x 2 L, write ˛x for the least ˛ where x 2 L˛xC1. Well-order the (codes
of the) FOL.2/-formulas with 6lex as in Definition 6B • 2. For each x 2 F let 'x be the (code of the) 6lex-

xxixAgain, formally, we would do this by ordering them by the lexicographically least sequence of operations that yield the element to be in L. We
are merely thinking of this sequence of operations as a formula built up by the corresponding syntactic operations.
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least formula which defines x over L˛x
for some parameters Ewx of L˛x

. Now define by recursion the order
<L˛
� L˛ � L˛ by taking <L0

D ;, and <L
D
S
˛< <˛ for  a limit, and x <L˛C1

y iff
1. x; y 2 L˛ and x <L˛

y; or else
2. ˛x < ˛y ; or else
3. “'x” <lex “'y”; or else
4. Ewx <lex Ewy under the <L˛

-order.
It follows by induction and Lemma 6B • 3 that each <L˛

is a well-order of L˛ . In fact, <L˛
2 L˛C! , because the

notions above are all easily definable.

So let F 2 L be a non-empty family of non-empty, disjoint sets. Note that F � L˛ for some ˛. Consider
C D ¹y 2

[
F W 9x 2 F.y is the <L˛

-least element of x/º.
It follows that C is a choice set for F , and is in L. Thus L � AC. a

§8B. L as a canonical inner model

As stated before, L hasmany “canonicity” properties. In particular, it has a strongminimality condition, being contained
(up to a given height) in any transitive model of ZF�P. As a result, it’s the smallest inner model, and is determined by
its theory. We state these three facts as follows. Firstly, we have the absoluteness of L, leading to L being the smallest
inner model.

8B • 1. Theorem (Absoluteness of L)
For any transitive model M � ZF � P, writing LOrd for L;

1. For each ˛ 2 Ord \M, L˛ � M.
2. LM D LOrd\M.

In particular, LL D L. In fact, if Ord � M, then all of L is contained in M.
8B • 2. Corollary (Smallest Inner Model)

L � M for any inner model M of ZF � P.

Next, since we can write “V D L” as a FOL.2/-sentence, considering it as an axiom yields the following.
8B • 3. Theorem (Condensation)

Suppose M � ZF � PC “V D L” whereM is transitive. Therefore M D LOrd\M.

This theorem can be strengthened significantly, although we will prove stronger versions later. In particular, ifM 4†1

L˛ for some ˛ 2 Ord or ˛ D Ord, thenM Š Lˇ for some ˇ � ˛. Here “4†1
” refers to being an elementary substructure

with respect to †1-formulas.

To show the above results, we need to show the absoluteness of the construction of L. Firstly, note the following
absoluteness result.

8B • 4. Lemma
“y D FOLp.x/” is absolute between transitive models of ZF � P.

Proof .:.

This follows since the closure of a set under these operations is given by recursion. Given that each of the
operations is clearly absolute, it follows that the output of this is absolute by Theorem 7B • 4. a

Proof of Absoluteness of L (8 B • 1) .:.

Proceed by induction on ˛ to show LM
˛ D L˛ and thus L˛ � M for ˛ 2 Ord \ M. Clearly, for ˛ D 0,

L˛ D ; 2 M. Similarly, by the absoluteness of unions and the inductive hypothesis, for limit  2 Ord \ M,
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LM
 D

S
˛< LM

˛ D
S
˛< L˛ D L . For the successor stage ˛ C 1, Lemma 8B • 4 tells us that LM

˛C1 D

FOLpM.LM
˛ / D FOLp.L˛/ D L˛C1. Hence L˛ 2 M for each ˛ 2 Ord \M.

We have LM D
S
˛2Ord\M LM

˛ D
S
˛2Ord\M L˛ D LOrd\M � M. In particular, for M an inner model, LM D L �

M. a

This shows the first two canonical properties of L: Absoluteness of L (8 B • 1) and Smallest Inner Model (8 B • 2). To
show the third, Condensation (8B • 3), we first should note that the sentence “V D L” does indeed exist, being defined
through FOLp: for every x there is an ordinal ˛ such that some function L defined on ˛ C 1 has x 2 L.˛/ and
L satisfies the properties as laid out by Corollary 8A • 4. More succinctly, “8x 9˛ 2 Ord .x 2 L˛/”. The proof of
condensation is easy given these first two properties.

Proof of Condensation (8 B • 3) .:.

Since M � “V D L”, M D VM D LM D LM\Ord by Absoluteness of L (8 B • 1). a

Being such a minimal model allows us to say more about absoluteness.
8B • 5. Theorem

Suppose ' is upward absolute between inner models of ZF � P. Suppose L � '. Therefore ' is absolute between
inner models of ZF � P.
Proof .:.

Suppose M � ZF � P. Therefore LM D LOrd\M D L � M has L � '. By upward absoluteness, M � '. a

If absoluteness is generally regarded as ' $ 'M being true for all appropriateM, the above tells us that this is equivalent
to 'L $ 'M for all appropriate M � ZF � P.

§8C. Applications and properties of L

The importance of Condensation (8B • 3) comes from its use with Taking a Skolem Hull (6A • 2) in the form of Corol-
lary 6C • 2. In particular, since any skolem hull is elementarily equivalent to a level of L, when we collapse it, it
becomes a level of L.

If we investigate further the levels of L, we get some quick examples of models of “V D L”. Note that the levels of L,
although defined similarly, develop differently to the levels of V. In particular, V˛ ¤ L˛ in general, even if we assume
V D L. An easy example of this is that in ZFC, P .!/ � V!C1, meaning jV!C1j � 2

ℵ0 > ℵ0. But L!C1 has only
countably many new elements, corresponding to the defining formulas and parameters.xxx Hence jL!C1j D ℵ0. So the
point is that subsets of ! don’t appear in L!C1. In particular, one should not make the mistake of thinking VL

˛ D L˛ .
This is (almost always) false.

8C • 1. Lemma
Let ˛ � !. Therefore jL˛j D j˛j.

Proof .:.

Proceed by induction on ˛. For ˛ D !, this is clear as L! is the countable union of sets, each of which is countable
by induction: L0 D ; is clearly countable, and LnC1 � P .Ln/ which is also finite for n < !. For ˛ C 1, L˛C1

is the closure of L˛ under countably many operations and is thus jL˛C1j � jL˛j � ℵ0. Since clearly ! � L˛ for
˛ � ! and L˛ � L˛C1, it follows that the reverse inequality holds and in fact jL˛C1j D jL˛j D j˛j D j˛ C 1j.

xxxMore formally, it's the closure of L! under countably many operations, and hence adds only countably many elements.
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For limit  , jL j D
ˇ̌̌S

˛< L˛
ˇ̌̌
� j j � sup˛< jL j D j j � sup˛< j˛j D j j. a

This allows us to more precisely understand what the levels of L look like.
8C • 2. Result

Let � > ℵ0 be a regular cardinal. Therefore L� � ZFC � PC “V D L”.

Proof .:.

Once we show L� � ZF � P, by absoluteness, LL� D L� D VL� so that L� � “V D L”. So let x; y 2 L� be
arbitrary. Thus x 2 L˛ and y 2 Lˇ for some ˛; ˇ < �.

• For Pair, assume without loss of generality that ˛ < ˇ. Thus x; y 2 Lˇ and so ¹x; yº 2 LˇC1.
• For Union,

S
x � trcl.x/ � L˛ and thus

S
x 2 L˛C1 as it is easily definable.

• For Comp, use The Reflection Theorem (7D • 7). In particular, the same proof as Theorem 8A • 7 applies
to show L� � Comp: for each ', there are arbitrarily large  < � (e.g.  > ˛ where x 2 L˛) where ' is
absolute between L and L� . Therefore in LC1, the set defined by comprehension, ¹z 2 x W 'L� º D ¹z 2

x W 'L º 2 LC1 � L� .
• For wRep, suppose D 2 L� , ' is a FOLp-formula, and that L� � “8x 2 D 9Šy '.x; y/”. We need to find
an R 2 L� such that every x 2 D has a y 2 R with 'L� .x; y/. SayD 2 L˛ so that jDj � jL˛j D j˛j < �.
Thus the L-ranks of the image of D should be bounded in L� . Explicitly, consider the function f 2 L
defined by 'L� on D. Note that as f W L� ! L� , imf � L� . Let  D sup¹x C 1 W f .x/ 2 LxC1º.
Because � is regular and jDj � jL˛j D j˛j < �, we have that  < �. Hence imf � L and thus L
witnesses the axiom of wRep for ' andD. Comprehension then gives Rep.

• For AC, the definition of <L�
in Theorem 8A • 8 yields a definable well-order of all of L� . Hence for any

non-empty family F of non-empty, disjoint sets in L� , F � L˛ for some ˛ < � so that the <L˛
-least (i.e.

the <L�
-least) element of each x 2 F yields a choice set just as in Theorem 8A • 8. a

8C • 3. Corollary
If L � “� > ! is a cardinal”, then L� � ZFC � PC “V D L”.

Proof .:.

If ZFC ` “� > ℵ0 is regular! 'L�” for each ' of ZF�PC “V D L”, then in particular, ZFCC “V D L” proves
this. But then ZFC proves each relativization to L, i.e. if “.� > ℵ0 is regular/L” then .'L� /L which is just 'L� .a

One of the more important corollaries of Result 8 C • 2 and Condensation (8B • 3) is what happens when we take skolem
hulls.

8C • 4. Corollary
Let � > ℵ0 be a regular cardinal. Let X � L� . Therefore the collapsed skolem hull cHullL� .X/ D L˛ for some
˛ < �. Moreover, if X is transitive, then X � cHullL� .X/.

Proof .:.

By The Mostowski Collapse (4 • 1), the collapsed hull models “V D L”:
cHullL� .X/ Š HullL� .X/ 4 L� � ZFC � PC “V D L”.

Hence by Condensation (8B • 3), cHullL� .X/ D L˛ for some ˛. As HullL� .X/ � L� , ˛ can be calculated as
˛ D Ord \ cHullL� .X/ � �.

Thus it suffices to show X � cHullL� .X/ when X is transitive. To do this, we show that the collapsing map fixes
X . Let � W HullL� .X/ ! cHullL� .X/ be the collapsing isomorphism, defined inductively by �.x/ D ¹�.y/ W
y 2 xº. We show that �.x/ D x for each x 2 X . Suppose not. Let x 2 X be the 2-least element of X where
�.x/ ¤ x. Thus �.x/ D ¹�.y/ W y 2 xº. As x � X , it follows by minimality that each y 2 x has �.y/ D y
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and hence �.x/ D ¹y W y 2 xº D x. a

Now so far, we’ve been investigating and developing this theory for seemingly no reason. But an important application
of this Corollary 8C • 4 gives the relative consistency of lots of combinatorial principles. For now, we just show that
the generalized continuum hypothesis (GCH) holds: 2� D �C for infinite cardinals �. Recall from Cantor’s Theorem
(5B • 13) (and Result 5D • 6) that we only know 2� � �C. From the method of forcing (which hasn’t been introduced
here), 2� can consistently be any cardinal of cofinality > �. So L thinks 2� is as small as it can possibly be all of the
time.

The general idea behind the proof is that all of the subsets of � appear by stage L�C . Recall that although � 2 L�C1,
not every subset of � in L may appear at stage L�C2, unlike V where � 2 V�C1 but P .�/ 2 V�C2.

8C • 5. Theorem
L � GCH, meaning L � “8� .j�j D � � ℵ0 ! 2� D �C/”.

Proof .:.

Argue in a model of “V D L” to suppress so many superscripts of L. Let � � ℵ0 be a cardinal, and let x 2 P .�/
be arbitrary so that x 2 L˛ for some ˛ 2 Ord. Let � be a regular cardinal larger than max.�; ˛/ (for example, � D
max.�C; j˛jC/works, but we just need it to be regular and sufficiently large). Therefore L� � ZF�PC“V D L”.

LetH D cHullL� .¹xº [ �/ so thatH D L˛ for some ˛ < � . As jH j � ℵ0 � j� [ ¹xºj D �, it follows by Lemma
8C • 1 that ˛ � �C. Note also that � [ ¹xº is transitive, so that � [ ¹xº � H by Corollary 8C • 4. In particular,
x 2 L˛ � L�C . As x 2 P .�/ was arbitrary, P .�/ � L�C and therefore 2� � jL�C j D �C. By Cantor’s Theorem
(5B • 13), �C � 2� and thus we have equality. a

Note that this shows there is no hope of proving the consistency of:GCH from ZFCwith our current methods: trying to
define an inner model with this true in it. Any attempts to define a classC by a formula ' to show ZFC ` ZFCC

C:GCHC

would also need to have ZFC C “V D L” ` ZFCC
C :GCHC. But as the smallest inner model, any model M �

ZFCC “V D L” has by absoluteness of L,
LM
D LCM

� CM
� M D LM

and thus would have C D LM � :GCH, a contradiction.

The regularity property of GCH in L is also manifested in another regularity property in the levels of L, as suggested
by the fact that both HL

� and L� model ZFC � P.
8C • 6. Result

Let � > ℵ0 be a regular cardinal. Therefore L� D HL
� .

Proof .:.

Suppose x 2 L� . It suffices to show that L � “j trcl.x/j < �”. As a limit ordinal, x 2 L˛ for some ˛ < �

and thus trcl.x/ � L˛ by transitivity. Without loss of generality, we can assume ˛ � ! so by Lemma 8C • 1,
j trcl.x/j � jL˛j D j˛j < � and therefore x 2 HL

� so that L� � HL
� .

So now we consider x 2 HL
� . Note that trcl.x/ [ ¹xº 2 L˛ for some ˛ 2 Ord. Let � > ˛ be a regular

cardinal (which is then regular in L). Consider the skolem hull H D cHullL� .trcl.x/ [ ¹xº/ which then has size
jH j � ℵ0 � j trcl.x/ [ ¹xºj < �. By Condensation (8B • 3), H D Lˇ for some ˇ. In fact, since ˇ D Ord \H
and jH j < �, ˇ < �. Moreover, Corollary 8C • 4 implies that, as a transitive set, trcl.x/ [ ¹xº � H is left
uncollapsed. Hence trcl.x/ [ ¹xº 2 Lˇ � L� . In particular, x 2 L� and thus HL

� D L� . a

In combination with Corollary 7C • 10, this shows that weakly inaccessible cardinals yield set models of ZFC.
8C • 7. Theorem

Let � be weakly inaccessible. Therefore L� � ZFC.
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Proof .:.

Any weakly inaccessible cardinal is regular so that L� D HL
� . By GCH in L, � being weakly inaccessible is the

same as � being strongly inaccessible. Therefore, L � “'H�” and so 'L� for each ' of ZFC. a

8C • 8. Corollary
If � is (strongly or weakly) inaccessible, then there is a countable, transitive model of ZFC.

Proof .:.

L� is a model of ZFC so that cHullL� .;/ � ZFC and is countable. a

Note that The Reflection Principle (7D • 5) tells us that every finite fragment of ZFC has a countable transitive model,
but it’s not provable in ZFC that there is a countable, transitive model of the entirety of ZFC, as this would imply
ZFC ` Con.ZFC/, contradicting Gödel’s incompleteness theorems.

As a final note about L for this section, the ordering <L D
S
˛2Ord<L˛

described in Theorem 8A • 8 is definable, and
is a well-order of all of L. So L � AC just because there of a much stronger principle holding: the existence of a global
well-order. This is stronger than mere AC, which says there is a well-order of each individual set, but perhaps not of the
entire universe, a proper class. Next, we will investigate what happens when there is a definable global well-order in
general. This yields another inner model HOD. Of course, it’s consistent that “HOD D L” holds, since any definable
inner model contained L must be L itself by Absoluteness of L (8 B • 1): L D LHODL

� HODL
� L.

§8D. Hereditarily ordinal definable sets

Whereas L is a very rigid inner model by Condensation (8B • 3), the next inner model we will consider will be very
flexible. It is so flexible, in fact, that V D HOD might be false in HOD, which is to say HODHOD might not be
HOD. Consistently, for any countable, transitive W � ZFC, there is a U with W an inner model of U such that
U � “W D HOD”. So no matter where we start, it’s consistent we’re starting from HOD of a larger model. We
begin—as with L—with the closure under definability.

Recall that we needed the clumsy closure definition of definability from Definition 8A • 2 because we wanted to work
with models of ZF�P to ensure the absoluteness of L, and in particular to get Corollary 8C • 4. For HOD, we have no
such interest, because HOD is so flexible, even under full ZFC. So we will use P with the ostensibly more complicated
formula from Theorem 6B • 6, defining what it means to have A � ' for A a set.xxxi

8D • 1. Definition
A set x is ordinal definable or OD iff there is an ˛ 2 Ord such that for some (coded) formula ' 2 .! t ¹2º/<! and
parameters Ě 2 Ord \ V˛ , V˛ � “8y .'. Ě; y/$ x D y/”.

The reason for taking a level of V is just to make the definition more concrete: using The Reflection Principle (7D • 5),
x is ordinal definable iff there is a formula with only ordinal parameters such that x is defined by this formula.xxxii

And of course, every set which is ordinal definable over V˛ (using parameters Ě) is ordinal definable over V using the
ordinals Ě and now with ˛.

8D • 2. Corollary
For '. Ew; x/ a FOL.2/-formula, ZF ` 8Ę 2 Ord 8x .8y .x D y $ '. Ę; y//! x 2 OD/.

xxxiNote there that for finite signatures, ' can be regarded as a sequence of natural numbers where each number corresponds to a symbol. This makes
the formal definition of satisfaction and definability more complicated, but dramatically simplifies the presentation. In particular, when quantifying
over “formulas” of any given model, we're quantifying over elements of ! where the sequence hn0; � � � ; nmi 2 !<! is encoded by the number
2n0C13n0C1 � � �p

nmC1
m 2 ! where pm is themth prime number of ! starting with p0 D 2.

xxxiiOf course, as with other issues about definability, we should be slightly careful about this. If a model of ZFC misinterprets !, then it will have
formulas that are not actual (coded) formulas. The issue is, as before, trying to identify the real world formulas with the formulas of the model. All
real world formulas yield formulas of the model, but there may be formulas of the model that are not actual formulas.
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Note further some immediate consequences of this definition.
• Ord � OD;
• x; y 2 OD implies ¹x; yº 2 OD;
• x 2 OD implies P .x/ 2 OD.
• V˛ 2 OD for each ˛ 2 Ord, as it is definable from ˛.

Now, unfortunately, OD might not be transitive (otherwise V D
S
˛2Ord V˛ � OD � V implies that every set is

ordinal definable). To counteract this issue, we bring in the concept of begin hereditarily ordinal definable. Then we
can confirm the other axioms of ZFC, as the resulting class will be transitive, allowing us to use results from Section 7.

8D • 3. Definition
The class HOD of hereditarily ordinal definable sets consists of all sets x such that x 2 OD and trcl.x/ � OD.

One consequence of this is that if x � HOD and x 2 OD then x 2 HOD.
8D • 4. Corollary

HOD is a transitive class.

Note how this reflects the idea of “hereditarily” as in Definition 7C • 4. There are two basic ideas about HOD that we
care about:

1. HOD � ZFC; and
2. M D HOD iff there is a definable, global well-order of M over M.

First we define what a global well-order is.
8D • 5. Definition

A class well-ordering (definable in V) of a class C is a class 4 � C�C defined over V by some FOLp.2/-formula '
such that every non-empty X 2 C has a 4-least element.
A definable, global well-order of V is a class well-order (definable in V) of V.

Clearly if a class C has a well-order (definable in V) 4, then V can uniformly get choice sets for sets in C just by
considering the 4-least elements in whatever non-empty family of non-empty, disjoint sets. Note that HOD has such
a well-order defined according to the defining formula and ordinal parameters used to define its members.

8D • 6. Lemma
There is a (definable in V) class well-ordering of OD. Moreover, all initial segments of this well-ordering are sets.

Proof .:.

Consider theGödel ordering of<Ord<! on finite sequences of ordinals where h˛1; � � � ; ˛ni <Ord<! hˇ1; � � � ; ˇmi

for n;m 2 ! iff
• max. Ę/ < max. Ě/; or else
• n < m; or else
• Ę <lex Ě.

It should be clear that <Ord<! is well-founded, and seeing that it’s linear isn’t difficult. Hence <Ord<! is a well-
order. It should also be clear that for any particular Ę, all <Ord<! -predecessors of Ę are contained in .max. Ę/C
1/<! , and thus the initial segments of <Ord<! are sets.

As a result, define the ordering 4OD on OD by taking x 4OD y iff
• the least ˛ where x is OD in V˛ is less than the least for y; or else
• the <Ord<! -least set of parameters used to define x in this V˛ <Ord<! -precedes those for y; or else
• the formula ' used to define x with those parameters in V˛ <lex-precedes that formula for y.

It should be clear that this yields a well-ordering of OD. a

As HOD � OD, we have the following.
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8D • 7. Corollary
HOD has a well-order definable over V and thus HOD � AC.
Proof .:.

Using <OD, if F 2 HOD is a non-empty family of non-empty, disjoint sets, then let F be defined by  in V˛
with ordinal parameters Ě. In V, we can then consider the <OD-least elements of x 2 F : z 2 C iff 9x 9F 0 .x 2

F 0 ^  V˛ . Ě; F 0/ ^ z 2 x is <OD -least/. Note that then C 2 HOD, which shows that HOD � AC. a

Now we can confirm HOD � ZFC. Note that HOD is, of course, non-empty as Ord � HOD. The majority of the proof
of this comes down to coming up with a definition to show that whatever set we’re interested in x has x 2 OD and
x � HOD, implying that x 2 HOD because trcl.x [ ¹xº/ 2 OD.

8D • 8. Theorem
HOD � ZFC, and therefore HOD is an inner model.

Proof .:.

Let x; y 2 HOD as witnessed by  x and  y with parameters Ęx and Ęy in Vx
and Vy

respectively: x 2 Vx

is such that Vx
� “8z .'. Ęx ; z/$ x D z/”, and similarly for y.

• As usual, extensionality, empty set, and foundation follow from HOD being a (non-empty) transitive class.
• For Pair, note that ¹x; yº is OD defined by z 2 ¹x; yº iff Vx

� “ x. Ęx ; z/” _ Vy
� “ y. Ęy ; z/”.

This formula has parameters Ęx , Ęy , x , and y so that ¹x; yº 2 OD and therefore ¹x; yº 2 HOD as
trcl.¹x; yº/ D trcl.x/ [ trcl.y/ [ ¹x; yº � HOD.

• For Union, the union
S
x is defined by z 2

S
x iff Vx

� “9y 9x0. x. Ęx ; x
0/ ^ y 2 x0 ^ z 2 y/”. ThusS

x is OD. As trcl.
S
x/ � trcl.x/ � HOD, it follows that

S
x 2 HOD.

• For Comp, let '. Ew; z/ be arbitrary. We want to show x' D ¹z 2 x W '
HOD.Et; x; z/º 2 HOD for each

Et 2 HOD<! . Note that x' can be defined in V by
v D x' iff 8z

�
z 2 v $ 9 Ew 9x0

�
Ew D Et ^ Vx

� “ . Ę; x0/” ^ 'HOD. Ew; x0; z/
��
,

where by Ew D Et we really mean the conjunction of “wi is the unique element satisfying the defining formula
for ti with the corresponding parameters in the corresponding level of V” for each i . As a result, x' is OD
and so trcl.x'/ � trcl.x/ � HOD implies x' 2 HOD.

For P and Rep, first note that VxC1 \ HOD 2 HOD. To see this, because VxC1 \ HOD � HOD, it suffices to
showVxC1\HOD 2 OD. Every element z ofVxC1\HOD is such that trcl.¹zº/ � OD. So let ˇ be sufficiently
large such that every element of VxC1 is ordinal definable over Vˇ . Thus for all z, z 2 VxC1 \ HOD iff

z � Vx
^ 8s 2 trcl.¹zº/ 9' 9 Ew 2 Ord<!8t .t 2 s $ Vˇ � “'.t; Ew/”/.

In other words, z 2 VxC1 \ HOD iff z � Vx
and every s 2 trcl.¹zº/ is ordinal definable over Vˇ . The only

parameters in the above definition are x ; ˇ 2 Ord, and so VxC1 \ HOD 2 OD and hence in HOD.
• For P, note that P .x/ \ HOD � VxC1 \ HOD 2 HOD. This implies wP. By Comp, P holds.
• For Rep, let  define in HOD a function over x 2 HOD. Let ˛ 2 Ord be such V˛ contains the range of the
function defined by  HOD over x. Since V˛ \ HOD 2 HOD, this witnesses wRep. Therefore by Comp,
Rep holds. a

Therefore, as L is the smallest inner model, we have that L is its own HOD.
8D • 9. Corollary

L D HODL and thus L � “L D HOD”.

The issue with asking questions of HOD in general is due to its highly non-constructive nature: a subset of something
(relatively) small like ! might need parameters in V˛ for extremely large ˛ to be defined, for example. In this sense,
HOD requires knowing about all of the sets of V. And this is the general idea why HODHOD might not be HOD. More
precisely, because the V˛s are not absolute between inner models, being ordinal definable is not absolute.
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So far we have shown HOD � ZFC, and V D HOD implies V has a definable, global well-order, because V D HOD
is clearly equivalent to V D OD, which provably has a definable, global well-order. Our final goal for this section is
then to show the converse: if V has a definable, global well-order, then V D HOD.

8D • 10. Theorem
Let ' be a FOL.2/-formula. Suppose 4, defined by x 4 y iff '.x; y/, is a global well-order of V. Therefore
V D HOD.
Proof .:.

By Lemma 4 • 3, there is a FOL-definable (class) function f W V ! Ord where f .x/ is the rank of x in hV;4i.
But then x is definable from the ordinal f .x/. In particular, if f .x/ D y is defined by  .x; y/, then z D x iff
 .z; ˛/ for ˛ D f .x/. Hence V D OD and therefore trcl.x [ ¹xº/ � OD automatically. Thus V D HOD. a

8D • 11. Corollary
V D HOD iff there is a FOLp-definable, global well-order.

Proof .:.

One direction was just proven inTheorem 8D • 10. If V D HOD, then since V has a class well order of HOD D V
definable in V, there is a global well-order. a

So how is it possible for HODHOD to not be HOD? Ostensibly, HOD has a definable, global well-order by virtue of
the one from V and thus HOD � “V D HOD”, i.e. HOD D HODHOD. The issue is that this definable well-order is not
absolute, because it depends on the levels of V rather than the levels of HOD. Again, because HODHOD has lost the
information about the other sets in V, we don’t know that the definition for the global well-order still yields a global
well-order. We only have HOD D HODHOD if this (or some other) global well order is definable over HOD, not V.
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Section 9. Variants of the Axioms

There are many propositions ostensibly stronger than other axioms, but turn out to be equivalent to the rest of ZFC. We
detail some of these proposals, as well as some variant axioms that are actual weakenings of other axioms.

§9A. Equivalents of the axiom of choice

Recall the official definition of AC.
9A • 1. Definition (Axiom)

(AC) for any family of non-empty family of disjoint sets F , there is a set C which has chosen one element from each
z 2 F :

8F .; … F ^ 8x; y 2 F .x \ y D ;/! 9C 8x 2 F 9Šy .y 2 x \ C/.

We will give three equivalent (over ZF) formulations of AC. Recall that a chain for a poset hA;4i is just a 4-linearly
order subset of A.

9A • 2. Definition (Axiom)
(Zorn’s Lemma, ACZorn) For every (non-empty) poset hA;4i, if every chain is bounded inA, thenA has a4-maximal
element.
(ACProd) If F is a non-empty set of non-empty sets, then

Q
x2F x is non-empty.

(ACCard) Every set is bijective with an ordinal.
(ACWellOrd) Every set has a well-order.

Note that by Lemma 5C • 1, ACWellOrd is equivalent to AC over models of ZF. We will use this extensively to show the
equivalences AC$ ACZorn $ ACCard $ ACWellOrd. First we have Zorn’s lemma.

9A • 3. Theorem
ZF ` “AC$ ACZorn”.

Proof .:.
• (ACZorn ! AC) This implication holds in BST. For F a non-empty family of non-empty, disjoint sets, by
comprehension, union, and powerset, consider the set

C D
°
y 2 P

�[
F
�
W 8x 2 F .y \ x D ; _ 9Šz 2 x .z 2 y//

±
of approximations to a choice set forF . Note that the poset hC;�i exists by the existence of cartesian products.
Note that for any chain c � C ,

S
c yields another chain so that

S
c 2 C and c is bounded by

S
c. Therefore

if ACZorn holds, then there is a�-maximal elementX of C . But then for any x 2 F , there must be some z 2 x
with z 2 X , as otherwise (by pairing and union) X [ ¹zº would contradict maximality. Therefore X must be
a choice set.

• (ACWellOrd ! ACZorn) Let hA;4i be a (non-empty) poset such that every chain is bounded in A. By ACWellOrd,
let <A be a well-order of A. Define by transfinite recursion an injective function f from ordinals into A.

– Let f .0/ be the <A-least element of A.
– Let f .˛ C 1/ to be the <A-least element of ¹a 2 A W f .˛/ �A aº.
– For limit  , note that f " � A is a chain. Hence we can take f ./ to be the <A-least element that
bounds f " .

If A has no 4-maximal element, then f .˛/ can be defined for all ˛. Note, however, that f is injective by
transitivity. This contradicts replacement given that A is a set.
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Arguably the easiest equivalence to prove is that AC$ ACProd. Note that any f 2
Q
x2F x is referred to as a choice

function in that f .x/ 2 x for each x 2 F .
9A • 4. Theorem

BST ` “ACProd ! AC” and with P or Rep, “AC! ACProd”.

Proof .:.

Suppose ACProd holds. Let F be a non-empty set of disjoint, non-empty sets. Let f 2
Q
x2F x be a choice

function. Therefore imf is a choice set so that AC holds.

Suppose AC holds. Let F be an aribtrary non-empty set of non-empty sets. Consider F 0 D ¹¹xº � x W x 2 F º

which exists by the existence of cartesian products, and either replacement or powerset with comprehension. Note
that F 0 is a non-empty family of now disjoint (by considering the first component), non-empty sets. Therefore a
choice set C exists by AC. Now every element of C is of the form hx; ai for x 2 F and a 2 x. Moreover, for
each x 2 F there is exactly one a such that hx; ai 2 C . Hence C 2

Q
x2F x is a choice function. a

The last equivalence is that AC $ ACCard. We have already proven that ZF ` “AC! ACCard” with Theorem 5B • 5.
So it suffices to show ACCard ! ACWellOrd.

9A • 5. Theorem
BST ` “ACCard ! ACWellOrd”.

Proof .:.

Let X be arbitrary. By ACCard, there is a bijection f W X ! ˛ for some ordinal ˛ 2 Ord. Therefore ¹hx; yi W
f .x/ 2 f .y/º � X �X is a well-order of X . a

Therefore, over ZF, ACCard, ACWellOrd, ACZorn, ACProd, and AC are all equivalent.

§9B. Weakenings of the axiom of choice

There are various weakenings of AC that suppose choice only holds in certain contexts. These variant axioms are often
useful in models of determinacy, which is incompatible with full choice, but sill compatible with weakenings. In the
end, we will have the following implications with these principles defined throughout the subsection:

Global Choice, aka “V D HOD”! AC! DC! Countable Choice! Finite Choice,
with ZF ` Finite Choice, but ZF 6` Countable Choice, and all of the above implications are strict for ZF.

If AC is saying that we can make choices infinitely often, there are then variations of this that weaken howmany choices
we can make, or when we can make them. In particular, the first way we can weaken AC is by restricting outselves to
making just finitely many choices.

9B • 1. Definition
The axiom of finite choice says that for any finite family of non-empty, disjoint sets, there is a choice set for the
family.

This weakening is so weak, that it is provable.
9B • 2. Theorem

ZF ` finite choice.
Proof .:.

SupposeF is a finite family of non-empty, disjoint sets, meaning there is a bijection f W jF j ! F where jF j < !.
Proceed by induction on jF j to show that there is a choice function for F . For jF j D 1, this is easy: F D ¹xº for
some x ¤ ;. As x ¤ ;, by basic properties of first-order logic, there is some y 2 x where then ¹yº is a choice
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set for F .

For jF j D n C 1, let x 2 F be arbitrary. Inductively, F n ¹xº has a choice set C . Now take y 2 x and let
C 0 D C [ ¹yº to get a choice set for F . By induction, all such F have a choice set. a

So really finite choice is just a consequence of applying existential instantiation from FOL-proofs finitely many times.
The reason AC is needed, is because proofs are finite, and we can’t apply existential instantiation infinitely many times
with a finite proof.

The second weakening of AC is that we can make countably many choices, which is then clearly stronger than finite
choice, and is in fact independent of ZF: ZF doesn’t prove it, nor disprove it.

9B • 3. Definition
The axiom of countable choice says that for any non-empty, countable family (meaning there is an injection from it
into !) of disjoint, non-empty sets, there is a choice set for the family.

One important consequence of countable choice is Kőnig’s theorem on trees, which requires some version of choice.
First we introduce the concept of a tree, which is incredibly important in set theory in that it is a slight generalization
of ordinals.

9B • 4. Definition
A tree is a poset hA;6i such that for every a 2 A, pred6.a/ is well-ordered by 6.
A tree is finitely splitting iff there are finitely many least elements, and for every node a 2 A there are at most finitely
many direct 6-successors to a.
A branch is a �-maximal, 6-linearly ordered subset of A.

In particular, if a tree has height n < !, then the tree is finite and so finite choice yields a branch with height n. But is
there an infinite branch if the tree is infinite (of height !)? AC and Kőnig’s theorem in particular state that this is true.

9B • 5. Theorem (Kőnig's Lemma on Trees)
Let T D hT;6T i be an finitely splitting tree of height !. Therefore

ZFC “countable choice” ` “there is an infinite branch of T ”.

Proof .:.

First we will show that T must be countable.
Claim 1

There is an injection f W T ! !.

Proof .:.

It should be clear by induction that for each n < !, the nth level of T is finite. For each n < !, consider the
set Bn of bijections from jlvln.T/j < ! to lvln.T/ (which is a set because it’s a subset of <! lvln.T/). Note
that the family ¹Bn W n < !º of these bijections is then countable, nonempty, and eachBn is also non-empty
and disjoint as the levels are disjoint. So by countable choice, there is a choice C set for this family.

So let fn 2 C be fn W lvln.T/! jlvln.T/j for each n < !. Let f W T ! ! be defined by f .�/ D 2n �3fn.�/,
for � 2 lvln.T/. Since each element is only in one level, and for each level n < !, fn is a bijection, it follows
that f is an injection. a

For each � 2 T , let S� consist of all � 2 T such that
• � is a direct successor to � (i.e. � <T � and there are no � 2 T with � <T � <T � ); and
• there are infinitely many 6T -successors to � (i.e. the set of � 2 T with � 6T � is infinite).

Note that S� might be empty for some � . But clearly, for some �0 2 T being 6T -minimal, S�0 is non-empty
(otherwise T will be the union of finitely many finite sets and thus be finite). Therefore F D ¹S� W � 2 T ^S� ¤
;º is a countable, non-empty family of non-empty, disjoint sets. Thus by countable choice, there is a choice set
C for F .
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Now we proceed by recursion to give an infinite path. Let �0 be a 6T -least element of T with infinitely many
successors. By the same reasoning as above one of the direct successors alsomust have infinitelymany successors:
S�0 ¤ ; (meaning S�0 2 F ). For �n already defined with S�n 2 F , take �nC1 to be the unique element of
C \ S�n . By the same reasoning before, we must have S�nC1

2 F . Therefore the sequence defined by recursion,
h�n W n 2 !i, yields an infinite branch of T . a

Let’s consider an alternative way to state countable choice. This generalizes to the axiom of dependent choice.
9B • 6. Definition

The axiom of dependent choice (DC) says that for R � X �X , if 8x 2 X 9y 2 X .x R y/ then there is a sequence
hxn W n 2 !i such that xn R xnC1 for all n 2 !.

Just from this definition, it’s not immediately clear that DC implies countable choice, but we can show this without
much effort.

9B • 7. Theorem
ZF ` “DC! countable choice”.
Proof .:.

Assume DC and suppose F is a non-empty, countable set of non-empty, disjoint sets, as witnessed by an injection
f W F ! !. Without loss of generality, F is infinite as finite choice follows from ZF alone. Consider the relation
R � .

S
F / � .

S
F / defined as follows. For each x 2

S
F let Fx 2 F be the unique element of F that has x

as an element. Thus x 2 Fx for each x 2
S
F . Define x R y iff

1. f .Fx/ < f .Fy/; and
2. there is no X 2 F where f .Fx/ < f .X/ < f .Fy/.

Since F is infinite, imf is unbounded in !, meaning that for each x 2
S
F , there is some y 2

S
F where

f .Fx/ < f .Fy/. Therefore by DC, there is a sequence hxn 2
S
F W n 2 !i where f .Fxn

/ < f .FxnC1
/ for all

n 2 !. Without loss of generality (just by finite choice in ZF to add in finitely many entries in the sequence) we
can assume min¹f .Fxn

/ W n 2 !º D min¹f .X/ W X 2 F º. Let C D ¹xn W n < !º. This is a choice set for
¹Fxn

W n < !º.

So now we show that ¹Fxn
W n < !º D F . Since clearly ¹Fxn

W n < !º � F , suppose X 2 F n ¹Fxn
W n < !º.

Note that f .X/ D n for some n < ! where then n � min¹f .Fxm
/ W m < !º. Clearly if equality holds, then

X D Fxm
for some m < ! by injectivity of f . Thus, as ¹f .Fxm

/ W m < !º is unbounded in !, there is some
m < ! where f .Fxm

/ < f .X/ < f .FxmC1
/. But then :.xm R xmC1/, a contradiction. Therefore there can be

no such X and thus ¹Fxn
W n < !º D F , meaning C is a choice set for F . a

The reverse does not hold, implying that DC is strictly stronger than countable choice. DC is used for a great number of
theorems and basic results in analysis, particularly in the use of sequences. For instance DC will show the equivalence
between continuity (in a general topological sense for R) and sequential continuity. Indeed, in a very vague sense,
much of analysis can be carried out in DC, or at least DC relativized to R. Given this, DC is really the first serious
weakening of AC used for mathematics.

To show the power of DC over countable choice, we have the following theorem. Countable choice only gave Kőnig’s
Lemma on Trees (9 B • 5): for a finitely branching tree of height !, there is an infinite path. The main reason why we
needed finitely many branches is to ensure the resulting tree was countable. DC does not need this restriction, only
that there are no finite braches (meaning branches with a finite length). In fact, the following consequence of DC is
equivalent to DC over ZF.

9B • 8. Theorem
Therefore ZF ` “DC$ every tree of height ! has a branch”.

Proof .:.

Assume DC and let T D hT;6T i be a tree of height !. If there is some � 2 T with no � 2 T where � <T � , then
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T has a finite branch, which can be seen just by considering pred<T
.�/. So suppose T has no finite branches.

Thus for each � 2 T , there is some � 2 T with � <T � . Hence by dependent choice, there is a sequence of
h�n 2 T W n < !i where �n < �nC1 for all n < !. Closing ¹�n W n < !º under <T -predecessors then yields an
infinite branch.

Assume every tree of height ! has a branch. Let R � X � X be such that 8x 2 X 9y 2 X .x R y/. Consider
the tree of finite sequences

T D ¹f W nC 1! X W n < ! ^ 8m < n .f .m/ R f .mC 1//º,
ordered by 6T where � <T � iff � ¨ � . Note that T has no finite branches, since each f W nC 1! X has some
y 2 X where f .n/ R y so that f 0 D f [ ¹hnC 1; yiº extends f . Hence T has height ! and therefore has an
infinite branch f W ! ! T where f .n/ ¨ f .nC 1/. Therefore, hxn W n < !i defined by xn D f .m/.n/ for any
(and all)m > n (since the domains are strictly increasing asm increases, this is just to make sure n 2 dom.f .m//)
yields that DC holds for R. a

Since the existence of finite branches will be a part of ZF, DC is really equivalent to the existence of branches when
there are no finite branches. So the theorem above (and Kőnig’s Lemma on Trees (9 B • 5)) is really talking about the
existence of branches when they are forced to be infinite. AC says that every tree (of ordinal height) has branches,
whereas these various weakenings say that only certain trees have branches:

• finite choice says finite trees have branches;
• countable choice says countable trees of height ! have branches;
• DC says all trees of height ! have branches;
• AC says all set trees have branches; and
• the extension of AC global choice—formally understood as “V D HOD” through Corollary 8D • 11—says that
trees of height Ord have branches.

And we can prove almost all of these to be equivalences. The odd one out is countable choice, which seems to be
strictly stronger than countable trees of height ! having branches, and instead seems to be equivalent to when we can
also take, in some sense, finite approximations to choice sets.

9B • 9. Theorem
1. ZF ` “finite choice$ finite trees have branches”.
2. ZF ` “countable choice $ countable trees of height ! have branches ^ every countable F ¤ ; of non-

empty, disjoint sets has a C 0 where 8x 2 F .jC 0 \ xj < ℵ0/”.
3. ZF ` “DC$ trees of height ! have branches”.
4. ZF ` “AC$ trees of height < Ord have branches”.
5. W � ZF has W � “V D HOD” iff class trees of W of height � OrdW have (W-definable) class branches.

Proof .:.

1. Since both are proven from ZF, it follows that they are equivalent over ZF.

3. This is Theorem 9B • 8.

2. We’ve proven that countable choice implies countable trees of height ! have branches by Kőnig’s Lemma on
Trees (9 B • 5), and obviously an actual choice set C for F yields the second statement. So suppose countable
trees of height ! have branches, and we can take choice sets modulo finite subsets. To show countable choice,
let F ¤ ; be an arbitrary countable set of non-empty, disjoint sets. Let C 0 be such that C 0 \ x is finite for
each x 2 F . Consider the following tree of refinements on C . First, let f W ! ! F be a bijection. Define

T D
®
c � C 0

W jcj < ! ^ 8n < jcj 9Šx .x 2 c \ f .n//
¯
,

with c 6T d iff c � d . This is a tree T D hT;6T i with height ! and since C 0 \ f .n/ is finite for each n, T
is finitely splitting. Hence T is countable, and thus there is a branch C � T . Note that this branch is itself a
subset of C 0, and for each n < !, 9Šx .x 2 C \ f .n//. Hence C is a choce set for F .
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4. Let T D hT;6T i be a tree. Suppose AC holds. Therefore, by Theorem 9A • 3, Zorn’s lemma holds. So
consider the non-empty poset hA;4i where A consists of chains of T and a 4 b iff a � b. Note that every
chain of A is bounded in A since a chain c � A has

S
c as a chain of T and a 2 c implies a 4

S
c. Thus A

has a 4-maximal element C , which is then a branch of T.

Now suppose that all set trees have branches. We will show that ACC holds. Let X be an arbitrary set.
Consider the tree where

T D ¹c W ˛ ! X W ˛ 2 Ord ^ c is injectiveº,
where c 6T c0 iff c � c0. Note that <T is a well-founded relation, since any infinite <T -decreasing sequence
yields a corresponding decreasing sequence of ordinals according to the domains of the entries in the sequence:
cnC1 <T cn implies dom.cnC1/ < dom.cn/. Moreover, 6T linearly order predecessors so that T D hT;6T i
is a tree. By Hartogg’s Number (5 C • 5), T is a set, being a subset of �X where � 2 Ord has � 6�size X .
Therefore there is a branch C � T . Note that then f D

S
C is an injective function from some ordinal ˛ < �

to X . Moreover, f must be surjective, as any x 2 X n imf has f <T f
0 D f [ ¹h˛; xiº, contradicting the

maximality of f . Therefore f W ˛ ! X is a bijection, showing ACC holds.

5. Suppose V D HOD holds, and let 4 be the definable well-order of V. Let T ¤ ; and the tree order 6T be
classes. Define by transfinite recursion a (possibly class) branch of T. Let t0 be a minimal element of T. For
t˛ defined for ˛ < ˇ, if there is no t with t˛ <T t , then the closure of ¹t˛ W ˛ < ˇº under 6T-predecessors is
a branch of T. Otherwise, take tˇ to be the 4-least such t . The class ¹t 2 T W 9˛ 2 Ord .t 6T t˛/º is then a
branch of T.

Suppose all trees of height Ord have (class) branches. This means that there is a FOLp-definable branch of
every tree of height Ord. We will define a class well-ordering of V from this. Consider the class T of functions
f from ordinals (to V) such that

i. f is injective; and
ii. If x 2 V˛ \ imf , then Vˇ � imf for ˇ < ˛.

This is ordered by f 6T g iff f � g. As before, 6T is well-founded, and linear on collections of predecessors.
Thus T and 6T form a tree so that there is a FOLp-definable branch C � T.S

C is then a class function from Ord (to V). Moreover,
S

C is injective. To see that
S

C is surjective, note
x 2 Vwith rank.x/ D ˛ implies x 2 V˛C1. Since jV˛C1j < Ord and f is injective, imf cannot be contained
in V˛C1. Hence there is some y 2 V \ imf for  > ˛ C 1. But then by (ii), (a sufficiently large initial
segment of) f has V˛C1 � imf . Hence x 2 imf so that f W Ord! V is a class bijection. This yields the
class well-order of V by x 4 y iff f �1.x/ < f �1.y/. a

§9C. The axiom scheme of collection

We begin with Scott’s trick, a clever way of restricting formulas which ostensibly define proper classes to sets.
9C • 1. Theorem (Scott's Trick)

Let� � C� C be a definable equivalence relation on a proper class C. Therefore, for each c 2 C we can define the
equivalence class of c under� to be the set

Œc�� D ¹d 2 C W c � d ^ rank.d/ is the least such rankº.

Proof .:.

For each c 2 C, the class ¹rank.d/ 2 Ord W d � cº has a least element, ˛. Hence ¹d 2 V˛C1 W c � dº is a set.
Moreover, for any d � c, it follows that Œd �� D Œc��. a

Scott’s trick really just says that we can still make sense of equivalence classes for what might ordinarily be proper
classes. For example, this allows us to define equivalence classes of Dsize in ZFC:AC that are sets. The idea can be
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slightly generalized to other relations.
9C • 2. Theorem

Let '.x; y/ be a FOLp-formula. Suppose for every x 2 D there is some y where '.x; y/. Therefore there is a set R
where for every x 2 D there is a y 2 R with '.x; y/ (and for every y 2 R there is a x 2 D with '.x; y/).

Proof .:.

As with Scott’s Trick (9C • 1), for each d 2 D, let Œd � be the set ¹y W '.d; y/ ^ rank.y/ is leastº. Therefore, by
replacement, R D

S
d2DŒd � yields a set witnessing the result. a

Notice that the above theorem is really a strengthening of replacement. Whereas replacement requires ' to define a
function, the above shows that we can weaken this requirement to just being a relation.

9C • 3. Definition
The axiom (scheme) of collection (Coll) consists of formulas of the form

8w0 � � � 8wn8D
�
8x 2 D 9y '.x; y; Ew//! 9R 8x 2 D 9y 2 R '.x; y; Ew/

�
,

where ' is a FOL.2/-formula.

So just by examining the form of this, this is stronger than replacement, although Theorem 9C • 2 shows they are
equivalent over ZF. Note, however, that for Scott’s trick and this idea to hold, we required powerset to ensure that
V˛ D ¹x W rank.x/ < ˛º is a set for each ˛. In fact, under ZF�P, Coll is strictly stronger than Rep, although the proof
of this is quite complicated.

Given this, in the absence of powerset, we often will work with collection instead of replacement.
9C • 4. Definition

ZF� is the theory ZF � PC Coll. Similarly ZFC� is ZF�
C AC.

Note that we have encountered many toy models of (fragments of) set theory that model ZF� rather than merely ZF�P.
In particular, H� � ZFC� for regular �, showing L� � ZFC� for � regular in L.

9C • 5. Result
Let � > ℵ0 be a regular cardinal. Therefore H� � Coll and thus H� � ZFC�.

Proof .:.

Suppose ' defines a relation overD 2 H� . By choice and collection in V, there is an R � H� such that for each
d 2 D there is some unique r 2 R with '.d; r/, and for each r 2 R there is some (possibly multiple) d 2 D
with '.d; r/. Hence there is a surjection fromD onto R. Since then jRj � jDj < � with R � H� , it follows by
regularity of � that R 2 H� . a

§9D. Refinements of collection and comprehension

Because comprehension, collection, and replacement are all schemes—meaning that for each appropriate ' we get a
new axiom—there are various refinements of these that restrict what kinds of formulas are allowed.

9D • 1. Definition
For n 2 N, †n-Comp refers to the axiom scheme of comprehension restricted to †n-formulas. And similar defini-
tions hold for †n-Coll, and †n-Rep.

The benefit of having these refinements is being able to have “enough” comprehension, or “enough” collection to
play around with. Although a structure might not satisfy full collection or full comprehension, often it will at least
satisfy†0-collection or†0-comprehension. This is particularly important in the fine structure theory of L and LŒE� as
explored in later chapters.

Similar to these refinements on the axiom schemes, we also have refinements on elementarity. For example,
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9D • 2. Definition
Let � be a signature. Let A and B be FOL.�/-structures. Let n 2 N.
A function j W A! B is a †n-embedding iff for all †n-FOL-formulas ' (defined similarly as with Definition 7 • 4)

A � “'.a0; � � � ; am/” iff B � “'.j.a0/; � � � ; j.am//”.
In this case, we may also write j W A!†n

B. If j D id so that A � B is a submodel, we also write A 4†n
B.

Thus for transitive classes of set theory, a †0-embedding is just an embedding while a †!-embedding (meaning an
embedding which is †n for each n < !) is an embedding with full elementarity. And this is where the refinements of
collection and comprehension become useful: if B satisfies some fragment of comprehension, and there is a sufficiently
elementary embedding from A into B, then A will also satisfy some fragment of comprehension.
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The Axioms of ZFC
1. (Extensionality, Ext) two sets are equal whenever they have the same members:

8x 8y .x D y $ 8v .v 2 x $ v 2 y//.
2. (Empty set) there is a set ; with no members: 9z8x.x … z/.
3. (Comprehension, Comp) for each x, and for each FOL.2/-formula '.v; Ew/, ¹v 2 x W '.v; Ew/º exists:

8w0 � � � 8wn 8x 9z 8v .v 2 z $ v 2 x ^ '.v; Ew//.
4. (Pairing, Pair) for any two sets x and y, the pair ¹x; yº exists: 8x 8y 9z8v .v 2 z $ .v D x _ v D y//.
5. (Union, Union) for any family of sets F , there is a set containing the elements of all of those sets:

8F 9U 8v .v 2 U $ 9x.x 2 F ^ v 2 x//.
6. (Foundation, Found) for each x, there is a 2-minimal element of x, meaning a member y 2 x with no z 2 y

being in x:
8x9y.y 2 x ^ 8z.z 2 y ! z … x//.

7. (Infinity, Inf) an infinite set exists: 9N.; 2 N ^ 8x.x 2 N ! x [ ¹xº 2 N//.
8. (Replacement, Rep) the image of a function over a set is a set: for each FOL.2/-formula ',

8w0 � � � 8wn8D
�
8x.x 2 D ! 9Šy '.x; y; Ew//! 9R.y 2 R$ 9x.x 2 D ^ '.x; y; Ew///

�
.

9. (Powerset, P) for each x, P .x/ exists: 8x 9P 8v .v 2 P $ 8y .y 2 v ! y 2 x//.
10. (Choice, AC) for any family of non-empty family of non-empty, disjoint sets F , there is a set C which has

chosen one element from each z 2 F :
8F .; … F ^ 8x; y 2 F .x \ y D ;/! 9C 8x 2 F 9Šy .y 2 x \ C/.

Variant Axioms and Axiom Systems
1. (Weak pairing, wPair) for any two x; y, there is a z with x; y 2 z.
2. (Weak union, wUnion) for any family F , there is a z with 8x 2 F .x � z/.
3. (Weak replacement, wRep) the image of a function over a set is contained in a set.
4. (Weak powerset, wP) for any x, there is a set containing all subsets of x.
5. (Collection, Coll) there is a range for a relation with over a given domain: for each FOL.2/-formula ',

8w0 � � � 8wn8D
�
8x 2 D 9y '.x; y; Ew//! 9R 8x 2 D 9y 2 R '.x; y; Ew/

�
.

6. (†n-Comprehension, †n-Comp) for each x, and for each †n-formula '.v; Ew/, ¹v 2 x W '.v; Ew/º exists.
7. (†n-Collection, †n-Coll) Coll holds for †n-formulas.
8. (Dependent choice, DC) for R � X � X , if 8x 2 X 9y 2 X .x R y/ then there is a sequence hxn W n 2 !i

such that xn R xnC1 for all n 2 !.
9. For every x; y, x � y exists.

With these axioms, we have the following theories:
• BST consists of (1)–(6) plus (ix).
• wZF consists of (1), (2), (3), (6), (7), and (i)–(iv). wZFC also adds (10).
• ZF� consists of (1)–(8) plus (v). ZFC� also adds (10).
• ZF D ZF�

C P consists of (1)–(9). ZFC also adds (10).
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Section 10. Exercises for Transitivity

§10A. Easier Exercises

10 • Ex1. Exercise: Prove or disprove: P .X n Y / can be equal to P .X/ n P .Y /.

10 • Ex2. Exercise: Suppose R is an equivalence relation over Y . Let f W X ! Y and define S D ¹hx; x0i W f .x/ R

f .x0/º. Show S is an equivalence relation over X .

10 • Ex3. Exercise: Verify the following equalities for all sets X , Y , and Z:

• X � .Y \Z/ D .X � Y / \ .X �Z/;
• X � .Y [Z/ D .X � Y / [ .X �Z/; and
• X � .Y nZ/ D .X � Y / n .X �Z/.

10 • Ex4. Exercise: Prove ordinal addition, multiplication, and exponentiation is equal to cardinal addition, multipli-
cation, and exponentiation for ordinals (equivalently cardinals) less than !.

10 • Ex5. Exercise: Let X be an infinite set. Show j<!X j D jX j.

10 • Ex6. Exercise: Suppose R and R�1 well-order some set X . Show jX j < !.

10 • Ex7. Exercise: Show there are arbitrarily large cardinals � such that �ℵ0 D �.

10 • Ex8. Exercise: Show there are arbitrarily large cardinals � such that �ℵ0 > �.

10 • Ex9. Exercise: Show there are arbitrarily large ordinals ˛ such that ℵ˛ D ˛.

10 • Ex10. Exercise: Suppose � is weakly inaccessible. Show ℵ� D �.

For ˛ 2 Ord, define by transfinite recursion the sequence of ℶ˛s where ℶ0 D ℵ0, ℶ˛C1 D 2ℶ˛ , and ℶ D sup˛< ℶ˛
for  a limit.

10 • Ex11. Exercise: Show there are arbitrarily large ˛ such that ℶ˛ D ˛.

10 • Ex12. Exercise: Show there are arbitrarily large ˛ such that ℵ˛ D ℶ˛ .

10 • Ex13. Exercise: Show GCH is equivalent to “8˛ 2 Ord .ℵ˛ D ℶ˛/”.

10 • Ex14. Exercise: Show � is weakly inaccessible iff ℵ� D � and � is regular.
Show � is strongly inaccessible iff ℶ� D � and � is regular.

10 • Ex15. Exercise: Show x is an ordinal iff x is transitive and every y 2 x is transitive.

10 • Ex16. Exercise: Let Œ��� denote the �-sized subsets of �. Show jŒ���j D ��.

10 • Ex17. Exercise: For each cardinal � � ℵ0, show that the number of bijections f W � ! � is 2� .

10 • Ex18. Exercise: Show supN<!
Q
n2N n D ℵ0 but

Q
n2! n D 2

ℵ0 .
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§10B. Medium Exercises

10 • Ex19. Exercise: Suppose there are inacessible cardinals. We know V� � ZFC if � is inaccessible. But show that
the least ˛ where V˛ � ZFC is not inaccessible.

10 • Ex20. Exercise: Show V� D H� iff � D ℶ� .

10 • Ex21. Exercise: or � � ℵ0, show jH� j D 2<� .
10 • Ex22. Exercise: Show using Kőnig’s Lemma on Trees (9 B • 5) that a relation R is well-founded iff there are no

infinite, decreasing sequences of elements of dom.R/ [ ran.R/.

10 • Ex23. Exercise: Show that every formula is equivalent under ZF� to a formula in the Lévy-hierarchy.

10 • Ex24. Exercise: Show every ordinal ˛ can be represented as the finite sum !ˇ0 C !ˇ1 C � � � C !ˇn where
ˇkC1 � ˇk for all k < n (and here, exponentiation refers to ordinal exponentiation).

10 • Ex25. Exercise: Let M � V be a class. Suppose V � “8x .x � M! x 2 M/”. Show V D M.

10 • Ex26. Exercise: Let � be strongly inaccessible. Show the following are absolute between V� and V:

• “y D P .x/”;
• “y D !˛”;
• “y D V˛”;
• “y D cof.˛/”; and
• “˛ is strongly inaccessible”.

10 • Ex27. Exercise: SupposeX is an (actually) infinite set and that ZFC is consistent. Show there is a modelW � ZFC
with X � Y 2 W where W � “Y is finite”.

10 • Ex28. Exercise: Consider the game between two players—I and II—alternating turns where on their nth turns, I
plays some ˛n < !1 and then II plays some ˇn < !1. After ! turns, the game ends, and we say II wins iff the set
¹˛n W n < !º [ ¹ˇn W n < !º is an ordinal less than !1, and otherwise I wins. Show that II has a winning strategy,
meaning II can always win regardless of what I plays.

§10C. Harder Exercises

10 • Ex29. Exercise: Suppose M � ZFC and N � ZF are two inner models. Show M D N iff M and N have the same
sets of ordinals, meaning P .Ord/ \M D P .Ord/ \ N.

10 • Ex30. Exercise: A �-tree is a tree T D hT;6T i of height � such that jlvl˛.T/j < � for each ˛ < �. Thus Kőnig’s
Lemma on Trees (9 B • 5) says that every !-tree has a cofinal branch. This does not hold for !1. Show there is an
ℵ1-tree with no cofinal branch. (Hint: consider finite, injective functions from ℵ0 to ℵ1 and then thin out the tree
to ensure the levels are small).

10 • Ex31. Exercise: Show under ZF that AC is equivalent to “8˛ 2 Ord .P .˛/ has a well-order/”.

10 • Ex32. Exercise: Let ˛ < !1. Show there is an order-preserving function f W ˛ ! Q where Q is the set of
rational numbers, and the orders are the usual orders on ordinals and Q.

10 • Ex33. Exercise:

• Let A be a set and suppose F W P .A/! P .A/ is such that X � Y ! F.X/ � F.Y / for all X; Y 2 P .A/.
From ZF, show that there is a Z 2 P .A/ such that F.Z/ D Z.

• Use the above to find an alternative proof of Cantor–Bernstein (5 C • 4) from ZF.
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Chapter II. Filters, Embeddings, and Extenders*

Section 11. Ultrafilters and Logic

Ultrafilters can be seen in a variety of places around mathematics, especially within set theory. For our purposes,
ultrafilters give rise to ultraproducts, and certain ultraproducts result in inner models. The existence and structure
of these inner models give rise to deep results about the original universe we start in, and they present important
connections to large cardinal assumptions and consistency strength.

§11A. Filters

The notion of a filter over a set makes precise the notion of largeness as well as “almost every”. Its association with
measure also leads to saying a set is “measure overe” to mean that it is in the filter, alluding to measuring subsets of
Œ0; 1� � R similar to probability. This way of referring to sets in a filter F � P .X/ is motivated by the idea that if
x 2 P .X/ is “large” and x � y 2 P .X/, then y is “large” too. This leads to the following definition.

11A • 1. Definition
LetA ¤ ; be a set. A filter overA is a non-empty subsetF ¨ P .A/ such that the following hold: for all x; y 2 P .A/,

1. If x 2 F and x � y, then y 2 F ; and
2. If x; y 2 F , then x \ y 2 F .

An ultrafilter over A is a �-maximal filter U � P .A/.

Other references will often require A 2 F � P .A/ and ; … F , but these are implied by (1) and that F ¤ ; is a proper
subset F ¨ P .A/. Without this requirement, we’d have trivial filters like all of P .A/, or just ;. We wouldn’t want to
allow such sets to be filters, because it would muck with the definition of ultrafilters.

To help grasp the concept a bit more, we have some relatively easy examples of filters.
11A • 2. Example

1. Let A ¤ ; be any set with a 2 A. Therefore ¹x 2 P .A/ W a 2 xº is a filter, and in fact an ultrafilter.
2. Let A ¤ ; be any set with ; ¤ x ¨ A. Therefore ¹y 2 P .A/ W x � yº is a filter, but not an ultrafilter unless
x is a singleton.

3. Suppose A is infinite. Therefore ¹x 2 P .A/ W A n x is finiteº is a filter, but not an ultrafilter.
4. Let � be an uncountable, regular cardinal. Call x � � a club iff sup x D �, and for all bounded y � x,

supy 2 x. Therefore ¹x 2 P .�/ W x contains a club of �º is a filter called the club filter, but it is not an
ultrafilter.

The first is in effect the most trivial kind of filter, and it is something we will try to avoid. Note that we can come
up with all sorts of filters. First we just start with a family of non-pairwise-disjoint sets X , and then we close under
intersections and supersets. This yields a filter containing X . So this is the process by which we constructi ultrafilters:
just keep adding a set or its complement until we can’t anymore.

For now, let’s try to generate more examples of filters. To do this, we need to be somewhat careful. The general idea
is to simply close a given set under finite intersections, and then add all supersets. The issue with this is that we need

iChoice is needed to show the existence of (nonprincipal) ultrafilters, so it's not exactly an explicit construction.
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to ensure that we don’t accidentally end up with ; after intersecting a bunch of elements. Otherwise ; would be in our
filter, and after closing upwards under �, we’d end up with the full powerset. Luckily, this is the only obstruction to
generating a filter.

11A • 3. Definition
A set X has the finite intersection property iff for all finite subsets ¹x0; � � � ; xnº � X ,

T
i�n xi ¤ ;.

11A • 4. Result
Let A ¤ ; be a set, and let X � P .A/ have the finite intersection property. Therefore there is a filter F � X .

Proof .:.

Consider the closure Y ofX under pairwise intersections. By the finite intersection property, ; … Y . Now define
F D ¹x 2 P .A/ W 9y 2 Y.y � x/º. As ; … Y , ; … F and hence F ¨ P .A/. F is clearly closed under supersets
and pairwise intersection because Y is. Hence F is a filter with X � Y � F . a

The filter given in the proof is generated by X not just in the sense that the construction is given by X , but also in the
sense that it is the �-minimal filter containing X . Now the question becomes how to generate an ultrafilter. Without
AC, the situation is a bit odd and differentii, but in our case, every filter can be extended to an ultrafilter. The proof of
this can be easily shown through Zorn’s lemma: consider the set of filters containing F , and for each �-chain, just
take the union to get another filter, and end up with a �-maximal filter U � F .

The characterization of ultrafilters just as maximal filters is useful to prove their existenceiii, but for the most part, it
doesn’t help one understand properties of ultrafilters. A much more useful characterization is the following.

11A • 5. Result
Let U � P .A/ be a filter. Therefore U is an ultrafilter iff for all x 2 P .A/, either x 2 U or A n x 2 U .

Proof .:.

Suppose U contains every subset of A or its complement, but there is some other filter with U ¨ F ¨ P .A/.
Take x 2 F n U and note that we must have A n x 2 U � F . Since F is a filter, ; D x \ .A n x/ 2 F which
implies F D P .A/, a contradiction.

Now suppose U is an ultrafilter. Let x � A be such that x;A n x … U . Consider the set X D ¹u n x W u 2 U º
which contains A n x, for example. Note ; … X since otherwise u n x D ; for some u 2 U , meaning u �
x 2 U . Therefore X has the finite intersection property because U does. So let F be the filter generated by X :
F D ¹y � X W 9z 2 F .z � y/º. This contains U , contradicting that U is maximal: x 2 F n U . a

We will only be interested in ultrafilters over infinite sets, since the only ultrafilters over finite sets are principal: for U
an ultrafilter over N 2 !, each m 2 N has some Xm 2 U with m … Xm. Therefore, intersecting these finitely many
sets yields

T
m<N Xm D ; 2 U , contradicting that U is a filter.

§11B. Background on clubs

Without loss of generality, we will consider filters on infinite cardinals. This somewhat simplifies the notation and
situation, but it is a primer for later ideas which work directly with concepts related to cardinals. Example 11A • 2 (4)
already contains an example of how working cardinals can give additional information. This example also includes
the notion of a club, being a closed and unbounded subset. These sets have further properties that can be connected to
ultrafilters later. First we repeat a definition.

iiThings being odd is usually the case without AC. In particular, the existence of non-principal ultrafilters cannot be proven without AC.
iiiand it's the only definition that works if you define filters for posets in general rather than just for the poset hP .A/;�i
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11B • 1. Definition
Let � be a cardinal with cof.�/ > !.
A subset x � � is club in � or a club iff x [ ¹�º is closed under supremum of subsets and sup x D �.
Let ¹x˛ W ˛ < �º be a family of sets indexed by � 2 Ord. The diagonal intersection of this family is

4
˛<�

x˛ ��D
®
˛ < � W ˛ 2

T
ˇ<˛ x˛

¯
.

The diagonal intersection is important because usually we work with regular cardinals, and the set of clubs is closed
under diagonal intersections of length � if � is regular. This cannot be strengthened to full intersections, however.
To see this, for each ˛ < �, take the club C˛ D ¹ˇ < � W ˛ < ˇº. This gives that

T
˛<� C˛ D ;, and in factT

˛<cof.�/ C˛
D ; for any confinal sequence h˛ < � W ˛ < cof.�/i. The diagonal intersection, however, will still be

a club, and in fact will be � itself: for every ˛ < �, ˛ 2
T
ˇ<˛ Cˇ .

11B • 2. Result
Let � be a cardinal with cof.�/ > !. Let ¹C˛ W ˛ < �º be a collection of clubs. Therefore

1. For each � < cof.�/,
T
˛<� C˛ is a club.

2. If � is regular,4˛<� C˛ is a club.

Proof .:.
1. Let � < cof.�/ be given. First we will show that

T
˛<� C˛ is unbounded. So let  < � be arbitrary.

Choose an increasing sequence of x˛s such that each x˛ 2 C˛ and  < x0. Now we have a sequence
hx˛ W ˛ < �i D hx0C˛ W ˛ < �i. Since � < cof.�/, this is bounded by some x�C0 > sup˛<� x0C˛ , and again
choose an increasing sequence as before: x�C˛ 2 C˛ . In the end, we get an interlaced, increasing sequence
X D hx��nC˛ W n < ! ^ ˛ < �i where x��nC˛ 2 C˛ for each ˛ < �. Notice that as the sequence was
interlaced and increasing, each C˛ slice for ˛ < � has the same supremum:

sup.X \ C˛/ D sup¹x��nC˛ W n 2 !º D supX .
Hence this supremum is in

T
˛<� C˛ , and is bigger than  . Thus the intersection is unbounded.

To see that
T
˛<� C˛ is closed, any bounded subset Y �

T
˛<� C˛ has Y � C˛ for each ˛ < �. Yet

supY 2 C˛ by the hypothesis, for each ˛ < �, implying that supY 2
T
˛<� C˛ as desired.

2. We will again show that4˛<� C˛ is unbounded, as closure is the easier of the two. Let  < � be arbitrary.
Choose an increasing sequence hxn >  W n < !i with x0 2 C0 n  and xnC1 2

T
˛<xn

C˛ . This can be done
since each

T
˛<xn

C˛ is club by (1) and � D cof.�/ is regular. Now writeX D ¹xn W n 2 !ºwith x D supX .

To see that x 2 4˛<� C˛ , we just need to see that x 2
T
˛<x C˛ . For each ˛ < x, ˛ � xm for some m,

which means the tail of X is contained in C˛:
¹xn W n > mº �

T
ˇ<xm

Cˇ � C˛ .
Therefore x D supX 2 C˛ and hence x 2

T
˛<x C˛ .

To see that 4˛<� C˛ is closed, let X �  be a bounded subset of it with x D supX . Note that for any
˛ < �, we have X n ˛ �

T
ˇ<˛ Cˇ . In particular, for ˛ < x, the tail of X is a subset of C˛ and hence

x D supX 2 C˛ . Therefore x 2
T
˛<x C˛ and so x 24˛<� C˛ . a

The importance of the diagonal intersection is primarily for the purpose of Fodor’s lemma, whichmotivates an important
property for filters. Fodor’s lemma talks about stationary sets: sets which intersect every club set, but which might not
be clubs themselves.

11B • 3. Definition
Let � be a cardinal with cof.�/ > !. A subset X � � is stationary iff C \X ¤ ; for every club C � �.

The existence of stationary sets is easy to see just from the fact that every club set is stationary: � itself is trivially a
stationary subset of �. The existence of stationary, co-stationary subsets—i.e. stationary subsets that do not contain a
club—can be shown through direct example. Since � > ℵ0, we can consider S�! D ¹˛ < � W cof.˛/ D !º. It’s clear
that S�! is stationary, since each club contains a sequence of length !, whose supremum is then in S�! since � > ℵ0 is
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regular. More generally, the set S�
�
of ordinals with cofinality � < cof.�/ will be stationary whenever � D cof.�/ < �

for precisely the same reason as with !.
11B • 4. Definition

Let X � Ord and let f W X ! Ord. f is regressive iff f .˛/ < ˛ for all ˛ 2 X .

11B • 5. Lemma (Fodor's Lemma)
Let � be a regular, uncountable cardinal. Let S � � be stationary, and let f W S ! � be regressive.
Therefore f is constant on a stationary set: f �1"¹ˇº is stationary for some ˇ 2 S .

Proof .:.

Otherwise for each ˇ < �, let Cˇ \f �1"¹ˇº D ; with Cˇ a club. Consider4ˇ<� Cˇ , which is a club by Result
11B • 2, and hence S \4ˇ<� Cˇ ¤ ;. Taking ˛ 2 S \4ˇ<� Cˇ requires that f .˛/ < ˛. But note that

f �1"¹ˇº \ Cˇ � f �1"¹ˇº \
T
<˛ C D ;

for each ˇ < ˛. In particular, for ˇ D f .˛/ < ˛, ˛ 2 f �1"¹f .˛/º has ˛ …
T
<˛ C , contradicting that

˛ 24ˇ<� Cˇ . Hence there must be some ˇ with f �1"¹ˇº stationary, meaning that f is constant on a stationary
set. a

Such a result is extremely useful for combinatorial parts of set theory, being used to prove statements like the generalized
Δ-system lemma, tremendously useful in methods of forcing. Stated in terms of filters, any ultrafilter extending the
club filter will necessarily contain only stationary sets, and thus will abide by Fodor’s Lemma (11B • 5). This is a nice
property of ultrafilters for various reasons, as will be covered later.

§11C. Logic and filters

Now as stated above, filters and ultrafilters give a notion of “size” or “largeness” to subsets, but they also then give
a notion of “how often” something is in a given subset. In this way, as with a probability measure, ultrafilters give a
notion of how often something is true. To make this connection a little more apparent, the following notation will be
used extensively.

11C • 1. Definition
Let F be a filter over a set K. Let '.x; Ew/ be a FOL.2/-formula. Write “8�x '.x; Ew/” to say that ¹x 2 K W

'.x; Ew/º 2 F . We write 9�x '.x; Ew/ to say that K n ¹x 2 K W '.x; Ew/º … F .

8� should be read as “for almost every”, and 9� doesn’t have a standard phrase, but one can read it as “there is a positive
set”, analogous to measure over the real numbers as if to say it’s not measure 0. If we need to specify the ultrafilter,
we write 8�

U for “for U -almost every”. In everyday language, words and phrases like “almost every”, “by-and-large”,
and “many” come into play to gloss over details. These words are usually vague or ambiguous, but the notion of an
ultrafilter makes them precise in a way that is consistent with ordinary usage. Moreover, the new quantifiers have
their own sort of logic to them based just on Definition 11A • 1. This new vocabulary dramatically simplifies some
proofs, and is overall a better way of thinking about ultrafilters, as well as their properties. Definitions that may seem
unmotivated or hard to understand can become more intuitive and natural with the new logical framework.

It’s useful to present some easy results about how this quantifier interacts with the other connectives of first order logic.
Note that the two properties of Definition 11A • 1 can be restated as

1. If 8�˛ ' and 8˛ .' !  /, then 8�˛  ; and
2. If 8�˛ ' and 8�˛  , then 8�˛ .' ^  /.

This isn’t difficult to see if we allow parameters, since '.˛; x/ might just be ˛ 2 x and  .˛; y/ might just be ˛ 2 y.
Regardless, these immediately give the following. As a result of the results to follow, (1) above can be weakened so
that if 8�˛ ' and 8�˛ .' !  /, then 8�˛  .

11C • 2. Result
Let U be a filter over set K. Let ' and  be FOLp.2/-formulas. Therefore

1. 8�x ' ! 9�x '. The two are equivalent for U an ultrafilter.
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2. :8�x :' $ 9�x '.
3. .8�x ' ^ 8�x  /$ 8�x .' ^  /;
4. .9�x ' _ 9�x  /$ 9�x .' _  /;
5. 9y 8�x ' implies 8�x 9y ';
6. 8�x 8y ' implies 8y 8�x '; and
7. 8x ' implies 8�x ', which implies 9�x ', which implies 9x '.

Proof .:.
1. Suppose ¹x 2 K W '.x/º 2 U . If :9�x ' then K n ¹x 2 K W '.x/º 2 U . By closure under intersections,

this would imply ; 2 U , a contradiction. For the other direction, suppose 9�x ', meaning K n ¹x 2 K W
'.x/º … U . By Result 11A • 5, this means the complement ¹x 2 K W '.x/º 2 U , meaning 8�x '.

2. We have that :8�x :' iff ¹x 2 K W :'.x/º D K n ¹x 2 K W '.x/º … U iff 9�x '.
3. The ‘ ’ direction is immediate since filters are closed under supersets: 8x .'^ ! '/ and 8�x .'^ /

implies 8�x ' and similarly for  . For the ‘!’ direction, use that filters are closed under intersections.
4. This is (3) used with the fact that :.' ^  / is equivalent to :' _ : /.
5. This is just from basic first-order logic: if there is a y such that ¹x 2 K W '.x; y/º 2 U then as a superset,
¹x 2 K W 9y '.x; y/º 2 U .

6. If 8�x 8y ', then ¹x 2 K W 8y '.x; y/º 2 U . This set is contained in ¹x 2 K W '.x; y/º for any given y,
meaning that for every y, ¹x 2 K W '.x; y/º 2 U . Hence 8y 8�x '.

7. These implications are is clear: K 2 U so8x ' implies ¹x 2 K W '.x/º D K 2 U . The second implication
is from (1). The third implication follows from K 2 U : if 9�x ' then K n ¹x 2 K W '.x/º … U . But
:9x ' would imply K D K n ¹x 2 K W '.x/º … U , a contradiction. a

The weakness of (5) and (6) cannot be improved in general, since
• 8�˛ 9x .x D ˛/ doesn’t satisfy 9x 8�˛ .x D ˛/ unless U is principal; and
• Often 8ˇ 8�˛ .˛ > ˇ/—i.e. almost everything is bigger than any particular ˇ—but we likely won’t have
8�˛ 8ˇ .˛ > ˇ/—i.e. almost every ˛ is bigger than everything.

To find specific examples where this happens, we need to consider some particular properties of ultrafilters. Note that
when considering ultrafilters, (1) implies that we don’t need the notation of 9�. But the two are distinct for filters. For
example, the cofinite subsets of !, F D ¹x � ! W j! n xj < ℵ0º, has 9�n .n is even/, but ¹n 2 ! W n is evenº … F so
:8�n .n is even/. By Result 11C • 2 (2), this would imply 9�n .:n is even/. So very often, if X if F -positive, so too
is the complement ofX . In fact we get the following stating that this always happens wheneverX lies strictly between
being measure 0 and measure 1.

11C • 3. Result
For any FOLp.2/-formula ' and filter U over a set K, if :8�x ', then either 8�x :', or else both 9�x :' and
9�x '.

Proof .:.

Suppose :8�x ' and :8�x :'. From Result 11C • 2 (2), we get 9�x :' and 9�x ', as desired. a

§11D. Ultrafilter properties

With all of this logical notation at our disposal, we can more easily state some definitions.
11D • 1. Definition

Let � be a cardinal, and let U be a filter over �.
• U is uniform iff jxj D � for every x 2 U .
• U is unbounded iff for every ˇ < �, 8�˛ .˛ > ˇ/.
• U is normal iff for every f such that 8�˛ .f .˛/ < ˛/ there is some ˇ < � with 8�˛ .f .˛/ D ˇ/.
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• U is �-complete iff for  < � and formulas '� for � <  ,
V
�< .8

�˛ '�/ iff 8�˛ .
V
�< '�/.

Equivalently, U is �-complete iff for  < �, ¹X˛ W ˛ < º � U implies
T
˛< X˛ 2 U .

The club filter over a regular, uncountable cardinal will have all of these properties, for example, although it isn’t an
ultrafilter.

11D • 2. Example
Let � be an uncountable, regular cardinal. Let Club� be the club filter over � (the filter generated by closed, un-
bounded [i.e. club] subsets of �). Therefore Club� is uniform, unbounded, normal, and �-complete.

Proof .:.

Obviously all club sets are unbounded, and so by regularity of �, each club has cardinality �. So Club� is uniform.
That Club� is normal is just Fodor’s lemma, since each element of Club� contains a club and is thus stationary. �-
completeness follows from facts about club sets (closure of the intersection is immediate, and for unboundedness,
interlace a �-length sequence of members in the � < � clubs and take the supremum which is in all the clubs).a

Many of the properites of Definition 11D • 1 are connected as shown below for ultrafilters over a cardinal �. Impli-
cations are denoted with arrows (a dashed arrow denotes the implication merely of the existence of an ultrafilter with
both properties). If � is regular, unboundedness is equivalent to uniformity, which is otherwise stronger.

�-complete

uniform unbounded

normal

normal and unbounded

for regular �

11D • 3. Figure: Properties of non-principal ultrafilters over � � @0

Arguably the most difficult of the properites in Figure 11D • 3 to achieve is normality, which isn’t directly implied by
any combination of the other properties. However the strongest two properties here are clearly �-completeness and
normality. This combination is important enough to get its own name.

11D • 4. Definition
Let � be an uncountable cardinal with U a non-principal ultrafilter over �. We say that U is a measure iff U is
�-complete and normal.

We call this a measure as motivated from the fact that the function

�.X/ ��D

´
1 if X 2 U
0 if X … U

is a �-additive, two-valued, probability measure over �. Other authors often drop the requirement of normality in the
definition of a measure (which makes sense with this motivation), but then always work with normal measures.

What this definition tells us is that the dashed arrowof Figure 11D • 3 means that if � has a �-complete, non-principal
ultrafilter, then it also has a measure. Another notable property of �-completeness is that it implies that � is regular.
To see this, since it implies unboundedness, if hˇ W ˇ < cof.�/i is unbounded with cof.�/ < �, then the infinitary
conjunction

V
ˇ<cof.�/ 8

�˛ .˛ > ˇ / implies 8�˛ .˛ > ˇ for all ˇ < cof.�//, which contradicts that the sequence
of ˇ s is unbounded in �.

The two difficult arrows in Figure 11D • 3 are that �-complete, non-principal ultrafilters yield measures, and that un-
bounded, normal, non-principal ultrafilters are measures. The second of these is easier.
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11D • 5. Result
Let � be an uncountable cardinal with U an unbounded, normal ultrafilter over �. Therefore U is �-complete, and
hence a measure.
Proof .:.

Let ¹X˛ W ˛ < �º 2 P .U /. If
T
˛<�X˛ … U , we may assume without loss of generality that

T
˛<�X˛ D ;. So

define f W � ! � to be such that f .˛/ is the least � < � with ˛ … X� . As � < �, f "� is bounded in � and thus
(as U is unbounded),

8
�˛ .˛ > sup.f "�// implies 8�˛ .˛ > f .˛//.

So f is regressive on a set in U . By normality, there is then a ˇ < � with 8�˛ .f .˛/ D ˇ/. But this means
8�˛ .˛ … Xˇ /, contradicting that Xˇ 2 U . a

Normality is kind of a weird definition, but its usefulness will become more apparent as we investigate ultrapowers
and elementary embeddings. Really, one should think of the dashed arrow of Figure 11D • 3 as being a property of �
rather than of the ultrafilters. We could still prove now, without reference to later material, the dashed arrow: we can
get normal ultrafilters through possibly different �-complete ultrafilters. However, the proof of this with our current
understanding is not the best proof as it is fairly technical without additional concepts. But with later material, the idea
becomes much more natural.

It should be noted that the existence of measures isn’t provable just from ZFC. The reason for this is that any � which
admits such a measure, called ameasurable cardinal, will be quite large. Wewill see later that they will be inaccessible,
for example, and thus can’t be shown to exist just from ZFC. But they will be much more and much larger than mere
inaccessibles. To further investigate measurable cardinals, it is useful to take a look at ultrapowers and elementary
embeddings.
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Section 12. Ultrapowers and Elementary Embeddings

At this point, we can get to our first true application of filters. Ultraproducts are a model-theoretic notion which serve
two purposes. Firstly, they are a sort of average of the starting models: what’s true in the ultraproduct is what’s “almost
always” true in the models. Secondly, they are a way to enlarge the universe: the ultraproduct using just one universe
yields an elementary embedding. The usefulness for set theory comes when the ultraproduct is well-founded so that it
may be collapsed down into an inner model.

In model theory, there is a general concept of a reduced product where you kind of “average out” a set of models over
a filter. We will not be so concerned with general reduced products, since we will be focused on ultrafilters. The idea
is that your objects are now sequences of elements in these models, and a statement '. Ef / is true iff for almost every
˛, '. Ef .˛// is true in the corresponding model. So in particular, a sentence is true iff it is true in “most” of the models.
The result is an ultraproduct instead of a mere reduced product. Even still, we will not be concerned with ultraproducts
in general, but ultraproducts where the models we’re “averaging” are all the same model.

12 • 1. Definition
Let � be a signature. Let A be an FOL.�/-model. Let U be an ultrafilter over a set K.
For f; g W K ! A, say f � g iff 8�x .f .x/ D g.x//. The ultrapower of A by U is the structure Ult.A; U /

• with universe Œf �U D ¹g W f � gº;
• � -relation interpretations RUlt.A;U /.Œ Ef �/ iff 8�x RA. Ef .x//; and
• � -function interpretations F Ult.A;U /.Œ Ef �/ D Œg� iff 8�x .F A. Ef .x// D g.x//.

One should check that these are actually well-defined, but this is easy given that U is an ultrafilter and filters are closed
under finite intersections.iv

What’s happening here is that the choice of what is true at the level of atomic formulas is left up to the ultrafilter:
what happens often enough in the factors happens in the ultraproduct. This goes through to all levels of FOLp-formula
complexity, as shown in the following indispensable theorem known as Łoś’sTheorem. The theorem fully characterizes
FOLp-truth in ultrapowers based on FOLp-truth in the factors. As the name “Łoś” is Polish, it is pronounced [ˈwɔɕ].
Also note that the statement of the theorem here uses only one parameter x in '.x/, but the result actually allows for
arbitrarily many: '.Ex/. This would clutter notation for the proof, which essentially the same either way.

12 • 2. Theorem (Łoś's Theorem)
• Let � be a signature.
• Let A be an FOL.�/-model.
• Let U be an ultrafilter over K, and write Ult for Ult.A; U /.
• Let '.x/ be an FOL.�/-formula, and let Œf � 2 Ult be a parameter.

Therefore Ult � “'.Œf �/” iff 8�
Ux .A � “'.f .x//”/.

Proof .:.

Write Ult for Ult.A; U /. This is a proof by structural induction on '. For atomic formulas, this is just by definition.
Sentential connectives ^ and : follow easily as well, since U is an ultrafilter:

Ult � “:'.Œf �/” iff Ult 6� “'.Œf �/” iff :8
�x .A � “'.f .x//”/

iff 8
�x .A 6� “'.f .x//”/ iff 8

�x .A � “:'.f .x//”/.
Ult � “'.Œf �/ ^  .Œf �/” iff Ult � “'.Œf �/” and Ult � “ .Œf �/”

ivAlso, technically each Œf �U defined here is a proper class, but this is unimportant by Scott's Trick (9 C • 1).
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iff 8
�x
�
A � “'.f .x//”

�
^ 8

�x
�
A � “ .f .x//”

�
iff 8

�x
�
A � “'.f .x// ^  .f .x//”

�
.

For existential quantification, suppose Ult � “9y '.y; Œf �/”. Thus there is some Œg� 2 Ult where Ult �
“'.Œg�; Œf �/”. By (a modified version of) the inductive hypothesis, this happens iff 8�x .A � “'.g.x/; f .x//”/,
and so clearly it follows that 8�x .A � “9y '.y; f .x//”/.

For the other direction, we need AC: for each x 2 K such that A � “9y '.y; f .x//”, let g.x/ witness this.
Otherwise, let g.x/ be any arbitrary element of Ax . The resulting function g D ¹hx; g.x/i W x 2 Kº witnesses
that Ult � “'.Œg�; Œf �/” and thus that Ult � “9y '.y; Œf �/”. a

12 • 3. Corollary
Any model is elementarily equivalent to any of its ultrapowers.

§12A. Elementary embeddings

We have actually a much stronger correspondence between truth in A and its ultrapowers, but to talk further about this
relation, we need the concept of an elementary embedding. The issue is that the two models of universes composed of
fundamentally different things, and so we can’t just compare them outright. Instead, we translate by a function.

12A • 1. Definition
Let � be a signature. Let A and B be FOL.�/-models. Let f W A ! B be a function. f is an FOL.�/-elementary
embedding iff for all FOL.�/-formulas ' and parameters a0; � � � ; an 2 A,

A � “'.a0; � � � ; an/” iff B � “'.f .a0/; � � � ; f .an//”.

Any elementary embedding will be an embedding just by considering the atomic formulas: x 2A y iff f .x/ 2B f .y/.
It should be obvious from this that any elementary embedding is injective: for x; y 2 A,

x ¤ y iff A � “x ¤ y” iff B � “f .x/ ¤ f .y/” iff f .x/ ¤ f .y/.
Elementary embeddings aren’t necessarily surjective, however, meaning that they are stronger than a mere embedding,
but weaker than a full isomorphism.

Elementary embeddings are crucial to the understanding of ultrapowers and inner models. Some of the basic facts are
not recorded because they are seen to be obvious. To better familiarize the reader with some of these basic facts, the
following extensively used results will be given explicit proofs.

12A • 2. Lemma
Let j W V! M be FOL.2/-elementary (usually, we just write “elementary”). Therefore the following hold.

1. If '.x/ is a FOL.2/-formula that is absolute between V andM, then '.x/ iff '.j.x//. Hence if x is defined by
an absolute formula—meaning y D x iff '.y/—then j.x/ D x.

2. If f is a function, then j.f / is a function, and j.f .x// D j.f /.j.x//.
3. If f; g are functions, then j.f ı g/ D j.f / ı j.g/.

Proof .:.
1. By elementarity, '.x/ iff M � “'.j.x//”. By absoluteness, this happens iff '.j.x//. Now if x is defined

by '—i.e. x D y iff '.y/—then x D j.x/.
2. Being an ordered pair is definable by a formula absolute between transitive models. So being a set of

ordered pairs, x 2 f implies x is an ordered pair. Elementarity then gives that every x 2 j.f / has that x
is an ordered pair. Moreover, f is a function iff 8x .9y hx; yi 2 f ! 9Šy hx; yi 2 f /, which is absolute
between transitive models. By elementarity,

M � “8x .9y hx; yi 2 j.f /! 9Šy hx; yi 2 j.f //”
By absoluteness, this holds in V so that j.f / is then a function.
Let x 2 dom.f / be arbitrary. f .x/ is the unique y such that hx; yi 2 f . Hence j.f .x// is the unique
y such that hj.x/; yi 2 j.f /. Hence j.f / is a function, and it obeys j.f /.j.x// D j.f .x// whenever
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x 2 dom.f /.
3. Following easily from (1), for all x and z, hx; zi 2 f ı g iff there is some y 2 f where hx; yi 2 g and
hy; zi 2 f . By elementarity, for all x; z, hx; zi 2 j.f ıg/ iff 9y .hx; yi 2 j.g/^hy; zi 2 j.f //, meaning
j.f ı g/ D j.f / ı j.g/. a

Often arguments like these will be written in shorthand, so it’s important to know what will be moved by j or won’t
be moved by j . For example, consider  D ¹˛ W ˛ < º. Note that j./ will generally not be ¹j.˛/ W j.˛/ < j./º:
˛ is a dummy variable that plays no role here, but  is still a parameter. So j./ D ¹˛ W ˛ < j./º (as expected).
Similarly, j.¹x W f .x/ D ˛º/ D ¹x W j.f /.x/ D j.˛/º, again, x is just a dummy variable, but f and ˛ aren’t.

Before heading too deep into this, however, we need to think about how we regard these elementary embeddings. As
functions from perhaps the entire universe of sets, they will not be sets. And a priori, there’s no reason to think they
need to be definable. To counter this issue, we will work in a relatively simple class theory, like NBG�GCCAC—von
Neumann–Bernays–Gödel class theory with choice for sets. In other words, we have V being the usual set-theoretic
universe adjoining predicates for classes ofV (whatever those happen to be, but at least including the definable classes).
One can show that this is a conservative extension of ZFC, meaning that no new theorems with quantifiers ranging over
sets are proven by NBG.

Obviously there is a kind of trivial elementary embedding from V into an inner model: the identity map id W V! V.
This map isn’t exactly interesting, however, and so we will be interested with maps that actually move sets. It turns
out that if an elementary embedding moves a set, then it moves an ordinal.

12A • 3. Result
Let j W V! M be elementary. Let ˛ 2 Ord. Therefore j � ˛ D id � ˛ iff j � V˛ D id � V˛ .

Proof .:.

Obviously j � V˛ D id � V˛ implies j � ˛ D id � ˛ since ˛ � V˛ .

For the other direction, in essence, the rank of x 2 V˛ is still preserved. For ˛ D ; and ˛ a limit, the result
clearly holds. For the successor case, we assume j � ˛ D id � ˛ and that j.˛/ D ˛. Let x 2 V˛C1. Hence
x � V˛ so by elementarity, j.x/ � VM

j.˛/
. Now for any fixed y 2 V˛ , y 2 j.x/ inductively is equivalent to

y D j.y/ 2 j.x/. So by elementarity, this is equivalent to y 2 x. Thus j.x/ D x, as desired. a

Note that we need j to be traditional here for us to conclude V˛ � M.v

12A • 4. Corollary
If j W V! M elementary, then the least ˛ with j.˛/ ¤ ˛ is also the least rank of a set moved by j .

This motivates the following definition of a critical point, below which j is just the identity, and which is moved by j .
12A • 5. Definition

j W V ! M be elementary and j ¤ id. An ordinal ˛ is a critical point of j—denoted cp.j /—iff ˛ is the least
ordinal where ˛ ¤ j.˛/.

If ˛ < � D cp.j / then by elementarity ˛ D j.˛/ < j.�/ so that j.�/ > �. So the first ordinal moved is always moved
up. This implies that nontrivial elementary embeddings will never be surjective: no ordinal ˛ with between j.�/ and
� (more precisely, � � ˛ < j.�/) is in the image of j .

Because we will so often be working with elementary embeddings into inner models, we will use the following non-
standard terminology to describe this.

12A • 6. Definition
Let A;B � ZFC be class models. A function j W A ! B is traditional iff j ¤ id, j W A ! B is an elementary
embedding, and B is an inner model of A (i.e. A thinks B is transitive).

vThe issue is that for j W M ! N, we only get that VM
˛ � VN

˛ if j � ˛ D id � ˛. But we need not have VN
˛ � VM

˛ .
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On the topic of the identity embedding, there is a kind of ceiling to how close M � V can be to V when j W V ! M
is elementary. The following theorem tells us that in particular, M cannot be V. This is important for ruling out the
existence of reinhardt cardinals—the critical points of elementary embeddings from V into itself, rather than merely
an inner model. The proof of this theorem can only be given after we introduce the concept of measurable cardinals.

12A • 7. Theorem (Kunen's Inconsistency Theorem)
There are no traditional j W V ! V. More precisely, suppose j W V ! M is traditional and a class. Therefore
M ¤ V.

Partial Proof .:.

Here is one proof in a restricted context where j is class definable without parameters (in other, weak class
theories, this still holds true, like NBG). Let j be FOL.2/-defined by ' in the sense that j.x/ D y iff '.x; y/ then
we can define cp.j / D � by the least ˛ such that :'.˛; ˛/. Clearly ' is absolute between V and itself, so by
Lemma 12A • 2 (1), j.�/ D �, contradicting that � D cp.j /. a

A nice property of elementary j fromV into classes ofV is that they will preserve P .cp.j //. In general, if j W N !M

is elementary between two transitive classes, there’s no guarantee that the powerset is preserved, and we’d only get
P .cp.j // \N � P .cp.j // \M .

12A • 8. Result
Let j W V! M be traditional with cp.j / D �. Therefore P .�/M D P .�/. In fact, V�C1 � M so that x � V� is just
x D j.x/ \ V� .

Proof .:.

As M is transitive, P .�/M D P .�/ \M. Let x 2 P .�/ \ V . For every ˛, since x � �,
˛ 2 x iff j.˛/ 2 j.x/ ^ ˛ D j.˛/ < �,

Hence x D j.x/ \ � 2 P .�/ \M, and thus P .�/ � P .�/ \M. And since M � V, P .�/ \M � P .�/ \ V.

By Result 12A • 3, looking at j � V˛C1, j.V˛/ D V˛ for each ˛ < � so that
VM
� D

[
˛<�

VM
˛ D

[
˛<�

V˛ D V� .

Thus V� 2 M. Now consider x � V� . Since j � V� D id � V� again follows from Result 12A • 3, we have by
elementarity that y 2 j.x/ \ V� iff y 2 x, which means that j.x/ \ V� D x 2 M and thus V�C1 � M. a

Hence the “strength” of a non-trivial, elementary embedding j W V ! M is at least cp.j / C 1 in the sense that we
always have Vcp.j /C1 � M. It may be possiblevi for j to have a larger strength, but to do this, we would need extenders
rather than mere ultrafilters (this also motivates the notion of a strong cardinal). Now while something like Vcp.j /C2-
strength is out of reach at the moment for measures, it seems rather innocuous. The following shows, however, that
this gives agreement on Hcp.j /CC , and this generalizes. To introduce some notation, for a cardinal �, let �C˛ be the
˛th cardinal larger than �. Explicitly, �C0 D �, �C˛C1 D .�C˛/C, and �C D sup˛< �

C˛ for limit  2 Ord.
12A • 9. Result

Let j W V ! M be traditional with cp.j / D � inaccessiblevii. Let ˛ 2 Ord and suppose V�C˛ � M. Therefore, if
�C˛ is regular, H�C˛ D HM

�C˛ .
Proof .:.

We immediately have by upward absoluteness that HM
�C˛
� H�C˛ . To show the other inclusion, proceed by

induction on ˛ firstly to show that �C˛ can be coded as a subset of P ˛.�/ � V�C˛ , defined recursively by
P 0.�/ D �, P ˛C1.�/ D P .P ˛.�//, and P  .�/ D

S
˛< P ˛.�/ for limit  .

viThis consistency of this can't be proven in ZFC alone, as such embeddings yield the existence of certain large cardinals, which in turn imply the
consistency of ZFC.

viiWe will prove later that cp.j / is always inaccessible in V for j W V ! M traditional.
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Claim 1
For each ˇ � ˛, there is an injection fˇ W �Cˇ ! P ˇ .�/ � V�Cˇ such that fˇ 2 M. In particular,
�Cˇ D .�Cˇ /M.

Proof .:.

Note that for ˇ < �, P ˇ .�/M D P ˇ .�/V. This clearly holds for ˇ D 0. Inductively, let f W �C ! P  .�/

be injective for  < ˇ with f 2 M and �C D .�C /M. Without loss of generality, since jP  .�/nP �.�/j D

jP  .�/j whenever � <  , we might as well assume im.f / \ im.f�/ D ; whenever � ¤  .

For successor ˇ C 1, note that .�CˇC1/M D ..�Cˇ /C/M which inductively injects into jP ˇ .�/jC �

P ˇC1.�/. This yields an injection fˇC1 W .�
CˇC1/M ! P ˇ .�/ in M. So it suffices to show .�CˇC1/M D

�CˇC1, which can be shown just by proving .�CˇC1/M � �CˇC1 since M � V. Any ˛ < .�Cˇ /C

has a bijection f W ˛ ! �Cˇ . This gives an well-order R � �Cˇ � �Cˇ of order-type ˛ just by
R D ¹hf .�/; f .�/i W � < � < ˛º. Now using the definable coding of pairs of ordinals from Lemma 5D • 2,
we can code R as a subset of �Cˇ and hence a subset of P ˇ .�/: A D fˇ ".code "R/ 2 P ˇC1.�/ � P ˛.�/

so that A 2 M. Since the coding is definable and fˇ 2 M , we get that R 2 M of order-type ˛. Using
a transitive collapse in M gives the bijection f W ˛ ! �Cˇ . Hence ˛ < .�CˇC1/M. This completes the
successor step.

For limit ˇ, the following definition in M inductively agrees with the one in V to show that

fˇ .�/ D

´
� if � < �
fC1.�/ if �C � � < �CC1 for some  < ˇ

is an injection from �Cˇ to P ˇ .�/, and completes this initial induction. a

Now we show that any element of H�C˛ can be coded as a subset of V�C˛ by coding it as a subset of �C˛ and
hence as a subset of P ˛.�/ � V�C˛ . For ˛ D 0, since � is inaccessible, H� D V� by Corollary 7C • 10, and so
by Result 12A • 8, H� D HM

� .

Now suppose ˛ > 0 is such that �C˛ is regular. Let x 2 H�C˛ so that j trcl.¹xº/j < �C˛ by the regularity of
�C˛ . Let f W trcl.¹xº/! �Cˇ be injective for some ˇ < ˛. Now using the definable coding of pairs of ordinals,
we can consider coding htrcl.x/;2i by a subset of �Cˇ :

A D ¹code.hf .a/; f .b/i/ W a 2 b 2 trcl.x/º � �Cˇ .
This subset contains all the information of x. Using fˇ W �Cˇ ! P ˇ .�/ fromClaim 1, we get that fˇ "A � P ˇ .�/

and hence fˇ "A 2 P ˇC1.�/ � VˇC1. Because ˇ C 1 � ˛, VM
ˇC1
D VˇC1. Hence fˇ "A 2 M. Since fˇ 2 M,

we can decode to get that A and hence, by a transitive collapse, trcl.¹xº/ 2 M so that x 2 M. By Claim 1,M and
V agree on the cardinality of trcl.¹xº/ and the calculation of �Cˇ yielding x 2 HM

�Cˇ . a

These types of codings are very common when dealing with similar models of set theory, and it’s important to be able
to mimic them. But now that we have thought about elementary embeddings in general, let us return to the notion of
an ultrapower.

§12B. Characterizing ultrapowers

With all of this talk about elementary embeddings, we should perhaps note that we always have an elementary embed-
ding from a model into its ultrapower.

12B • 1. Theorem
Let � be a signature. Let A be an FOL.�/-model, and let U be an ultrafilter over a setK. Therefore A is elementarily
embedded in Ult.A; U / by x 7! Œconstx �U , where constx W K ! A is the constant x map.
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Proof .:.

By Łoś’s Theorem (12 • 2), Ult.A; U / � “'.Œconstx �/” iff for almost every k 2 K, A � “'.constx.k//” (i.e.
A � “'.x/”) which is just to say that the following set is in U :

¹k 2 K W A � “'.x/”º D

´
K if A � “'.x/”
; otherwise.

As an ultrafilter over K, ; … U and K 2 U so that Ult.A; U / � “'.Œconstx �/” iff A � “'.x/”. a

Note that for a proper class like V, each equivalence class Œf � 2 Ult.V; U / will be a proper class as well.viii This can
be rectified if we just consider Œf � D ¹g W g � f ^ rank.g/ is minimalº. Doing this, we get the usual equivalence
class of f just intersected with some V˛ for ˛ least. Doing this, one still has that Œf � D Œg� for all f � g, and thus
x 7! Œconstx � is a legitimate (class) function. So the result above also holds with proper classes too under this variant
definition.

The existence of such an elementary embedding, however, doesn’t tell you that it’s nontrivial.
12B • 2. Result

Let U be a principal ultrafilter over a set K. Therefore A Š Ult.A; U / by the canonical embedding.

Proof .:.

It suffices to show that the canonical embedding ofTheorem 12B • 1 is surjective. Let u 2 Ult.A;U / be arbitrary.
We know that u D Œf � for some f W K ! A. As U is principal, there is some a 2 A where ¹aº 2 U . Hence
g � f iff g.a/ D f .a/. In particular, u D Œconstf .a/�. Hence x 7! Œconstx � is a bijective embedding, and thus
an isomorphism. a

As the transitive collapse of a well-founded structure is unique, it follows that the collapsed version of the ultrapower
Ult.V; U / (if well-founded) is preciselyV, and it’s not difficult to show inductively that in this case, Œconstx � is collapsed
to x.

The importance of using ultrapowers, however, is when they are well-founded, because set theory in general is more
concerned with transitive models. Transitive models are easier to work with, and are related to the actual universe
of sets. Hence studying transitive models allows us to learn about the actual set-theoretic universe—though perhaps
only conditional on large cardinal assumptions or other hypotheses. Well-founded models that satisfy extensionality
are just an isomorphism away from transitive models by a mostowski collapse. In general, not all ultrapowers will be
well-founded. Crucially, if we can take countably many conjunctions, then the ultrapower must be well-founded: we
can collect together the countable amount of information that f0 3 f1, and f1 3 f2, and so on all at once. It’s nice
that we then have a characterization of the ultrapower being well-founded.

12B • 3. Theorem
Let U be an ultrafilter in V. Therefore Ult.V; U / is well-founded iff U is ℵ1-complete.

Proof .:.

( ) Suppose U is ℵ1-complete, but Ult D Ult.V; U / is ill-founded. Let hfn W n 2 !i 2 V be one such
descending 2Ult-sequence in Ult: for every n 2 !, Ult � “ŒfnC1� 2 Œfn�”. As U is ℵ1-complete in V,

V � “
^
n2!

8
�˛ .fnC1.˛/ 2 fn.˛//” iff V � “8�˛

 ^
n2!

fnC1.˛/ 2 fn.˛/

!
”.

But any such ˛ yields an infinite, decreasing sequence hfn.˛/ W n 2 !i in V, contradicting foundation.

(!) Now suppose Ult.V; U / is not ℵ1-complete. Let ¹Xn W n 2 !º 2 P .U / with
T
n2! Xn … U . From this,

viiiTo see this, let v 2 V be arbitrary. As U is an ultrafilter overK, let X 2 U be such that X ¤ K so that there is some x 2 K nX . Now for
any v 2 V, consider fv to be the map sending every y 2 K to x except for x itself, which is sent to v, i.e. fv D .constx n¹hx; xiº/[ ¹hx; viº.
Note that 8y 2 X .fv.y/ D constx.y// so that fv 2 Œconstx�. Also note that fv ¤ fv0 for v ¤ v0 2 V so that Œconstx� is a proper class.

117



ULTRAPOWERS AND ELEMENTARY EMBEDDINGS CH II §12B

we will construct an infinite, decreasing 2Ult-sequence in Ult, contradicting foundation. Without loss of
generality, assume Xn � XnC1 just by replacing each Xn with

T
i�nXi . Without loss of generality, U is

an ultrafilter over a cardinal �.

For each ˛ < �, let index.˛/ be the least n for which ˛ … Xn. If there is no such n, then write index.˛/ D 0.
For each n 2 !, define the function fn W � ! ! by taking, for ˛ < �,

fn.˛/ D

´
index.˛/ � n if index.˛/ � n
0 otherwise.

So in essence, hfn.˛/ W n 2 !i will start at index.˛/ and decrease by 1 until it is eventually, constantly 0.
As a result, if ˛ 2 Xn, then index.˛/ > n and so fn.˛/ > fnC1.˛/. As almost every ˛ is in Xn, it follows
that 8�˛ .fn.˛/ > fnC1.˛//. So for each n 2 !, Ult � “Œfn� 2 ŒfnC1�”. Consequently, hŒfn� W n 2 !i is
a decreasing 2Ult-sequence, meaning Ult is ill-founded. a

Of course, this doesn’t say that Ult.V; U / or V is necessarily actually well-founded, just that if V is well-founded—if
we start from a well-founded class—then we still remain well-founded after taking the ultrapower. You might think
that this result is obvious, since if Ult.V; U / is a class of V, and V thinks itself is well-founded, surely it must think this
class is too. But the issue is the difference in interpretation of ‘2’. If Ult.V; U / is well-founded, then we can identify
it with a transitive class of V, but otherwise, it’s just some structure whose universe is a class of V.

12B • 4. Definition
Let U be an ℵ1-complete ultrafilter. Define cUlt.V; U / be transitive collapse of Ult.V; U / via �U . Set jU W V !
cUlt.V; U / to be the canonical embedding: jU .x/ D �U .Œconstx �/.

This doesn’t inherently tell us that this (collapsed) ultrapower is different from V, however, which was more obviously
the case when U was principal. If V has no measurable cardinals, it will turn out that V has no ℵ1-complete ultrafilters,
as such ultrafilters will actually be �-complete for some (maximal) � that turns out to be a measurable cardinal.ix

The notion of completeness is also important as it determines the critical point of the canonical embedding.
12B • 5. Theorem

Let U be a non-principal ultrafilter over someK that is �-complete, but not �C-complete for some cardinal � > ℵ0.
Let j W V! cUlt.V; U / be the canonical embedding. Therefore, j ¤ id is traditional and cp.j / D �.

Proof .:.

Let � W Ult.V; U /! cUlt.V; U / be the collapsing isomorphism. First we show that j � � D id � �. To see this,
suppose inductively that j � � D id � � for some � < �. We aim to show j.�/ D �. By elementarity and the
inductive hypothesis, ˛ 2 � iff j.˛/ D ˛ 2 j.�/ so that j.�/ � �. So it suffices to show �.Œconst� �/ D j.�/ � �.

So let � < j.�/ be arbitrary. � can be represented in the ultrapower by some f W K ! V: � D �.Œf �/. Since
Ult.V; U / � “Œf � < Œconst� �”, it follows that

8
�x .f .x/ < const�.x// iff 8

�x .f .x/ < �/ iff 8
�x

0@_
"<�

f .x/ D "

1A .

Suppose for each " < � that :8�x .f .x/ D "/ iff 8�x .f .x/ ¤ "/. As � < �, by �-completeness,

8
�x

0@^
"<�

f .x/ ¤ "

1A iff 8
�x

0@:_
"<�

f .x/ D "

1A iff 8
�x .f .x/ 6< �/,

a contradiction. Hence there must be some " < � where 8�x .f .x/ D " D const".x//. For this ", we then have
Ult.V; U / � “Œf � D Œconst"�” so after collapsing, � D �.Œf �/ D j."/ D " < � . This shows j.�/ � � and thus
equality.

ixThis can be proven just by translating the ultrafilter U to a separate ultrafilter over � according to how elements disappear from a �-length
�-decreasing sequence of elements of U .
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To see that j ¤ id, it suffices to show j.�/ > �. This also shows that cp.j / D �, since we already know
j � � D id � �. To do this, we find a function f W K ! � sitting between every Œconst˛� and Œconst� � in the
ultrapower. To construct f , proceed as follows. AsU is not �C-complete, let hX˛ W ˛ < �iwitness this: X˛ 2 U
for each ˛ < �, but

T
˛<� X˛ … U . By subtracting this intersection we can assume without loss of generality thatT

˛<� X˛ D ;. Furthermore, by using �-completeness, each
T
�<˛ X� 2 U so we can without loss of generality

obtain a sequence where X˛ � Xˇ 2 U for ˇ < ˛ < �. Consider the map f W K ! � sending x 2 K to the
least ˛ < � with x … X˛ . Now consider Œf � in the ultrapower.

Note that for each ˛, almost every x 2 K is in X˛ . In particular, for any fixed ˛, almost every x 2 K has
f .x/ > ˛. So in the ultrapower, for each ˛ < �, Ult.V; U / � “Œf � > Œconst˛�” so in taking the transitive collapse,
�.Œf �/ > j.˛/ D ˛. In particular, �.Œf �/ � �. But clearly, as f is a function from K to �, 8�x .f .x/ <

const�.x// and therefore Ult.V; U / � “Œf � < Œconst� �”, meaning �.Œf �/ < j.�/. Hence � � �.Œf �/ < j.�/ so
that cp.j / D �. a

We now aim to prove two main theorems about ultrapowers dealing with how we can factor embeddings through
ultrapowers, and howwemay represent the elements of ultrapowers. The idea is that an arbitrary traditional j W V! M
can be partially coded through an ultrafilter Uj over cp.j / and thus through the ultrapower.

V M

Ult.V; Uj /

j

jUj

˚
k

12B • 6. Figure: Factoring through the ultrapower embedding

To derive an ultrafilter from j , note that for � D cp.j /, most subsets of � will be shot up beyond � in the sense that
A � � will likely have j.A/ be unbounded in j.�/ > �. In this sense, j.A/ will have many more elements above
those in A. The key thing for us is whether � is in this stretched version of A, j.A/. This clearly is answerable for any
given subset of A, and by elementarity, will be preserved under the necessary operations.

12B • 7. Definition
Let j W V! M be elementary. Define the ultrafilter derived from j to be Uj D ¹A � cp.j / W cp.j / 2 j.A/º.

As described above, it’s not difficult to see that Uj is an ultrafilter. More importantly, Uj is actually a measure over
cp.j /.

12B • 8. Result
Let j W V! M be elementary with cp.j / D �. ThusUj is a measure over �. (Moreover, the club filter Club� � Uj .)

Proof .:.

That Uj is an ultrafilter is easy enough to see as j is elementary: for A � � in V, A … Uj iff � … j.A/ iff
� 2 j.�/ n j.A/ D j.� n A/ iff � n A 2 Uj .

• Uj is easily seen to be non-principal. Otherwise, for some ˛ < �, we’d have ¹˛º 2 Uj and hence � 2
j.¹˛º/. By elementarity of j , j.¹˛º/ has just one element: j.˛/ D ˛ ¤ �, a contradiction.

• For �-completeness, consider ¹A˛ W ˛ < �º � Uj in V for � < �. Since � 2 j.A˛/ for each ˛ < �,
� 2

T
˛<� j.A˛/. Now since � < �, j.�/ D � and hence

� 2
\
˛<�

j.A˛/ D
\

˛<j.�/

j.A˛/ D j
�T

˛<�A˛
�
.

• To show that Uj is normal, let f W � ! � be such that 8�˛ .f .˛/ < ˛/. This means
� 2 j.¹˛ < � W f .˛/ < ˛º/ D ¹˛ < j.�/ W j.f /.˛/ < ˛º

and thus j.f /.�/ < �. So there is some ˇ < � with j.f /.�/ D ˇ D j.ˇ/ and hence 8�˛ .f .˛/ D ˇ/.
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Uj extends the club filter, since being a club is a first-order property. Hence C 2 Club� has j.C / containing a
club of j.�/. Since C � �, C D j.C / \ �, which contains a club of �. As j.C / is closed, � D supC 2 j.C /.
This means that C 2 Uj and thus Club� � Uj . a

This actually proves the earlier claim of Figure 11D • 3: ifU is a �-complete ultrafilter over �, then j W V! cUlt.V; U /
has cp.j / D � and thus its derived ultrafilter Uj is a measure over �.

12B • 9. Theorem (Factoring)
Let j W V! M be elementary with cp.j / D �.
Let Uj be the derived ultrafilter, and let jUj

W V! Ult.V; Uj / be the canonical ultrapower embedding.
Therefore there is a (unique) elementary k W Ult.V; Uj /! M such that j D k ı jUj

and k.Œf �Uj
/ D j.f /.�/.

Proof .:.

Write Ult for Ult.V; Uj /. For each Œf �, define k.Œf �/ D j.f /.�/. Note that this is independent on the choice
of f , since if 8�˛ .f .˛/ D g.˛//, then by definition of Uj , � 2 ¹˛ < j.�/ W j.f /.˛/ D j.g/.˛/º and so
k.Œf �/ D j.f /.�/ D j.g/.�/ D k.Œg�/. Note also that j D k ı jUj

, since k ı jUj
.x/ D k.Œconstx �/ D

j.constx/.�/ D constj.x/.�/ D j.x/.

To see that k as defined is elementary, let '.x/ be a FOL.2/-formula and suppose Ult � “'.Œf �/” for some
Œf � 2 Ult. By Łoś’s Theorem (12 • 2), this happens iff 8�˛ '.f .˛//. By definition of Uj , this means � 2 j.¹˛ <
� W '.f .˛//º/, i.e. M � “'.j.f /.�//”. Rewritten, this says M � “'.k.Œf �//”. Thus k is elementary. a

There are a number of corollaries to this. Firstly, we have a nice theorem of how we can break down ultrapowers.
12B • 10. Lemma

Let U be a measure over �. Therefore �.Œid � ��/ D � and UjU
D U .

Proof .:.

• We know from Łoś’s Theorem (12 • 2) that Ult.V; U / � “Œid � �� > Œconst˛�” for each ˛ < �. Hence in the
collapse (as � is the critical point), cUlt.V; U / � “�.Œid � ��/ > ˛” for each ˛ < � and thus �.Œid � ��/ �
�. To show that �.Œid � ��/ � �, we appeal to normality.

Let ˛ < �.Œid � ��/ be arbitrary. Therefore, by Łoś’s Theorem (12 • 2), 8�ˇ .const˛.ˇ/ < ˇ/. So applying
normality to const˛ , we get that there must be some particular  < � where 8�ˇ .const˛.ˇ/ D  D

const .ˇ// so that Œconst˛� D Œconst � and thus ˛ D  < �. Therefore �.Œid � ��/ � �, and hence equal.

• It suffices to show that A 2 U iff � 2 jU .A/. Rewritten, A 2 U says 8�˛ .˛ 2 constA.˛// which is
equivalent to Ult.V; U / � “Œid � �� 2 ŒconstA�”, meaning �.Œid � ��/ D � 2 jU .A/. a

This has the consequence of showing a trivial version of the factor lemma when M is the ultrapower by a measure. But
this allows us to think about the ultrapower and the “M” in the same way.

12B • 11. Corollary
Let U be a measure over �. Therefore cUlt.V; U / D ¹jU .f /.�/ W f 2 �Vº.

Proof .:.

Let j W V ! cUlt.V; U / be the canonical ultrapower embedding. By Factoring (12B • 9), there is a unique,
elementary k W Ult.V; Uj / ! cUlt.V; U / which obeys k.Œf �Uj

/ D j.f /.�/. Since Uj D U by Lemma
12B • 10, cUlt.V; Uj / D cUlt.V; U / so that k must just be the collapsing isomorphism. Hence every element of
cUlt.V; U / can be represented in this way. a

A slight generalization of this can be used for U that are merely �-complete and not actually measures. The argument
just replaces � with Œid � ��. In fact, Corollary 12B • 11 is equivalent to a �-complete ultrafilter U being normal.
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12B • 12. Theorem
Let j W V ! M be traditional and a class with cp.j / D �. Therefore, there is some ultrafilter U where M D
Ult.V; U / with j as the canonical embedding iff there is some s 2 M where

M D ¹j.f /.s/ W f 2 �Vº,
in which case U D ¹A � � W s 2 j.A/º.

Proof .:.

Suppose M D cUlt.V; U / with j as the canonical embedding. Set s (the seed) to be �U .Œid � ��/ where
�U W Ult.V; U /! cUlt.V; U / is the collapsing map. We know already that M D ¹�U .Œf �U / W f 2 �Vº so for
�U .Œf �U / 2 M arbitrary, it suffices to show that �U .Œf �U / D j.f /.s/. Note that 8�˛ .f .˛/ D f .˛//. We can
think of f .˛/ as coming from the map ˛ 7! f .˛/ or coming from the map ˛ 7! .constf .˛//.id.˛//. Using these
two interpretations, by Łoś’s Theorem (12 • 2), we have that Ult.V; U / � “Œf � D Œconstf �.Œid � ��/”, meaning
that in the collapse, recallling that j.x/ D �U .Œconstx �/,

�U .Œf �/ D �U
�
Œconstf �.Œid � ��/

�
D �U .Œconstf �/

�
�U .Œid � ��/

�
D j.f /.s/.

Now suppose there is some s 2 M with M D ¹j.f /.s/ W f 2 �Vº. Consider the ultrafilter U D ¹A � � W s 2
j.A/º. As in Result 12B • 8, U can be easily shown to be an ultrafilter (by elementarity), and �-complete (by
elementarity and that cp.j / D �). As in Factoring (12B • 9), consider the map k W Ult.V; U / ! M defined by
k.Œf �U / D j.f /.s/. To see that this is well defined, note that Œf �U D Œg�U means8�˛ .f .˛/ D g.˛// implying
s 2 j.¹˛ < � W f .˛/ D g.˛/º/ so that s 2 ¹˛ < j.�/ W j.f /.˛/ D j.g/.˛/º and thus j.f /.s/ D j.g/.s/.

This k is elementary by the same reasoning as in Factoring (12B • 9):
Ult.V; U / � “'.Œf �U ” iff 8

�˛ '.f .˛//

iff s 2 j.¹˛ < � W '.f .˛//º D ¹˛ < j.�/ W M � “'.j.f /.˛//”º
iff Μ � “'.j.f /.s//”.

This implies k is injective and an embedding. So k is actually an ismorphism since it’s clearly surjective: M D
¹j.f /.s/ W f 2 �Vº allow us to merely consider k.Œf �U / D j.f /.s/ for any f W � ! V. Hence cUlt.V; U / D
M and by uniqueness, k is just the collapsing isomorphism, meaning j is the canonical ultrapower embedding.a

As stated before, the s D �U .Œid � ��/ being � is equivalent to normality for �-complete ultrafilters over � > ℵ0.
12B • 13. Result

Let U be a non-principal, �-comlete ultrafilter over � > ℵ1. Let �U W Ult.V; U / ! cUlt.V; U / be the collapsing
isomorphism. Therefore U is normal iff �U .Œid � ��/ D �.

Proof .:.

Let j W V ! Ult.V; U / be the canonical embedding which then has cp.j / D �. Since U is �-complete, it’s
clearly unbounded and thus 8�˛ .˛ > ˇ/ for each ˇ. Restated, this says Ult.V; U / � “Œid � �� > Œconstˇ �” for
each ˇ < �. So after collapsing,

�U .Œid � ��/ � ¹�U .Œconstˇ �/ W ˇ < �º D ¹j.ˇ/ W ˇ < �º D �.
Note that a function f being regressive on a set in U is equivalent to 8�˛ .f .˛/ < ˛/, meaning Ult.V; U / �
“Œf � < Œid � ��”. Thus �U .Œid � ��/ D ¹�U .Œf �/ W f is regressive on a set in U º.

So suppose U is normal. Note that every regressive function f W � ! � has some ˇ < � where Œf � D Œconstˇ �
and thus �U .Œf �/ D �U .Œconstˇ �/ D j.ˇ/ D ˇ. Therefore �U .Œid � ��/ � �, and so we have equality.

Now suppose �U .Œid � ��/ D �. Thus every element of �U .Œid � ��/ is an ordinal less than �, meaning that
every regressive function f W � ! � has �U .Œf �/ D ˇ D �U .Œconstˇ �/ for some ˇ < �. So Œf � D Œconstˇ � and
thus 8�˛ .f .˛/ D ˇ/, meaning U is normal. a

§12C. Properties of ultrapowers
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So we have ultrapowers, and we know what they look like thanks to Theorem 12B • 12. What are some of their
properties, however? The main goal of this subsection is now to look at what happens with the critical point of the
ultrapower embedding: Where is it sent? How close can the ultrapower be to V? What are the combinatorial effects
of taking an ultrapower? A complete answer to these questions won’t be given here (if there even is such an answer).
Instead, we will consider the following results.

12C • 1. Result
Let U be a measure over �. Let j W V! cUlt.V; U / be the canonical embedding. Therefore,

1. cUlt.V; U / is closed under �-length sequences, meaning � cUlt.V; U / � cUlt.V; U /.
2. cUlt.V; U / and V agree up to � C 1, meaning V�C1 � cUlt.V; U / but V�C2 6� cUlt.V; U /;
3. P .�/ D P .�/ \ cUlt.V; U /;
4. U … cUlt.V; U /; and
5. j.�/ is not a cardinal of V: � < 2� � .2�/cUlt.V;U / < j.�/ < .2�/C.

To prove these from the ground up, we need some results about measurable cardinals which we have not introduced
yet. Instead, just assume the following lemma.

12C • 2. Lemma
Let � have a measure U over it. Therefore, � is strongly inaccessible.

Proof .:.

� is regular by �-completeness of its measure. � is uncountable by elementarity of j . To show that � is a strong
limit, suppose not, and let � < � have 2� � �.

So consider family ƒ � P .�/ be of size jƒj D �. Take a corresponding ultrafilter W � P .ƒ/ with U and the
bijection with �. This W , however, will not be �-complete, contradicting that U is. To see this, for each ˛ < �,
consider

X˛ D

´
¹x 2 ƒ W ˛ 2 xº if this is in U
¹x 2 ƒ W ˛ … xº otherwise.

By construction, X˛ 2 U for all ˛ < �. The intersection of all these, by �-completeness of U , is in W . ButT
˛<�X˛ is a single subset of �, contradicting nonprincipality. a

Proof of Result 12C • 1 .:.

To save space, write M D cUlt.V; U / and Ult D Ult.V; U / with � W Ult! M the collapsing isomorphism.
1. Let Ex D hx˛ 2 M W ˛ < �i be a �-length sequence (in V). Represent x˛ D �.Œf˛�/ for f˛ W � ! V.

Consider the sequence (also in V) Ef D hf˛ W ˛ < �i. Now we consider j. Ef /. By elementarity, j. Ef / is a
sequence of length j.�/. Moreover, for every ˇ < �, 8�˛ . Ef .ˇ/.˛/ D fˇ / so by Łoś’s Theorem (12 • 2),

Ult � “Œconst Ef
�.Œconstˇ �/ D Œfˇ �” iff j. Ef /.ˇ/ D �.Œconst Ef

�/.�.Œconstˇ �// D �.Œfˇ �/ D xˇ .

Thus j. Ef / � � D Ex. As �; j. Ef / 2 M, it then follows that Ex 2 M.
2. This follows by Result 12A • 8 and (4) below.
3. This follows by Result 12A • 8.
4. Every ˛ < j.�/ has a represenation Œf � in Ult which then obeys 8�ˇ .f .ˇ/ < const�.ˇ//, meaning we

can assume without loss of generality that f W � ! �. Since there are only 2� many such f , we have our
surjection: F mapping f 7! �.Œf �/. Suppose U 2 M so that for any f 2 .��/M D ��, we can form Œf �

and thus the map F within M. HenceM � “� < j.�/ � �� D 2�”, contradicting Lemma 12C • 2 since by
elementarity, j.�/ is also strongly inaccessible.

5. By (3), 2� � .2�/M. We of course know � < 2� by Cantor’s theorem. We have j.�/ > .2�/M because � is
a strong limit in V so that j.�/ is a strong limit in M. We have j.�/ < .2�/C since the argument given in
(4) tells us that there’s a surjection from �� D 2� to j.�/ in V. a

Now all of this has been a kind of coded way of talking about measurable cardinals by way of their measures.
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§12D. Measurable cardinals

Although we have mentioned measurable cardinals before, they should be given a formal introduction. Measurable
cardinals are important for their two equivalent characaterizations: having a measure, and being the critical point of
an elementary embedding. Measurable cardinals will be quite large, and their importance is partly for the ultrapowers
mentioned in the rest of this section, but also in motivating a canonical inner model LŒU � to be introduced later.

12D • 1. Definition
A cardinal � > ℵ0 is measurable iff there is a non-principal, �-complete ultrafilter over �.

Note that by the results above, there are several different characterizations of this.
12D • 2. Result

Let � � ℵ0 be a cardinal. Therefore, the following are equivalent:
1. � is measurable, i.e. � > ℵ0 has a non-principal, �-complete ultrafilter over it.
2. � has a measure over it.
3. � is the critical point of an elementary j W V! M, where M is a transitive class of V.

Proof .:.

Clearly (2) implies (1) with the only thing to check being that � is uncountable. But normality implies this:
suppose � D ℵ0 with U a measure over ℵ0. Consider f W ! ! ! defined by f .0/ D 0 and f .n/ D n � 1 for
n > 0. As f .n/ � n iff n D 0, it follows by uniformity that 8�n .f .n/ < n/. So by normality, there is some
m < ! where 8�n .f .n/ D m/. But f �1.m/ � ¹m;mC 1º … U by uniformity. Therefore � ¤ ℵ0.

So suppose (1) holds: � is measurable as witnessed by U . Therefore Ult.V; U / is well-founded since � � ℵ1:
�-completeness implies ℵ1-completeness. Hence the canonical embedding j W V! cUlt.V; U / has cp.j / D �

by Theorem 12B • 5 showing (3).

If (3) holds, the derived ultrafilter Uj is a measure over � by Result 12B • 8, yielding (2). a

This equivalence of measurability and being a critical point is an important one in the sense that each characterization
has various corollaries, and when combined they give a clearer picture of measurable cardinals. Consider the following
consequences, for example, showing just how large measurables need to be. We already know that just one inaccessible
goes beyond what ZFC can prove. In fact, the consistency of just any number of inaccessibles can’t be proven relative
to the consistency of any fewer number of them. Now consider how strong the existence of measurables is.

12D • 3. Corollary
Let � be measurable. A cardinal � ismahlo iff ¹� < � W � D j� j is inaccessibleº is a stationary subset of �. Therefore

1. � is strongly inaccessible by Lemma 12C • 2;
2. � is the �th (strongly) inaccessible cardinal;
3. � is the �th mahlo cardinal;
4. � has a measure by Result 12D • 2; and
5. � has a measure that extends the club filter Club� by Result 12B • 8.

Proof .:.

Let U be a measure over �, and let j W V! M be elementary with M � V a transitive class.
2. Note that a cardinal � being strongly inaccessible is downward absolute. So if � is strongly inacces-

sible in V, then it is in M, meaning that M thinks that j.�/ has an inaccessible below it: �. So for
each ˛ < �, M � “9x.x is inaccessible and ˛ < x < j.�//”. So by elementarity, for each ˛ < �,
V � “9x.x is inaccessible and ˛ < x < �/”. So the set of inaccessible cardinals below � is unbounded
in �. As � is regular, � is the �th inaccessible.

3. Firstly, to see that � is mahlo, take j W V ! M � V elementary with cp.j / D �. For any club
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C � �, j.C / � j.�/ is also club, and since C D j.C / \ �, it follows that � 2 j.C / and thus
M � “j.C / has an inaccessible member”. By elementarity and absoluteness, C has an inaccessible mem-
ber so that the set of inaccessibles below � is stationary and � is mahlo.

� is still mahlo in M, since P .�/ D P .�/ \ M meaning that M contains every club of � as well as the
stationary set of inaccessibles above. Hence being a stationary subset of � is absolute between M and V.
Thus the above j.C / contains a mahlo cardinal in M. By elementarity, C contains a mahlo cardinal in V,
and thus the set of mahlos below � is stationary, and thus � is the �th mahlo cardinal. a

One might be tempted to apply the reasoning of Corollary 12D • 3 to the property of being measurable, which would
seem to indicate that any measurable cardinal � would need to be the �th measurable cardinal, or it seems at least
there can’t be a least measurable. To simplify the issue, let � be the least measurable cardinal, and let j W V! M be
traditional. It would seem that j.�/ has a measurable below it, and thus � does too, contradicting that � is the least
measurable. The issue is that � might not be measurable in M, because we’ve thinned out the universe to M � V such
that it no longer contains a measure, as seen in Result 12C • 1.

Moreover,M, being the collapsed ultrapower, has further properties that present limitations on the kinds of embeddings
that can be realized by ultrapowers. The properties of being inaccessible, mahlo, and so forth could be used with the
above reasoning, since they deal only at the level of V� and V�C1, but issues creep in if we try going beyond this, like
the statement of being measurable. This is again a result of the agreement between the ultrapower and V as seen in
Result 12C • 1.

Now despite the fact that the reasoning of Corollary 12D • 3 breaks down when we try to apply them to the property
of, for example, being measurable, the reasoning does apply when V D L. This is because of L being the smallest inner
model: cUlt.V; U / D V D L which forces M to still recognize � as measurable.

12D • 4. Theorem (L Has No Measurable Cardinals)
Let � be measurable. Therefore V ¤ L.

Proof .:.

Without loss of generality, let � be the least measurable cardinal, and assume V D L. By Result 12D • 2, there is
an elementary embedding j W L! M with a transitive class M � L. By elementarity,

M � ZFCC “V D L”C “j.�/ is the least measurable”.
Condensation implies M D L, and thus the two agree on �: M � “� is the least measurable”, which contradicts
that � is the critical point of j : � ¤ j.�/. a

This is a relatively easy proof due to condensation, but there is a more complicated proof due to a more general result.
12D • 5. Theorem (Kunen's Inconsistency Theorem)

Let j W V! V be traditional and a class. Therefore j D id.

Proof .:.

Assume j ¤ id. By Result 12A • 3, there is some critical point � D cp.j /. By repeatedly applying j , we get the
sequence hj n.�/ W n 2 !i. Let � D supn2! j

n.�/. By applying j to the sequence, by elementarity, we get that
j.hj n.�/ W n 2 !i/ D hj nC1.�/ W n 2 !i, and that j.�/ D supn2! j

nC1.�/ D � . As a fixed point of j , this is
good. Unfortunately, � isn’t regular. So instead consider the next cardinal, which by elementarity is also fixed:
j.�C/ D j.�/C D �C.

As �C is regular, consider the stationary subset of ordinals with cofinality !: S D S�C

! D ¹˛ < �C W cof.˛/ D
!º. This can be closed under fix-points of j , since j.˛/ D sup.j "˛/ for cof.˛/ < cp.j /. The resulting set is also
unbounded since j "�C D �C. What this means is that

C D ¹˛ < �C
W cof.˛/ D ! ^ j.˛/ D ˛º
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is almost a club. In particular, CC—the closure of C under all sequences—is club in �C with no new elements
of cofinality !. As a result, any stationary subset of S will intersect C .

But any stationary set of �C may be partitioned into �C stationary subsets. In particular, we can consider subsets
S˛ � S for ˛ < �—just take the union of S0 with the guaranteed S˛ for � � ˛ < �C and make this the new
S0—where all the S˛s are stationary and pairwise disjoint. Applying j , we get another sequence, this time of
length j.�/, of pairwise disjoint, stationary subsets of �C: hZ˛ W ˛ < j.�/i D j.hS˛ W ˛ < �i/. By the above
ideas on CC, Z� \CC ¤ ;. So there is some element � 2 Z� \CC. As the S˛s partition S , there is also some
˛ < � with � 2 S˛ \ CC. But then � D j.�/ 2 j.S˛/ D Zj.˛/. As ˛ < � D cp.j /, j.˛/ D ˛, yielding that
Z˛ \Z� ¤ ;, a contradiction. a

It’s a good exercise to see where this proof breaks down for traditional j W V ! M. Note that this doesn’t say that
there can be no (non-trivial) j W W ! W for W � ZFC a proper class,x just that no j can exist as a class of V in this
case. There are several other ways to state Kunen’s Inconsistency Theorem (12D • 5), one that is closer to the original
form of the proof is below.

12D • 6. Theorem (Kunen's Inconsistency Theorem Version 2)
Let j W V! M be traditional and a class. Let j.�/ D � > cp.j /. Therefore j � � … M and hence V ¤ M.

Proof .:.

It suffices to show that j "� … M since as an embedding, j � � is just the increasing enumeration of j "�. Without
loss of generality, assume � is the least fixed point above � which, as before, takes the form supn<! j

n.�/ where
j n.�/ D j.j.� � � .j.�// � � � //, just applying j n times. It follows that .2<�/M D � because � is the limit of M-
measurable cardinals. Since the cofinality of � is !, we have that 2� D �ℵ0 (any sequence in �2 is the !-length
supremum of things in <�2 D �). The following useful claim is a theorem of Erdős and Hajnal.

Claim 1
There is a function f W Œ��! ! � such that for every X � � with jX j D �, f "ŒX�! D �.

Proof .:.

Consider eventual equivalence over Œ��! , i.e. for r; s 2 Œ��! , r � s iff r n ˛ D s n ˛ ¤ ; for some ˛ < �.
It’s not hard to check that � is an equivalence relation. So let c choose representatives for equivalence
classes: Œr�� D Œc.Œr��/�� and let g W Œ��! ! � be max.r 4 c.Œr��// (and 0 if they are the same), hence
c.Œr��/ n .g.r/C 1/ D r n .g.r/C 1/. We work primarily with g � Œƒ�! for some ƒ � � and then may
instead consider f by way of a bijection between ƒ and �.

Suppose there is no �-sized ƒ � � such that every X � ƒ with jX j D jƒj has g"ŒX�! � ƒ. For n < !,
inductively define

1. ƒ0 D � n 1 and ˛0 D 0.
2. ƒnC1 � ƒn is arbitrary of size �.
3. ˛nC1 2 ƒn with ˛nC1 > ˛n witnessing the hypothesis for ƒ D ƒn and X D ƒnC1: ˛nC1 …

g"ŒƒnC1�
! .

But then r D ¹˛n W n < !º 2 Œ��! and we can consider s D r n c.Œr��/ 2 Œ��! . Since s � r ,
c.Œs��/ D c.Œr��/ and hence the place where they differ must be an element of s � r , not c.Œs��/. In fact,
g.s/ is just max.c.Œr��/ n r/ 2 r . So let g.s/ D ˛n and note that then ˛n 2 g"Œƒn�! , a contradiction with
(3) (and (1)).

So such a ƒ � � of size � exists. Through a bijection b W �! ƒ we can define f by f .x/ D g.b"x/. a

So let f be as in Claim 1. Since j is elementary and �; ! are both fixed points of j , j.f / also acts as in Claim
1 inM. So if we consider j "� � � which has size �, we get some r 2 Œj "��! such that j.f /.r/ D cp.j /. Since
r � j "�, we can enumerate r D ¹j.tn/ W n < !º D j.¹tn W n < !º/ D j.t/ for t D ¹tn W n < !º 2 Œ��! . It

xIn particular, if there is a measurable cardinal, then there are such embeddings from inner models into themselves.

125



ULTRAPOWERS AND ELEMENTARY EMBEDDINGS CH II §12 E

follows that j.f /.r/ D j.f /.j.t// D j.f .t// D cp.j /, which is a contradiction: f .t/ would be an ordinal but
j.˛/ < cp.j / for ˛ < cp.j / while j.cp.j // > cp.j /. a

§12E. A first look at iterated ultrapowers

If we have a measure U , we can get an elementary embedding j0;1 W V ! M1 D cUlt.V; U / � V where M1 �
“j0;1.U / is a measure”. Hence we get an elementary embedding j1;2 W M1 ! M2 � M1 which then has

M2 � “j1;2.j0;1.U // is a measure”.
Defining j0;2 as j1;2 ı j0;1 means that j0;2 W V! M2 is elementary. We can keep doing this procedure for all n < !:
getting a directed system of embeddings and transitive models hMn; jn;m W n � m 2 !i such that for n;m < !, we
define

• M0 D V, U D U0 is a measure over �0 in V;
• MnC1 D cUltMn.Mn; Un/ with jn;nC1 W Mn ! MnC1 the canonical embedding;
• jn;n D id, and jn;mC1 D jm;mC1 ı jn;m, thus defining jn;m whenever n � m < !; and
• �n D j0;n.�/ D cp.jn;nC1/, and Un D j0;n.U / which Mn thinks is a measure over �n.

This can be visuallized with the following figure.

� � �

�

j0;1.�/

j0;2.�/

V D M0 M1 M2

12E • 1. Figure: Iterated Ultrapowers by U

From techniques of model theory, this system yields a direct limit, M! , and corresponding limit embeddings, which
then show thatM! � “j0;!.�/ is measurable”. The non-trivial fact that this direct limit is well-founded is what allows
us to continue up through all of the ordinals.

Well-foundedness of the limit isn’t trivial, and it’s important that we’re using measures on different cardinals: UnC1

is a measure over �nC1 > �n. More precisely, if we had a directed system of transitive models and their elementary
embeddings hMn; jn;m W n < m 2 !i where each jn;m has the same critical point �, then with direct limit embeddings
jn;! W Mn ! M! , hjn;!.�/ W n < !i is an infinite decreasing sequence of ordinals of M! , showing M! isn’t well-
founded.xi

If the ˛th (linear) iterated ultrapower of M by U is well-founded, we will usually write the collapse as cUlt˛.M; U /
with cUlt0.M; U / D M. The corresponding embedding will be j0;˛ . For the sake of space, we will often write just
cUlt˛ or cUltM˛ if the meaning is clear. Similarly, we will often write �˛ D j0;˛.�/ if U is a measure over � 2 M, and
U˛ D j0;˛.U / for the corresponding measure.

This whole process defines a linear iteration: Mn embedds intoMm for n � m. Later on, we’ll consider iteration trees,
where MnC1 might not be the ultrapower of Mn, but of some Mn� for an n� < n.

xiSuch a sequence isn't in the direct limit, it just shows in V (and Mn for every n < !) that there's an infinite 2M! -decreasing sequence.
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12E • 2. Definition
Let � be measurable with measure U . Let � � Ord. Therefore the �-length linear iteration of V by U is the system
hcUlt˛.V; U / D cUlt˛; j˛;ˇ W ˛ � ˇ < �i such that for all � � ˛ � ˇ < �,

• cUlt0 D V;
• cUlt˛C1 D cUltcUlt˛ .cUlt˛; j0;˛.U //, and j˛;˛C1 is the canonical ultrapower embedding;
• cUlt˛ D dir lim�<˛cUlt� for ˛ a limit, and j�;˛ is the direct limit embedding; and
• j˛;ˇ W cUlt˛ ! cUltˇ is elementary with j˛;ˇ ı j�;˛ D j�;ˇ (and j˛;˛ D id).

Note that if we have an �-length iteration of V byU a measure over �, cUlt˛ � “j0;˛.U / is a measure over j0;˛.�/” for
all ˛ < �. We know byTheorem 12B • 3 that cUlt˛ is well-founded for successor ˛, but cUlt˛ is also well-founded for
limit ˛. The proof of this is not immediate, however, and relies on the idea of taking ultrapowers within ultrapowers.
So if M � V, the ultrapowers of M by U 2 M as calculated by M are written cUltM˛ .

Here UltM.N;U / D ¹Œf ��U
W f 2 M ^ f W � ! NMº, so we consider functions in M. For the most part, we will

focus on ultrapowers of the form UltM.M; U /. The major result about taking ultrapowers within ultrapowers is that the
resulting sequence is the tail of the sequence starting from V.

12E • 3. Lemma (The Factor Lemma)

Let U be a measure over �. Let ˛; ˇ 2 Ord. Therefore cUltcUltˇ˛ D cUltˇC˛ and j cUltˇ
0;˛ D jˇ;ˇC˛ . In particular,

j0;˛ D j0;ˇ ı j
cUltˇ
0;˛�ˇ

when ˛ > ˇ.

Proof .:.

Proceed by induction on ˛. Clearly the result holds for ˛ D 0, since by definition cUltˇ D cUltcUltˇ0 . Similarly,
for ˛ a limit, by the inductive hypothesis, the equalities hold for the direct limits.

For ˛ C 1 a successor, by the inductive hypothesis cUltˇC˛ D cUltcUltˇ˛ . Let UˇC˛ D j0;ˇC˛.U / D j
cUltˇ
0;˛ .U /

where j0;ˇC˛ W V! cUltˇC˛ . Note that both ultrapowers use this measure:

cUltcUltˇ˛C1 D cUltcUlt
cUltˇ
˛ .cUltcUltˇ˛ ; j

cUltˇ
0;˛ .U //

D cUltcUltˇC˛ .cUltˇC˛; j0;ˇC˛.U // D cUltˇC˛C1.

Moreover, the ultrapower embeddings are the same: j cUltˇ
˛;˛C1 D jˇC˛;ˇC˛C1, sincewe’re just taking constantmaps

from the same universe cUltˇC˛ , and the collapsing map � W UltcUltˇC˛ .cUltˇC˛; j0;ˇC˛.U // ! cUltˇC˛C1 is
unique. By the inductive hypothesis, j cUltˇ

0;˛ D jˇ;ˇC˛ and so finally

j
cUltˇ
0;˛C1 D j

cUltˇ
˛;˛C1 ı j

cUltˇ
0;˛ D jˇC˛;ˇC˛C1 ı jˇ;ˇC˛ D jˇ;ˇC˛C1. a

As a result, we can get a better understanding of the direct limit ultrapowers, because we can approach them from
ostensibly different ways. The Factor Lemma (12 E • 3) tells us that these ways are all equivalent. So when we pull
back the direct limit to a previous ultrapower, we can push forward and end up back at the same place. This idea is
exemplified in the proof that the direct limits are well-founded.

12E • 4. Theorem (The Wellfoundedness of Iterated Ultrapowers)
Let U be a measure over �, and let ˛ 2 Ord. Therefore the ˛th ultrapower Ult˛.V; U / is well-founded.

Proof .:.

For ˇ �  , let eˇ; W cUltˇ .V; U /! Ult .V; U / be elementary. Let jˇ; W cUltˇ .V; U /! cUlt .V; U / be the
usual elementary map so that if � W Ult .V; U / ! cUlt .V; U / is the collapsing map, jˇ; D � ı eˇ; . We
unfortunately can’t consider jˇ;˛ if Ult˛ D Ult˛.V; U / is ill-founded, so we must consider eˇ;˛ instead. Note we
still have the same sort of factoring: eˇ;˛ D e�;˛ ı jˇ;� whenever ˇ � � � ˛.

All successors are well-founded clearly by Theorem 12B • 3, so assume ˛ is the least limit where Ult˛ is
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ill-founded, making Ult˛ the direct limit of well-founded models. Ill-foundedness of the model implies ill-
foundedness of OrdUlt˛ by translating things to rank. This means there is a sequence hxn W n 2 !i of Ult˛-ordinals
where xnC1 2

Ult˛ xn.

Without loss of generality (just take a sufficiently large ordinal), let x0 D e0;˛.�/ where � 2 Ord is the least such
that he0;˛.�/;2Ult˛ i is ill-founded (from the perspective of V). Thus

V � “8˛0
� ˛ 8� 0 < �

�
heV0;˛0.�

0/;2Ult˛0 i is well-founded
�
”.

Note by The Factor Lemma (12 E • 3) that ecUltˇ0;˛0 D e
V
ˇ;ˇC˛0 . So by elementarity, for any ˇ < ˛,

cUltˇ � “8˛0
� j V

0;ˇ .˛/ 8�
0 < j V

0;ˇ .�/
�˝
eVˇ;ˇC˛0.�

0/;2cUltˇC˛0
˛
is well-founded

�
”. (�)

As the direct limit, let x1 D eˇ;˛.� 0/ for some � 0 2 cUltˇ and ˇ < ˛. By the factor lemma, this means
Ult˛ � “eˇ;˛.� 0/ D x1 < x0 D e0;˛.�/ D eˇ;˛ ı j0;ˇ .�/”.

So by elementarity, � 0 < j0;ˇ .�/. Write ˛0 for the ordinal such that ˇ C ˛0 D ˛ so ˛0 � ˛ � j0;ˇ .˛/. Therefore
˛0 � ˛ and � 0 < j0;ˇ .�/ yield by (�)

cUltˇ � “hj V
ˇ;ˇC˛0.�

0/;2cUltˇC˛0 i D hj V
ˇ;˛.�

0/;2Ult˛ i is well-founded”. (��)

But hxn W n 2 ! n 1i is 2Ult˛ -decreasing with x1 D j V
ˇ;˛
.� 0/. Since well-foundedness is absolute between

transitive models like cUltˇ � V, we can’t have (��). a

:::

� �

j0;ˇ .�/

j0;˛.�/

jˇ;˛.�/

V cUltˇ cUlt˛

‡
well-founded
according to cUltˇ
and thus also to V

ƒ

least ill-founded
ordinal image
according to V

12E • 5. Figure: Proof of The Wellfoundedness of Iterated Ultrapowers (12 E • 4)

The general idea of the very notation-heavy proof can be seen with Figure 12 E • 5.

Due to the concreteness of the definition of the iterated ultrapowers, we have a useful characterization of the resulting
ultrafilters—at least at limit stages. Of course, these sets won’t be ultrafilters in V, but the point stands that we have
a conceptually simple way of identifying sets in them. We know already that x 2 U0 iff �0 2 jU0

.x/, and there is a
natural generalization of this.

12E • 6. Lemma
Let U be a measure over �. Let � 2 Ord be a limit ordinal and x 2 cUlt�.V; U / D cUlt�. Write �˛ D j0;˛.�/,
U˛ D j0;˛.U /, and x˛ D j�1

˛;�
.x/ (if it exists) for ˛ � �. Therefore the following are equivalent.

1. x 2 U�.
2. �˛ 2 x for some ˛ < � such that j�1

˛;�
.x/ exists.

3. �˛ 2 x for all sufficiently large ˛ < �.

Proof .:.
(1)! (2) Note that � is a limit ordinal, which means x˛ D j�1

˛;�
.x/ exists for some ˛ < �. Applying j�1

˛;�
,

x 2 U� iff cUlt� � “�� 2 j�;�C1.x/” iff cUlt˛ � “�˛ 2 j˛;˛C1.x˛/”.
Note that �˛ < cp.j˛C1;�/. So by applying j˛C1;� andThe Factor Lemma (12 E • 3), we get the desired
result: �˛ 2 j˛C1;�.j˛;˛C1.x˛// D x.

(2)! (3) Proceed by induction. Consider the least ˛ < � such that �˛ 2 x and x can be pulled back to cUlt˛ .
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Let j˛;�.x˛/ D x. Applying j�1
˛C1;�

, we get by elementarity
cUlt� � “�˛ 2 x” iff cUlt˛C1 � “�˛ 2 x˛C1”

since �˛ < cp.j˛C1;�/. Therefore x˛ 2 U˛ . So applying j˛;ˇ , we get that xˇ 2 Uˇ for all ˛ < ˇ < �.
But then �ˇ 2 xˇC1 for all ˛ < ˇ < �. Applying jˇC1;� yields by elementarity that �ˇ 2 x since
�ˇ < cp.jˇC1;�/. Thus �ˇ 2 x for all ˇ � ˛.

(3)! (1) As � is a limit, x can be pulled back to some x˛C1 2 cUlt˛C1 meaning j˛C1;�.x˛C1/ D x. By (3),
we can assume without loss of generality that �˛ 2 x and hence �˛ 2 x˛C1, just by applying j˛C1;�.
Therefore x˛ 2 U˛ so by elementarity, x 2 U�. a

We also get some expected properties of the sequence h�˛ W ˛ 2 Ordi.
12E • 7. Result

Let U be a measure over �. Let �˛ D j0;˛.�/ for ˛ 2 Ord. Therefore the sequence h�˛ W ˛ 2 Ordi is increasing, and
continuous.
Proof .:.

That the sequence is increasing is clear byTheorem 12B • 5: �˛ D cp.j˛;˛C1/ and thus �˛C1 D j˛;˛C1.�˛/ > �˛ .
To see that the sequence is continuous, we already know since the sequence is increasing that �˛ � supˇ<˛ �ˇ
for ˛ a limit. So let � < �˛ be arbitrary. As the direct limit, write � D jˇ;˛./ for some ˇ < ˛ and  . By
elementarity,  < �ˇ and thus � D jˇ;˛./ D  < �ˇ < �˛ . a

The final result of this section, analogous to Result 12A • 8, is an easy corollary to The Factor Lemma (12 E • 3).
12E • 8. Corollary

Let U be a measure over �. Let �˛ D j0;˛.�/ where cUlt˛ D cUlt˛.V; U /. Let x 2 P .�˛/ \ cUlt˛ .
Therefore x D �˛ \ j˛;ˇ .x/.
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Section 13. Introducing Extenders

Put mildly, an extender is a system of ultrafilters that work nicely with each other. The point of extenders is to witness
various large cardinal properties in the same way that a measure witnesses the existence of a measurable. Again, we
will have an association with elementary embeddings, and in some sense the extender gives a natural way of extending
certain smaller models to larger ones.

As many of the standard resources for extenders do not go into such detail, we will attempt to be fairly thorough here,
proving in at least a hand-wavy detail each of the claims made. Further results, as usual, are left as guided exercises at
the end of the section. The general approach with this section on extenders is to give two types of extenders: extenders
derived from an elementary embedding, and extenders which merely satisfy certain first-order properties. Then we
show these two types are really the same thing. Then we investigate some basic properties. To begin, we consider
extenders derived from elementary embeddings before considering them in general.

To motivate extenders, consider a set of measures Ur on cardinals �r associated to each finite subset r 2 Œ��<! . We
can then consider the ultrapowers cUlt.V; Ur / for each r 2 Œ��<! . How do these ultrapowers interact, however? An
extender has these measures as “nice” in that if r � s, then we have a very natural translation between the sets of Ur
and the sets of Us in a way that induces an elementary embedding jr;s W cUlt.V; Ur / ! cUlt.V; Us/. The fact that
we’re using finite subsets of � tells us that we have a directed system: for any two r; s 2 Œ��<! , there’s a common
extension r; s � t 2 Œ��<! . This will tell us that we have a directed system of elementary embeddings between the
ultrapowers and subsequently we can take the direct limit which we call cUltE .V/ where E is the extender composed
of these Urs. The importance of this extender ultrapower is that it can have nicer properties than the ultrapower by any
measure, and derived extenders are able to talk about more of an elementary embedding than a derived measure is.

Depending on what properties we want the extender ultrapower to have, it can often suffice to use some fixed � D �r
for every r 2 Œ��<! .xii Such extenders are called short extenders because we end up with � � jE .�/. Long extenders
have �r > � and as a result can have jE .�/ > �.

§13A. Extenders derived from an elementary embedding

The formal definition of an extender is both complicated, and ill-motivated at this point. To grasp some of the fun-
damental properties, we will begin with a simple “example” of an extender, being one derived from an elementary
embedding. In the following motivation, the requirement � � j.�/ makes this a short extender, and is here mostly for
simplicity.

Suppose j W V! M is traditional and a class. Let � D cp.j / and let � be such that � < � � j.�/. The usual definition
of the .�; �/-extender derived from j is merely

E
j

�
D ¹hr; Xi 2 Œ��<! � P .Œ��<!/ W r 2 j.X/º,

E D E
j

�
generalizes the derived measure which can be thought of asUj D ¹h¹�º; Xi 2 Œ�C1�<!�P .�/ W � 2 j.X/º.

For each r 2 Œ��<! , we get the slice Er of E as an ultrafilter over Œ��<! , as we will show. In fact, each Er will be
�-complete. To get a better intuition on what these Er look like, it’s not difficult to show that 8�

Er
t .jt j D jr j < ℵ0/.

But the point is that an elementary embedding gives all sorts of �-complete, non-principal ultrafilters defined in this
way and moreover, the resulting ultrapowers are well-founded. Let’s take a moment to examine these ultrapowers
without actually proving any of the statements yet. Again, as with Factoring (12B • 9), we can define an embedding
kr W cUlt.V; Er /! M by kr .�r .Œf �Er

// D j.f /.r/, when f is a function with domain Œ��<! and �r is the collapsing
xiior at least for technical reasons r 2 Œ��<! n Œ��<!
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isomorphism for Ult.V; Er /. The result is again that j D kr ı jr , where jr W V ! cUlt.V; Er / is the canonical
embedding: the transitive collapse applied to the constant function.

V M

cUlt¹�º cUlt¹�C1;4º � � � cUlt¹!1º cUlt¹�C�º

cUlt¹4;�;�C1º � � � cUlt¹4;!1;�C1º � � � cUlt¹!1;�C�º

� � �

cUltE .V/

j

k

13A • 1. Figure: Factoring with extenders

Abenefit of using finite subsets of� is that they give amore complexweb of ultrapowers thanwith the linear ultrapowers
of Subsection 12 E. In particular, for r � s 2 Œ��<! , we get embeddings jr;s W cUlt.V; Er /! cUlt.V; Es/. And these
will commute and allow us to form a directed system of the ultrapowers, giving a well-founded direct limit which
will be referred to as cUltE .V/, as seen in Figure 13A • 1 (which writes cUltr for cUlt.V; Er / to save space, and also
assumes � > � C �).

To establish all of these facts in a more general setting, where we involve ultrafilters on potentially more than just �, we
must give a formal definition of a derived extender. Note that �r might be very different from �. Indeed, for r D ¹˛º
for ˛ < �, it follows that �r D ˛ C 1, which isn’t even a limit ordinal, let alone a cardinal.

13A • 2. Definition
Let j W V! M be traditional and a class. Let � D cp.j /, and let � be an ordinal of V with � < �.

• For r 2 Œ��<! , let �r be the least ordinal such that j.�r / > max.r/ (so �r � max.r/C 1).
• Define the .�; �/-extender derived from j to be

E
j

�
D
®
hr; Xi 2 Œ��<! � P .Œ�r �

<!/ W r 2 j.X/
¯
.

• For E D Ej
�
and for a finite r � �, write Er D

®
X � Œ�r �

<! W hr; Xi 2 E
¯
.

• Call E short iff � � j.�/ and long otherwise.

This distinction between long and short can be instead thought of in terms of these �rs. Note that we can also think of
these �rs as instead indexed by ordinals below �: it’s easy to see that

¹�r W r 2 Œ��
<!
º D ¹�¹˛º W ˛ < �º D ¹� W 9˛ < � .� is the least such that j.�/ > ˛/º.

We also get a very simple re-characterization of short extenders that motivates why we could simply use � and forgo
these �rs in the motivating idea before. So any reader overwhelmed by notation can instead just assume each �r is �
for simplicity and realize they are working with short derived extenders.

13A • 3. Result
Let j W V ! M be traditional and a class. Let E D E

j

�
be the derived .�; �/-extender. Therefore E is short iff

� D �r for every r 2 Œ��<! n Œ��<! .

Proof .:.

Clearly � � �r for max.r/ > � since cp.j / D �. Note that for r 2 Œ��<! n Œ��<! , �r D � iff j.�/ > max.r/.
Hence �r D � for every r 2 Œ��<! n Œ��<! iff j.�/ > max.r/ for every r 2 Œ��<! n Œ��<! iff j.�/ > ˛ for every
� � ˛ < � iff � � j.�/. a

Each Er is analogous to the ultrafilter defined in Result 12B • 8. Now although �-completeness was stated for ultra-
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filters over cardinals, the defining property easily generalizes to ultrafilters over an arbitrary set: it’s �-complete iff
the intersection of < �-many sets in the ultrafilter is also in the ultrafilter. In particular, we can say that each Er is a
�-complete ultrafilter.

13A • 4. Setup
Let j W V! M be traditional. Let � D cp.j / < �. Let E D Ej

�
be the .�; �/-extender derived from j .

13A • 5. Result
Assume Setup 13A • 4. Therefore, for each r 2 Œ��<! ,

• Er 2 E is a �-complete ultrafilter over Œ�r �<! in V.
• �r is the least ordinal with Œ�r �<! 2 Er .
• Er is non-principal iff r … Œ��<! . And in either case, Ult.V; Er / is then well-founded.

Proof .:.

Firstly, ; ¤ Er ¨ P .Œ�r �<!/, the second strict inequality following since r … j.;/, and the first following by
r 2 Œj.�r /�

<! D j.Œ�r �
<!/ implying Œ�r �<! 2 Er . By minimality of �r , we actually have that �r is the least

such ordinal. That Er is closed upward and under intersections follows from elementarity: r 2 j.X/ � j.Y / for
Y � X 2 Er and r 2 j.X/ \ j.Y / D j.X \ Y / whenever X; Y 2 Er . So Er is a filter. Being an ultrafilter
is similarly easy: let X � Œ�r �

<! . If X … Er then r … j.X/. Thus r 2 Œj.�r /�<! n j.X/ D j.Œ�r �
<! n X/,

meaning Œ�r �<! nX 2 Er .

Er is �-complete for the same sort of reason as in Result 12B • 8: let � < � and ¹X˛ W ˛ < �º 2 P .Er /. Since
r 2 j.X˛/ for each ˛ < � and j.�/ D � , it follows that r 2

T
˛<� j.X˛/ D j

�T
˛<� j.X˛/

�
.

Er is non-principal whenever max.r/ � � since if there were some a 2 Œ��<! where r 2 j.X/ iff a 2 X , then
r 2 j.¹aº/ D ¹j.a/º implies r D j.a/, which is impossible, since a is a finite subset of �: apply elementarity to
˛ 2 a iff

W
i�n ˛ D ai for parameters a0; � � � ; an < �. To see that Er is principal whenever max.r/ < �, note

that �r < max.r/C 1 D j.max.r/C 1/ so that for X � Œ�r �<! , j.X/ D X and hence r 2 j.X/ iff r 2 X and
so Er is principal. a

All of these resulting ultrafilters also work nicely together. But to really define what this means, we need to introduce
some translations. The idea is that if r � s, we can identify r as, say, the first, second, and fifth entries of s in increasing
enumeration. For example, consider s D ¹s0; s1; s2; s3; s4; s5; s6º in increasing order and r D ¹s0; s1; s4º. Then we can
generally project 7-sized sets down to 3-sized sets in the same way s projects down to r : define projs;r .¹t0; � � � ; t6º/ D
¹t0; t1; t4º whenever t0 < � � � < t6. The result is that if we take the pre-image of some X � ŒOrd�jrj under projs;r , then
we effectively fill in the spaces to transform X as a family of jr j-sized sets into a family X r;s of jsj-sized sets, just by
only caring about the information of r in s:

X r;s D proj�1s;r "X D ¹t W projs;r .t/ 2 Xº.
So in the case of r D ¹s0; s1; s4º above, if ¹t0; � � � ; t5; t6º 2 X r;s , then ¹t0; � � � ; t5; ˛º is also in X r;s for more-or-less
any ˛: the 6th coordinate is effectively a dummy variable since the 6th coordinate isn’t in r . This translation also will
work with functions to transform their domains just by first projecting the input with

13A • 6. Definition
Let r � s 2 ŒOrd�<! . Let �r ; �s 2 Ord. Define projs;r W ŒOrd�jsj ! ŒOrd�jrj by

projs;r
�
¹�0; � � � ; �nº

�
D ¹�i0 ; � � � ; �imº

such that projs;r .s/ D r and �0 < � � � < �n. For X � Œ�r �jrj, and f a function with dom.f / � Œ�r �jrj, define

f r;s D f ı projs;r � Œ�s�jsj X r;s D Œ�s�
jsj
\ proj�1s;r "X D ¹t 2 Œ�s�jsj W projs;r .t/ 2 Xº.

The usefulness of this definition will be in defining the elementary maps jr;s W cUlt.V; Er / ! cUlt.V; Es/ when
r � s 2 Œ��<! .xiii

xiiiThis also hints at an alternative characterization of extenders using increasing finite sequences of ordinals instead of finite sets where we preserve
the order in larger sets. The two approaches are basically equivalent, but I find the notation to be easier with sets, particularly with taking a union.
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13A • 7. Lemma (Coherence)
Under Setup 13A • 4, for r � s 2 Œ��<! , X 2 Er iff X r;s 2 Es .

Proof .:.

Firstly, it’s easy to see that 8�
Er
t .jt j D jr j/ as we’re dealing with finite sets, and this obviously generalizes, so

we may intersect with Œ�r �jrj or Œ�s�jsj to assume all the subsets we’re working with are of the appropriate size.
Secondly, as projs;r is easily definable from the relative ordering of s and r , projs;r is fixed by j and thus

j.X r;s/ D ¹t 2 Œj.�s/�
jsj
W projs;r .t/ 2 j.X/º D j.X/

r;s .
Now suppose X 2 Er . As r 2 j.X/, it follows that projs;r .s/ 2 X and thus s 2 j.X/r;s , meaning X r;s 2 Es .
Conversely, if X r;s 2 Es , then s 2 j.X r;s/ D j.X/r;s and so r 2 j.X/. a

It turns out that this will define an elementary Q| r;s W Ult.V; Er /! Ult.V; Es/. Coherence (13A • 7) will then give us
a means of looking at the direct limit of these Ult.V; Er /, yielding the notion of an “ultrapower” of a short extender in
a way that naturally extends the usual definition of an ultrapower. In particular, Q| r;s can be worked with as follows:

Ult.V; Er / � “'.Œf �Er
/” iff ¹t 2 Œ��jrj

W '.f .t//º 2 Er

iff ¹t 2 Œ��jsj W '.f .projs;r .t///º 2 Es
iff Ult.V; Es/ � “'.Œf r;s�Es

/”.
So Q| r;s.Œf �Er

/ D Œf r;s�Es
is elementary. Although this argument is simple, we can get a bit more information out

of how these maps work together. In particular, since the structure hŒ��<! ;�i is upward directed, there is a direct
limit UltE .V/ of the system of ultrapowers hUlt.V; Er /; Q| r;s W r � s 2 Œ��<!i. As with the linear iterations before
in The Wellfoundedness of Iterated Ultrapowers (12 E • 4), this direct limit will be well-founded. But despite this
characterization of UltE .V/ as a direct limit, this isn’t too satisfying, since it doesn’t directly tell us much about the
structure of cUltE .V/. Luckily, we can give a more concrete presentation of UltE .V/ in a way similar to ultrapowers
by ultrafilters in Definition 12 • 1. This definition is also intuitively the resulting direct limit.

13A • 8. Definition
• Let E � Œ��<! � P .Ord/ for some � 2 Ord such that each Er D ¹X W hr; Xi 2 Eº is an ultrafilter over some
Œ�r �

<! such that Coherence (13A • 7) holdsxiv (e.g. a derived extender).
• Let � be a FOL-signature.
• Let M be a (possibly class) FOL.�/-model.

Define the FOL.�/-model UltE .M/ as follows. For r; s 2 Œ��<! and f W Œ�r �jrj ! M and g W Œ�s�jsj ! M, write
• hr; f i �E hs; gi iff 8�

Er[s
t .f r;r[s.t/ D gs;r[s.t//.

• hr; f i RE hs; gi iff 8�
Er[s

t .f r;r[s.t/ RM gs;r[s.t//, for R a � -relation symbol.

Take UltE .M/ to be the resulting model of equivalence classes: ¹Œr; f �E W r 2 Œ��<! ^ f W Œ�r �jrj ! Mº with
functions and relations interpreted in the natural way from the above: RUltE .M/ D RE and F UltE .M/.Œr; f �E / D

Œr; FM ı f �E for f a � -function symbol.

Note that the definition given here could really be a proper class, but just as before with Definition 12 • 1, we can
consider an equivalent formulation via Scott’s Trick (9C • 1): hs; gi 2 Œr; f � iff hs; gi �E hr; f i and g 2 V˛ for the
least ˛ such that 9s0; g0 .hs0; g0i �E hr; f i/.

To prove that this actually results in the direct limit of the ultrapowers, we first need to establish a very nice fact about
UltE .V/: a version of Łoś’sTheorem (12 • 2). Not only is this nice to have, but it also furthers the association of UltE .V/
to an actual ultrapower. The proof of this is essentially the same as with Łoś’s Theorem (12 • 2), but with just a little
care about the ultrafilters we’re using.

With x; y, the place that contains the information of both x and y is just x[y. With tuples, there is no such notation, and would have to just write
“x [ y” or some other notation as shorthand for the increasing enumeration of ran.x/[ ran.y/, the union of the entries of x and the entries of y
regarding them as elements of <!Ord.

xivThis is necessary to show that �E is indeed an equivalence relation. Specifically, it's needed for transitivity.
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13A • 9. Theorem (Łoś's Theorem for Extenders)

• Let E � Œ��<! � P .Ord/ for some � 2 Ord such that each Er D ¹X W hr; Xi 2 Eº is an ultrafilter over some
Œ�r �

<! such that Coherence (13A • 7) holdsxv (e.g. a derived extender).
• Let � be a FOL-signature.
• Let M be a (possibly class) FOL.�/-model.
• Let ' be a FOL.�/-formula.

Thus UltE .M/ � “'.Œr0; f0�; � � � ; Œrn; fn�/” iff for ES
i�n ri

-almost every t , M � “'.f0.t/; � � � ; fn.t//”.

Proof .:.

This can be proven by structural induction similar to Łoś’s Theorem (12 • 2). In particular, the result clearly
holds for the atomic formulas by definition. Conjunctions follow easily from this using Coherence (13A • 7)
to transform everything into the same context. Negations follow easily as well since the Ers are ultrafil-
ters. For existential quantification, suppose UltE .M/ � “9x '.x; Œr0; f0�; � � � ; Œrn; fn�/”. Since there’s a wit-
ness Œr; f � 2 UltE .M/, by the inductive hypothesis we have that for s D

S
i�nri [r , for Es-almost every t ,

M � “'.f r;s.t/; f r0;s0 .t/; � � � ; f
rn;s
n .t//”. Thus for Es-almost every t , M � “9x '.f r0;s0 .t/; � � � ; f

rn;s
n .t//”.

By Coherence (13A • 7), we can reduce s in this statement to
S
i�n ri . This shows the (!) direction for the

existential case.

For the other direction, write r D
S
i�n ri and suppose for Er -almost every t ,M � “9x '.x; f0.t/; � � � ; fn.t//”.

Using AC, for each t 2 Œ��jrj, let f .t/ be such an x if there is one, or else f .t/ is some fixed element of M. By
the inductive hypothesis, UltE .M/ � “'

�
Œr; f �; Œr0; f0� � � � ; Œrn; fn�

�
”. a

Using the embeddings Q| r;s , we can then show that UltE .V/ is indeed a direct limit.
13A • 10. Corollary

• Let E � Œ��<! � P .Ord/ for some � 2 Ord such that each Er D ¹X W hr; Xi 2 Eº is an ultrafilter over some
Œ�r �

<! such that Coherence (13A • 7) holdsxvi (e.g. a derived extender).
• Let � be a FOL-signature.
• Let M be a (possibly class) FOL.�/-model.
• For r; s 2 Œ��<! , let Q| r;s W Ult.M; Er /! Ult.M; Es/ be elementary, defined by Q| r;s.Œf �Er

/ D Œf r;s�Es
.

Therefore UltE .M/ is (isomorphic to) the direct limit of the system of ultrapowers ¹Ult.M; Er /; Q| r;s W r � s 2 Œ��<!º
with limit embeddings Q|r;1 W Ult.M; Er /! UltE .M/ defined by Q|r;1.Œf �Er

/ D Œr; f �E .

Proof .:.

Each Q|r;1 is an elementary embedding, since by Łoś’s Theorem (12 • 2) and Łoś’s Theorem for Extenders
(13A • 9), for any FOL-formula ',

Ult.M; Er / � “'.Œf �Er
/” iff 8

�
Er
t .M � “'.f .t//”/ iff UltE .M/ � “'.Œr; f �E /”.

Moreover, Q| s;1 ı Q| r;s D Q| r;1 for r � s since Q| r;s.Œf �Er
/ D Œf r;s�Es

and Œs; f r;s�E D Œr; f �E .

To prove that UltE .M/ is the direct limit, it then suffices to show that it is the “least” such: any other A such that
1. there are embeddings hr W Ult.M; Er /! A, and
2. the embeddings obey hr D hs ı Q| r;s;

carries with it an embedding h W UltE .M/! A such that each hr D h ı Q| r;1.

To see this, set h.Œr; f �/ D hr .Œf �r /, which clearly satisfies hr D h ı Q| r;1. This is well-defined, since if
Œr; f � D Œs; g�, then

Q| r;r[s.Œf �Er
/ D

�
f r;r[s

�
Er[s

D
�
gs;r[s

�
Er[s

D Q| s;r[s.Œg�Es
/,

and thus (2) above tells us that
h.Œr; f �/ D hr .Œf �Er

/ D hr[s ı Q| r;r[s .Œf �Er
/ D hr[s ı Q| s;r[s .Œg�Es

/ D hs .Œg�Es
/ D h.Œs; g�/.
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Since it’s clear that h as defined is an embedding, it follows that UltE .M/ is the direct limit. a

V

Ult.V; Er / cUlt.V; Er /

Ult.V; Es/ cUlt.V; Es/

UltE .V/ cUltE .V/

Q|r jr

Q|E
jE

Q|r;s

�r

jr;s

˚
Q|s;1 js;1

�E

13A • 11. Figure: Elementary embeddings with derived extenders

From now on, we will adopt the following notational conventions as displayed in Figure 13A • 11. Although these
embeddings and the commutativity of the diagram haven’t been proven yet, this serves as a neat way of presenting the
information and the conventions that, as far as I’m aware, are specific to this work. All maps displayed in the figure
are elementary. Firstly, we will, independent of the previous results, define the following maps.

13A • 12. Definition
Under Setup 13A • 4, define the following: for x 2 V, r � s 2 Œ��<! , and f W Œ�r �<! ! V,

• Q| r .x/ D Œconstx �Er
;

• Q| r;s.Œf �Er
/ D Œf r;s�Es

;
• Q| r;1.Œf �Er

/ D Œr; f �;
• Q|E .x/ D Œ;; constx �;
• Qkr .Œf �Er

/ D j.f /.r/;
• QkE .Œr; f �/ D j.f /.r/;
• �r and �E are transitive collapse isomorphisms assuming UltE .V/ is well-founded;
• jr D �r ı Q| r and jr;s D �s ı Q| r;s ı ��1

r and jE D �E ı Q|E ;
• kr D Qkr ı ��1

r , and kE D QkE ı ��1
E .

The fact that these are well-defined is not too difficult. Again, the following are the important properties of these maps,
beyond their explicit definitions above, basically establishing the elementarity of the maps in Figure 13A • 11 and the
commutativity of the diagram.

13A • 13. Theorem
Assume Setup 13A • 4. Therefore, for r; s; t 2 Œ��<! ,

1. Q| r W V! Ult.V; Er / is elementary.
2. Q| r;s W Ult.V; Er /! Ult.V; Es/ is elementary and Q| r;t D Q| s;t ı Q| r;s for r � s � t .
3. Q| r;1 W Ult.V; Er /! UltE .V/ is elementary and Q| r;1 D Q| s;1 ı Q| r;s for r � s.
4. Q|E W V! UltE .V/ is elementary and Q|E D Q| r;1 ı Q| r .
5. Qkr W Ult.V; Er /! M is elementary and j D Qkr ı Q| r .
6. QkE W UltE .V/! M is elementary with j D QkE ı Q|E .
7. Ult.V; Er / and UltE .V/ are well-founded.
8. jr W V! cUlt.V; Er / is elementary and traditional when Er is non-principal.
9. jE W V! cUltE .V/ is traditional with cp.jE / D �. In fact,

cUltE .V/ D ¹j.f /.r/ W r 2 Œ��<! ^ f W Œ�r �<! ! Vº.
10. kr W cUlt.V; Er /! M is elementary.
11. kE W cUltE .V/! M is elementary with cp.kE / � � if kE ¤ id.
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Proof .:.

1. This holds by Theorem 12B • 1.

2. It should be clear that projt;s ı projs;r D projt;r so that .f r;s/s;t D f r;t . This tells us Q| r;t D Q| s;t ı Q| r;s for
r � s � t . It’s also easy to see that the domain and range of Q| r;s are as indicated above, so all that remains
is elementarity which follows easily by Coherence (13A • 7):
Ult.V; Er / � “'.Œf �Er

/” iff 8
�
Er
t '.f .t// iff 8

�
Es
t '.f r;s.t// iff Ult.V; Es/ � “'.Œf r;s�Es

/”.

3. This follows from the proof of Corollary 13A • 10.

4. This follows by (1) and (3).

5. For any x, Qkr ı Q| r .x/ D Qkr .Œconstx �Er
/ which by Definition 13A • 12 is equal to j.constx/.r/ D

constj.x/.r/ D j.x/. So j D Qkr ı Q| r . To see that Qkr is elementary, proceed as in Factoring (12B • 9): by
Łoś’s Theorem for Extenders (13A • 9),
Ult.V; Er / � “'.Œf �Er

/” iff 8
�
Er
t '.f .t// iff ¹t 2 Œ�r �

<!
W '.f .t//º 2 Er

iff r 2 j
�
¹t 2 Œ�r �

<!
W '.f .t//º

�
iff r 2

®
t 2 Œj.�r /�

<!
W M � “'.j.f /.t//”

¯
iff M � “'.j.f /.r//”.

6. For any x, QkE ı Q|E .x/ D QkE .Œ;; constx �/ D j.constx/.;/ D constj.x/.;/ D j.x/. So it suffices to
show QkE is elementary, and for this, we proceed exactly as in (5) using Coherence (13A • 7) to translate
parameters to a single space.

7. The well-foundedness of Ult.V; Er / follows from the �-completeness of Er (Result 13A • 5) by Theorem
12B • 3. The well-foundedness of UltE .V/ follows from the elementarity of QkE and the well-foundedness
of M: any infinite 2UltE .V/-decreasing sequence hxn W n < !i yields that h QkE .xn/ W n < !i is an infinite
2M D 2-decreasing sequence, contradicting well-foundedness in V.

8. The elementarity of jr follows from the elementarity of Q| r and that �r is an isomorphism. That jr is
traditional follows from Theorem 12B • 5 (note, however, that we don’t know cp.jr / D �).

9. The elementarity is easy as the composition of elementary embeddings. It suffices to show that cUltE .V/ D
¹j.f /.r/ W r 2 Œ��<! ^ f W Œ�r �

<! ! Vº. And so inductively we show that �E .Œr; f �/ D j.f /.r/ for all
Œr; f � 2 UltE .V/. So suppose this holds for all Œs; g� 2UltE .V/ Œr; f �. Therefore

�E .Œr; f �/ D ¹�E .Œs; g�/ W UltE .V/ � “Œs; g� 2 Œr; f �”º D ¹j.g/.s/ W UltE .V/ � “Œs; g� 2 Œr; f �”º.
As a result, x 2 �E .Œr; f �/ iff there’s some g; s where x D j.g/.s/ and UltE .V/ � “Œs; g� 2 Œr; f �”. For
t D r[ s, by Łoś’s Theorem for Extenders (13A • 9), this is equivalent to 8�

Et
t 0 .gs;t .t 0/ 2 f r;t .t 0//which

then says
t 2 j.¹t 0 2 Œ�t �

<!
W gs;t .t 0/ 2 f r;t .t 0/º/ D ¹t 0 2 Œj.�t /�

<!
W j.gs;t /.t 0/ 2 j.f r;t /.t 0/º.

And this is equivalent to x D j.g/.s/ D j.gs;t /.t/ 2 j.f r;t /.t/ D j.f /.r/. Thus �E .Œr; f �/ � j.f /.r/.
The other direction is similar and also carried out by induction: if x 2 j.f /.r/ then inductively, x D
j.g/.s/ for some appropriate g; s and we follow the reverse of the reasoning above, telling us j.f /.r/ D
�E .Œr; f �/. Hence cUltE .V/ D �E " UltE .V/ has the above form.

10. This follows as the composition of elementary functions.

11. Again, elementarity follows by composition. To see that cp.kE / � �, it suffices to show � �

kE " cUltE .V/ D QkE " UltE .V/. To see this, consider the max function (or really the supremum function,
taking max; D ;): for any ˛ < �, QkE .Œ¹˛º;max�/ D j.max/.¹˛º/ D max¹˛º D ˛ 2 kE " cUltE .V/. It
follows that we cannot skip any values with kE : otherwise inductively, if kE .˛/ > ˛ > ˇ D kE .ˇ/ for
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every ˇ < ˛, then ˛ … kE " cUltE .V/. a

As with ultrapowers by measures, we call Q|r , jr , Q|E , and jE the canonical (extender) embeddings. It’s not too difficult
to show that the extender derived from the extender embedding is just the original extender.

13A • 14. Corollary
Assume Setup 13A • 4. Therefore the .�; �/-extender derived from jE is EjE

�
D E.

Proof .:.

By Theorem 13A • 13 (11), kE .r/ D r for r 2 Œ��<! so that Œ��<! � cUltE .V/. Thus by elementarity,
kE .r/ D r 2 j.X/ D kE .jE .X// iff kE .r/ 2 kE .jE .X// iff r 2 jE .X/.

This tells us E D EjE

�
, as desired. a

Let us list some further important properties of Ej
�
. Returning back to properties of the Ers as ultrafilters, note that

normality can’t be translated directly to ultrafilters on Œ��<! . That said, there is still a notion of normality for them, and
it will allow us to call these ultrafilters “measures”, or at least the short extender “normal”.

13A • 15. Lemma
Under Setup 13A • 4, let r 2 Œ��<! and suppose f W Œ�r �jrj ! V is such that 8�

Er
t .f .t/ < max t /. Therefore there

is some ˛ < max r with
8

�
Er[¹˛º

t
�®
f r;r[¹˛º.t/

¯
D projr[¹˛º;¹˛º.t/

�
.

Proof .:.

That 8�
Er
t .f .t/ < max t/ is just to say that r 2 j.¹t 2 Œ�r �jrj W f .t/ < max tº/, which means j.f /.r/ < max r .

In particular, let ˛ D j.f /.r/. Note that projr[¹˛º;¹˛º.r[¹˛º/ D ¹˛º and j.f r;r[¹˛º/.r[¹˛º/ D j.f /.r/ D ˛.
Hence °

j
�
f r;r[¹˛º

�±
D projr[¹˛º;¹˛º.r [ ¹˛º/

and thus r [ ¹˛º 2
®
t 2 Œ�r �

r[¹˛º W ¹f r;r[¹˛º.t/º D projr[¹˛º;¹˛º.t/
¯
, meaning that we have the result. a

Let us collect some of the major results about derived extenders. These will be used to define extenders absent any
discussion about embeddings.

13A • 16. Result
Let j W V! M be traditional. Let cp.j / D � < � and let E D Ej

�
be the derived .�; �/-extender. Therefore,

1. each Er is a �-complete ultrafilter over Œ�r �<! ;
2. there is an Er which is not �C-complete;
3. for each ˛ < �, there is an Er with 8�

Er
t .˛ 2 t/;

4. if f W Œ�r �jrj ! V is such that 8�
Er
t .f .t/ < max t /, then for some s � r , 8�

Es
t .f r;s.t/ 2 t/;

5. for r � s, X 2 Er iff X r;s 2 Es , yielding elementary maps Q| r;s.Œf �Er
/ D .Œf �Er

7! Œf r;s�Es
/; and

6. The direct limit UltE .V/ of the ultrapowers by these Ers is well-founded.

Proof .:.

All of these have been proven already with the exception of (2). In particular,
• (1) follows from Result 13A • 5;
• (3) follows from the proof of Result 13A • 5: take E¹˛º as a principal ultrafilter;
• (4) follows from Lemma 13A • 15;
• (5) follows from Coherence (13A • 7) along with Theorem 13A • 13 (2); and
• (6) follows from Theorem 13A • 13 (7).
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Onto (2), if eachEr is �C-complete, Q| r .�/ is collapsed to � in the ultrapower: for every r , f , there is an ˛ where
8�
Er
u.f .u/ < � ! f .u/ D ˛/, which is equivalent to, by Łoś’s Theorem for Extenders (13A • 9), the statement

that for every Œr; f � 2 UltE .V/, there is an ˛ < � where
UltE .V/ � “Œr; f � < Œ;; const� �! Œr; f � D Œ;; const˛�”.

So in the transitive cUltE .V/, Œ;; const� � is collapsed to � itself. But this contradictsTheorem 13A • 13 (11), since
we would have j.�/ D QkE ı Q|E .�/ D QkE .Œ;; const� �/ D � < j.�/. a

So far, all of this has just been setting up a more general definition of extenders, which is basically that Result 13A • 16
applies. It’s important to recognize the limits of the consequences of this. In principle, a measure U ensures the
existence of such an Ej

�
, though ostensibly the existence of such a short extender is stronger, giving the existence of

many �-complete ultrafilters and encoding information up to their length �. One of the major benefits of extenders is
the ability to phrase certain large cardinal properties into the existence of certain extenders, or sequences of extenders.
So a slightly more general theory should be introduced without making reference to proper classes like elementary
embeddings from V into some inner model M.

§13B. Characterizing extenders

First, we more properly state the definition of a .�; �/-extender purely in the language of ZFC, absent any knowledge
of classes like elementary embeddings or inner models.

13B • 1. Definition
• Let � < � with � an infinite cardinal.
• For r 2 Œ��<! , let �Er be an ordinal, usually written as just “�r” if E is implied by context.
• Let E �

S
r2Œ��<! ¹rº � P .Œ�Er �

<!/.
• Write Er D ¹X � Œ�Er �<! W hr; Xi 2 Eº.

We call E a .�; �/-extender iff
1. every Er is a �-complete ultrafilter over Œ�Er �<! with �Er the least ordinal such that .�Er /jrj 2 Er .
2. there is an Er that is not �C-complete;
3. for each ˛ < �, there is an Er with 8�

Er
t .˛ 2 t/;

4. (coherency) for r � s 2 Œ��<! , X 2 Er iff X r;s 2 Es;
5. (normality) for r 2 Œ��<! , if f W Œ�Er �jrj ! V is such that 8�

Er
t .f .t/ < max t/, then for some s � r ,

8�
Es
t .f r;s.t/ 2 t/;

6. (well-foundedness) for every sequence hrn; Xn W n 2 !i with Xn 2 Ern , there is an order preserving function
� W

S
n2! rn !

S
r2Œ��<! �Er such that for each n 2 !, �"rn 2 Xn.

� is then called the critical point of E, denoted cp.E/, and � is called the length of E.

The requirement of (6) is a bit odd, but it is equivalent to UltE .V/ being well-founded so that we can consider the
collapsed ultrapower as an inner model. The � in (6) plays the role of the intersection as with ℵ1-completeness, and
in fact (6) is sometimes called ℵ1-completeness. To show that (6) and well-foundedness are equivalent, we must use
ultrapowers again.

Firstly, we may use Definition 13A • 8 to form the ultrapower. Coherency implies a form of Łoś’s theorem and hence
tells us UltE .V/ is the direct limit of the ultrapowers Ult.V; Er / for r 2 Œ��<! . In other words, we still have Łoś’s
Theorem for Extenders (13A • 9), the embeddings Q| r;s W Ult.V; Er / ! Ult.V; Es/ for r � s 2 Œ��<! , and Corollary
13A • 10—that UltE .V/ is the direct limit of ultrapowers. From here, it’s a straight-forward argument that (6) ensures
well-foundedness. That this characterizes well-foundedness is a bit trickier.

13B • 2. Result
Let E be as in Definition 13B • 1 (1)–(5), i.e. satisfies all requirements of being an extender except possibly (6).
Therefore E is a .�; �/-extender—i.e. satisfies (6)—iff UltE .V/ is well-founded.
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Proof .:.

For the sake of notation, write sn for
S
i�n ri .

(!) Assume E is a .�; �/-extender. To show that UltE .V/ is well-founded, suppose hŒrn; fn� W n 2 !i is a
2UltE -decreasing sequence. Set for t 2 Œ�sn �<! ,

t 2 Xn iff
^
i<n

f
riC1;sn
iC1 .t/ 2 f

ri ;sn
i .t/.

Thus Xn 2 Esn for each n by Łoś’s Theorem for Extenders (13A • 9). Now the � as guaranteed in (6)
has �"sn 2 Xn for each n < !. But note that projsn;ri .�"sn/ D �"ri for each i < n, because � is
order-preserving. Hence

f
snC1;rnC1

nC1 .�"snC1/ D fnC1.�"rnC1/ 2 fn.�"rn/ D f
snC1;rn
n .�"snC1/.

So the sequence hfn.�"rn/ W n 2 !i is 2-decreasing, contradicting the well-foundedness of V.

( ) Suppose hrn; Xn W n 2 !i with Xn 2 Ern is a counter-example to (6) of Definition 13B • 1. We will show
that UltE .V/ is ill-founded. Consider a tree of consisting of approximations to � in (6): write � 2 T iff
there is some n < ! with � W sn !

S
r2Œ��<! �r order preserving and �"ri 2 Xi for each i � n.

One can see that T ¤ ; and in fact the height of hT;�i is ! which can be seen as follows: for n < !, let
t 2 X

rn;sn
n \

T
i<nX

ri ;sn
i 2 Esn be arbitrary with size jsnj. Get a increasing bijection � W sn ! t and note

that � 2 T and in fact h� � si W i < ni is a chain of length nC 1 in T .

Under our assumption that (6) fails, hT;�i is well-founded: any infinite,�-increasing branch h�n W n < !i
has � D

S
n<! �n as in (6), a contradiction. So there is some rank function, rankT , on hT;�i. To give a

2UltE .V/-decreasing sequence, define fn W Œ�sn �<! !
S
r2Œ��<! �r by

fn.t/ D

´
rankT .�/ if t D im.�/ for some � W sn !

S
r2Œ��<! �r with � 2 T

0 otherwise.
Note that if t D im.�/ for some � 2 T , then � is unique just as an order-preserving bijection between sn and
t . So there’s no worry about which � we take to compute fn.t/. Now let n < ! and consider an arbitrary
t 2 X

rnC1;snC1

nC1 \
T
i�nX

ri ;snC1

i 2 EsnC1
which is the image of snC1 by some � 2 T by the previous

argument showing the height of T is !. We have fnC1.t/ D rankT .�/ for some � 2 T with �"snC1 D t .
Since � is order preserving, im.� � sn/ D projsnC1;sn

.t/. � � sn is below � in T so that (recall rank here
uses reverse inclusion)

f
sn;snC1
n .t/ D rankT .� � sn/ > rankT .�/ D fnC1.t/.

Hence this holds for EsnC1
-almost every t , and so UltE .V/ � “Œsn; fn� > ŒsnC1; fnC1�”. Since n was

arbitrary, the sequence hŒsn; fn� W n < !i witnesses that UltE .V/ is ill-founded. a

So far, this basically shows that derived extenders are actually extenders. It’s not difficult to verify that we have all of
the embeddings of Figure 13A • 11 as a result, reproduced below. So we adopt here the same notational conventions
and get similar results as with Theorem 13A • 13.

V

Ult.V; Er / cUlt.V; Er /

Ult.V; Es/ cUlt.V; Es/

UltE .V/ cUltE .V/

Q|r jr

Q|E
jE

Q|r;s

�r

jr;s

˚
Q|s;1 js;1

�E

13B • 3. Figure: Elementary embeddings with extenders
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13B • 4. Theorem
Let E be a .�; �/-extender. Therefore, for r; s; t 2 Œ��<! , there are collapsing maps �r W Ult.V; Er /! cUlt.V; Er /
and �E W UltE .V/! cUltE .V/. Moreover,

1. There is an elementary Q|r W V! Ult.V; Er / defined by Q|r .x/ D Œconstx �Er
.

2. There is an elementary jr W V! cUlt.V; Er / defined by jr D �r ı Q| r , traditional with cp.jr / � � when Er
is non-principal.

3. There are elementary Q|r;s W Ult.V; Er /! Ult.V; Es/ defined by Q|r;s.Œf �Er
/ D Œf r;s�Es

whenever r � s � t
so that Q|r;t D Q|s;t ı Q|r;s .

4. There are elementary jr;s W cUlt.V; Er /! cUlt.V; Es/ defined by jr;s D �s ı Q| r;s ı ��1
r .

5. There is an elementary Q|r;1 W Ult.V; Er /! UltE .V/ defined by Q|r;1.Œf �Er
/ D Œr; f �E .

6. There is an elementary jr;1 W cUlt.V; Er /! cUltE .V/ defined by jr;1 D �E ı Q|r;1 ı ��1
r .

7. There is an elementary Q|E W V ! UltE .V/ defined by Q|E .x/ D Œ;; constx �E such that Q|E D Q|r;1 ı Q|r for
each r 2 Œ��<! .

8. There is an elementary jE W V! cUltE .V/ defined by jE D �E ı Q|E and jE is traditional with cp.jE / D �
and jE D jr;1 ı jr for each r 2 Œ��<! .

Proof .:.
1. This follows by Theorem 12B • 1.
2. This is obvious from (1) because�r is an isomorphism. That jr is traditional follows fromTheorem 12B • 5.
3. This follows as in Theorem 13A • 13 (2).
4. This is obvious from (3) because ��1

r and �s are both isomorphisms.
5. This follows from the proof of Corollary 13A • 10.
6. This is obvious from (5) because ��1

r and �E are both isomorphisms.
7. This follows from (1) and (5), or (2) and (6). That Q|E factors as Q|r;1 ı Q|r follows from the fact that it’s the

direct limit embedding in Corollary 13A • 10.
8. This follows from (7) because �E is an isomorphism. That jE is traditional follows from the fact that

everything is done internal to V: cUltE .V/ is an inner model and jE ¤ id since cp.jE / D �. The reason
why cp.jE / D � follows from the fact that jE is the direct limit embedding: it factors as jE D jr;1 ı jr
for any r 2 Œ��<! . Hence cp.jE / � cp.jr / D � whenever r 2 Œ��<! is such that Er is �-complete but
not �C-complete. The fact that cp.jE / � � follows from �-completeness of the ultrafilters. Inductively,
let ˛ < � such that jE � ˛ D id. To show jE .˛/ � ˛, suppose �E .Œr; f �/ < �E .Œ;; const˛�/. By
Łoś’s Theorem for Extenders (13A • 9), 8�

Er
t .f .t/ < ˛/. By �-completeness, there is some ˇ < ˛ where

8�
Er
t .f .t/ D ˇ/ and hence �E .Œr; f �/ D �E .Œr; constˇ �/ D �E .Œ;; constˇ �/ which is inductively ˇ.

Hence jE .˛/ � ˛ � jE .˛/ showing cp.jE / � �. a

More importantly, this overly technical definition isn’t extremely necessary, as we can show that any extender E, with
sufficient simplification, is just the derived extenderEjE

�
, where jE W V! cUltE .V/ is the direct limit embedding. In

effect, the extenders derived from elementary embeddings are the only kind of extenders anyway. To show this, let’s
investigate some of the properties of the direct limit UltE .V/ and the embedding jE .

13B • 5. Lemma
Let E be a .�; �/-extender. Let �E W UltE .V/! cUltE .V/ be the collapsing map. Therefore, (taking max.;/ D ;
so that really, max D sup is just the union).

1. for each ˛ < �, if �E .Œ¹˛º;max�/ D ˛.
2. for each r 2 Œ��<! , �E .Œr; id�/ D r .

Proof .:.
1. Proceed by induction on ˛ < �. As max is a function into ordinals, Œ¹˛º;max� is collapsed into an ordinal
˛0. First we show ˛ � ˛0: let � < ˛ be arbitrary, aiming to show � D �E .Œ¹�º;max�/ < �E .Œ¹˛º;max�/.
For any pair t 2 ŒOrd�2,

max¹�º;¹�;˛º.t/ D max.proj¹�;˛º;¹�º.t// D min.t/ < max.t/ D max.proj¹�;˛º;¹˛º.t// D max¹˛º;¹�;˛º.t/.
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It follows that UltE .V/ � “Œ¹�º;max� < Œ¹˛º;max�” and hence after collapsing, � D �E .Œ¹�º;max�/ is less
than ˛0 D �E .Œ¹˛º;max�/. So ˛ � ˛0.

To show that ˛ � ˛0, let � < ˛0 be arbitrary, say � D �E .Œr; f �/ and without loss of generality, ˛ 2 r
(consider Œr [ ¹˛º; f r;r[¹˛º�). This means that 8�

Er
t .f .t/ < maxr;¹˛º.t/ � max t /. If we don’t already

have 8�
Er
t .f .t/ D max.t// then by normality, for some r � s 2 Œ��<! , we get 8�

Es
t .f r;s.t/ 2 t/, and

so we get this in either case. In particular by �-completeness, for some n < jsj < !, 8�
Es
t .f r;s D tn/

where ¹t0; � � � ; tjsj�1º is an increasing enumeration of t . In particular,
8

�
Es
t .¹f r;s.t/º D projs;¹snº.t//.

But since we already know 8�
Er
t .f .t/ < maxr;¹˛º.t//, coherency yields that

8
�
Es
t
�
f r;s.t/ D max.projs;¹snº.t// < max.projr;¹˛º.projs;r .t// D max.projs;¹˛º.t//

�
and thus sn < ˛. Furthermore, the above tells us that � D �E .Œs; f

r;s�/ D �E .Œ¹snº;max�/. As sn < ˛,
the inductive hypothesis gives �E .Œ¹snº;max�/ D sn and thus � D sn < ˛. Hence ˛0 � ˛, and ˛0 D ˛.

2. This is easily shown by induction on jr j. So for r D ¹r0º, note that Œ¹r0º; id� is a singleton in UltE .V/,
since by coherency, for each s � r , id¹r0º;s.t/ D projs;¹r0º.t/ (which is clearly a singleton) for Es-almost
every t . But then note that max.t/ 2 t for every t so that UltE .V/ � “Œ¹r0º;max� 2 Œ¹r0º; id�”, meaning
r0 2 �E .Œ¹r0º; id�/, as desired.

And for jr j > 1, � 2 �E .Œr; id�/ means Œ¹�º;max� 2UltE .V Œr; id�. Writing r 0 D r [ ¹�º, this is equivalent
to 8�

Er0
t .max¹�º;r 0

.t/ 2 projr 0;r .t//. In particular by �-completeness, this is equivalent to the existence of
some � 2 r where 8�

Er0
t .max¹�º;r 0

.t/ 2 projr 0;¹�º.t/ D id¹�º;r 0

.t//. This is equivalent to the existence of
some � 2 r with � D �E .Œ�;max�/ 2 �E .Œ¹�º; id�/ D ¹�º � r . Hence �E .Œr; id�/ D r . a

This allows us to conclude the following, which yields a very useful characterization of inner models of the form
cUltE .V/ for some short extender E. Such a characterization is arguably more useful than the presentations given
above, but it’s not so easily representable in ZFC alone.

13B • 6. Lemma
LetE be a .�; �/-extender. Therefore, jE is elementary with cp.jE / D �, �E .Œr; f �/ D jE .f /.r/ for all appropriate
r; f , and

cUltE .V/ D ¹jE .f /.r/ W r 2 Œ��<! ^ f W Œ��jrj
! Vº.

Proof .:.

In essence, we just need to show that �E .Œr; f �/ D jE .f /.r/. By (2) of Lemma 13B • 5, �E .Œr; id�/ D r and
jE .f / D �E . Q|E .f // so we need to show �E .Œr; f �/ D �E

�
Q|E .f /.Œr; id�/

�
, removing the �E s, equivalently

UltE .V/ � “Œr; f � D Q|E .f /.Œr; id�/ D Œ;; constf �.Œr; id�/”.
But using Łoś’s Theorem for Extenders (13A • 9), this is immediate: 8�

Er
t
�
f .t/ D .constf .t//.id.t//

�
. a

Already this hints at the relation between short extenders derived from elementary embeddings: if we start with an
extender E, take the ultrapower embedding jE W V! cUltE .V/ and then derive an extender EjE

lh.E/, we get the same
ultrapower. But more than this, we actually get equality between E and EjE

lh.E/. Note that the result doesn’t rely on
Lemma 13B • 6, but just Lemma 13B • 5.

13B • 7. Theorem
Let E be a .�; �/-extender. Therefore, the derived .�; �/-extender EjE

�
D E.

Proof .:.

Write F for EjE

�
. First we must show that each �Er D �Fr . From here the proof is an easy identification of Er

with Fr by simple calculations.
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Claim 1
For each r 2 Œ��<! , �Er D �Fr .

Proof .:.

This is given by the minimality of the �rs: �Er is the minimal ordinal such that �jrj
r 2 Er and �Fr is the

minimal ordinal such that jE .�r / > max.r/. For the sake of readability, let r0 D max.r/.

For every ˛, jE .˛/ > r0 is equivalent to, by Theorem 13B • 4 and Lemma 13B • 5, that �E . Q|E .˛// >
�E .Œ¹r0º;max�/. So in the ultrapower, using Łoś’s Theorem for Extenders (13A • 9), this is equivalent to

UltE .V/ � “Œ;; const˛� > Œ¹r0º;max� D Œr;max ¹r0º;r � D Œr;max�”
iff 8

�
Er
t .˛ > max.t//

iff ¹t 2 Œ�Er �
jrj
W max.t/ < ˛º D Œmin.�Er ; ˛/�

jrj
2 Er

iff ˛ � �Er , by the minimality of �Er .
The minimal such ˛ being �Fr gives the desired equality: �Fr D �Fr . a

So we can refer to both �Er D �Fr as just �r . Let r 2 Œ��<! and let X � Œ�r �<! . Therefore by Lemma 13B • 5,
X 2 Er iff 8

�
Er
t .t 2 X/ iff 8

�
Er
t .id.t/ 2 constX .t//

iff UltE .V/ � “Œr; id� 2 Œr; constX � D Œ;; constX �”
iff cUltE .V/ � “r D �E .Œr; id�/ 2 �E .Œ;; constX �/ D jE .X/”
iff X 2 Fr .

Hence Er D Fr and so the derived extender F D E. a

So far, we have concluded an equivalence between two types of short extenders: those derived from an elementary
embedding, and those more generally following Definition 13B • 1. As we are often more interested in the ultrapowers
cUltE .V/ rather than the extenders themselves, it can also be useful to understand when an elementary j W V! M is
the result of an extender.

13B • 8. Corollary
Let j W V! M be traditional with cp.j / D �. Therefore

M D ¹j.f /.r/ W r 2 Œ��<! ^ f W Œ��<! ! Vº
for some � 2 Ord iff j D jE and M D cUltE .V/ for some .�; �/-extender E.

Proof .:.

Lemma 13B • 6 gives the ( ) direction. So suppose M has the above form. By Theorem 13A • 13 (9), M D
cUltE .V/ for E D E

j

�
. To see j D jE , first factor j D QkE ı Q|E by Theorem 13A • 13 (6). Note that QkE W

UltE .V/! M D cUltE .V/ is surjective and elementary by Definition 13A • 12 and the hypothesis on M. Hence
QkE must be the unique transitive collapse map �E : j D �E ı Q|E which is just jE by Theorem 13B • 4 (8). a

On the topic of looking at the underlying universe of ultrapowers, we get a nice corollary that shows precisely what
the ultrapowers cUlt.V; Er / look like. Of course, we know they take the form

cUlt.V; Er / D ¹jr .f /.s/ W f W Œ�r �jrj
! Vº.

for some s 2 cUlt.V; Er / by Theorem 12B • 12. But in cUltE .V/, their copy (which isn’t necessarily transitive) takes
the following unsurprising form.

13B • 9. Corollary
Let E be a .�; �/ extender, and let r 2 Œ��<! . Therefore, jr;1" cUlt.V; Er / D ¹jE .f /.r/ W f W Œ�r �jrj ! Vº.
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Proof .:.

An arbitrary element �r .Œf �Er
/ 2 cUlt.V; Er / for some f W Œ�r �<! ! V has by Theorem 13B • 4 (7) and (5),

and Lemma 13B • 6 that
jr;1.�r .Œf �Er

// D �E . Q|r;1.Œf �Er
// D �E .Œr; f �/ D jE .f /.r/. a

In the vein of showing results similar to those for measures and ultrafilters, we have the following, analogous to Result
12C • 1 (4) with a proof due to Farmer Schlutzenberg [10].

13B • 10. Lemma
Let E be an extender. Therefore E … cUltE .V/.

Proof .:.

Let cp.E/ D � and lh.E/ D �. Let � D sup¹�r C 1 W r 2 Œlh.E/�<!º. Proceed by induction on � . Assume
E 2 cUltE .V/. Note that this implies P .�r /cUltE .V/ D P .�r / since P .Œ�r �<!/ D ¹X; Œ�r �<! nX W X 2 Erº.

• Write M0 D V, M1 D cUltE .V/ and M2 D cUltM1

E .M1/.
• Let jM0

E W M0 ! M1 and jM1

E W M1 ! M2 be the ultrapower maps with similar notation for �E and so
forth.

We use Kunen’s Inconsistency Theorem Version 2 (12D • 6) while showing that j � � 2 M for some fixed point
� > � to get a contradiction.

Suppose � D & C 1 is a successor. By definition of � , & is then �r for some r 2 Œ��<! . It follows that
P .&/ 2 M0 and hence j& jC D .j& jC/M0 . Since j& jC is regular, any function from Œ&�<! ! j& jC is bounded and
is thus in jŒ&�<! j& which can be coded by j& jj& j D 2j& j. In other words, M1 contains every f W Œ&�<! ! j& jC.
Since ordinals ˛ � j& jC in the ultrapowers M0 and M1 are the collapsed versions of these functions, we get the
following.

Claim 1
j
M0

E � .j& jC C 1/ D jM1

E � .j& jC C 1/ and moreover, jM0

E .j& jC/ D sup jM0

E "j& jC.

Proof .:.

j
M0

E .j& jC/ is just the ordertype ofA D ¹Œr; f �M0

E W r 2 Œ��
<!^f W Œ�r �

<! ! j& jCº under 2M0

E . But because
M1 contains all such r and f , it follows that Œr; f �M0

E 7! Œr; f �
M1

E D Œr; f �
M0

E \ M1 is an isomorphism
between the 2M0

E -predecessors of Œ;; const˛�
M0

E and the 2M1

E -precedessors of Œ;; const˛�
M1

E , meaning the two
are collapsed to the same place.

Note that jM0

E "j& jC is unbounded in jM0

E .j& jC/. To see this, any f and r such that 8�
Er
t .f .t/ <

constj& jC.t// has f bounded by some ˛ < j& jC and thus �M0

E .Œr; f �/ < j
M0

E .˛/ for some ˛ < j& jC.
a

Now because jM0

E "j& jC D j
M1

E "j& jC 2 M1 is cofinal in jM0

E .j& jC/, we have that the cofinality of jM0

E .j& jC/ is
j& jC. But by elementarity, jM0

E .j& jC/ is regular in M1, meaning the two must be equal: jM0

E .j& jC/ D j& jC and
thus j& jC is a fixed point of jM0

E . This contradicts Kunen’s Inconsistency Theorem Version 2 (12D • 6) given that
Claim 1 tells us that (as jM1

E is a class of M1) jM0

E � j& jC D jM1

E � j& jC is in M1.

Now suppose � is a limit. It follows that P .&/ 2 M1 for each & < � . In just the same way as with Claim 1,
j
M0

E � j& jC D jM1

E � j& jC for every & < � and hence jM0

E � � D jM1

E � � 2 M1. This will imply P .�/ 2 M1

since for any X � � , we have ˛ 2 X iff jM0

E .˛/ D j
M1

E .˛/ 2 j
M0

E .X/ 2 M1 so that X D ¹˛ < � W j
M1

E .˛/ <

j
M1

E .X/º 2 M1. But then just as before, j� jC D .j� jC/M1 and so we also get Claim 1 for � instead of just for
each & < � . By the same argument as before, j� jC is a fixed point of jM0

E but jM0

E � j� jC D jM1

E � j� jC 2 M1

contradicting Kunen’s Inconsistency Theorem Version 2 (12D • 6). a
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§13C. The benefit of extenders, and their properties

What is the point of extenders? Can we just get by just with measures? Note that the inner models given by measures
are certainly encompassed by those given by extenders in the following sense.

13C • 1. Result
Let U be a measure over �. Therefore there is a .�; � C 1/-short extender E with cUlt.V; U / D cUltE .V/.

Proof .:.

As each r 2 Œ��<! has Er as principle, cUlt.V; Er / D V in these cases. We will see that it suffices to show
Ult.V; Er / Š Ult.V; E¹�º/ for all � 2 r 2 Œ� C 1�<! . In this case, UltE .V/ Š Ult.V; E¹�º/.

Claim 1
Ult.V; Er / Š Ult.V; E¹�º/ for each r 2 Œ� C 1�<! n Œ��<! .

Proof .:.

Consider the elementary Q|¹�º;r W Ult.V; E¹�º/ ! Ult.V; Er /. It suffices to show surjectivity. Write r 0 for
r n ¹�º. As r 0 2 Œ��<! , Er 0 is principle, generated by r 0, and thus by coherency,

8
�
Er0
t .id.t/ D constr 0.t// implies 8�

Er
t .projr;r 0.t/ D r 0/.

So let f W Œ��<! ! V be arbitrary. Define f 0 W Œ��1 ! V by f 0.¹˛º/ D f .r 0 [ ¹˛º/. Hence f 0¹�º;r .t/ D

f .r 0 [ ¹max tº/. So in the transitive collapse, j.f 0¹�º;r /.r/ D j.f /.j.r 0/ [ ¹�º/ D j.f /.r 0 [ ¹�º/ D

j.f /.r/. Therefore,

�E ı Q|r;1

�
Q|¹�º;r

��
f 0
�
E¹�º

��
D

h
r; f 0¹�º;r

i
D Œr; f � D �E ı Q|r;1 .Œf �Er

/ ,

meaning Q|¹�º;r is surjective. a

Nowwe give a .�; �C1/-short extenderE withUlt.V; E¹�º/ Š Ult.V; U /. Firstly, forX � Œ��1 and f W Œ��1 ! V,
define (s for singleton) X s � � and f s W � ! V in the natural way: X s D

S
X and f s.˛/ D f .¹˛º/. Now

define the following:
• let j W V! cUlt.V; U / be the canonical embedding with Ej�C1 the derived short extender;
• let s W Ult.V; E¹�º/! Ult.V; U / be defined by s.Œf �E¹�º

/ D Œf s�U .
Thus using Lemma 12B • 10 with Definition 12B • 7, X 2 E¹�º iff ¹�º 2 j.X/ iff � 2 j.X s/ iff X s 2 U . And so
s is well-defined, and an embedding. Surjectivity follows since f D ¹h¹˛º; yi W f .˛/ D yºs for any f W � ! V.
a

There are similarities between measures and short extenders that go beyond this. For example, for a measure U ,
U … cUlt.V; U /; and similarly for an extender E, E … cUltE .V/, which tells us that—because we can code E as an
element of Vlh.E/C1—Vlh.E/C1 6� cUltE .V/. This motivates some important concepts.

13C • 2. Definition
Let E be a .�; �/-extender.

• � is the critical point of E, cp.E/;
• � is the length of E, lh.E/; and
• the strength of E, str.E/, is the largest ˛ 2 Ord such that E is ˛-strong, meaning V˛ � cUltE .V/.
• the completeness of E, cpl.E/ is the largest cardinal ˛ 2 Ord such that E is < ˛-complete, meaning
<˛ cUltE .V/ � cUltE .V/.

So we can in principle do better than just measures with extenders, since a measure overly has, in essence, a strength
of � C 1 by Result 12C • 1 (4), as expected by Result 13C • 1 where cp.E/ D � < str.E/ � � C 1 D lh.E/ for the
extender defined there. In particular, we can assert the existence of an extender with arbitrary strength. This leads to
the idea of the strength of a cardinal according to how strong its extenders are.
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13C • 3. Corollary
Suppose E is a � C 2-strong .�; �/-extender. Therefore � is the limit of measurable cardinals, and in fact, there’s a
measure U such that U -almost every cardinal below � is measurable.

Proof .:.

Consider the derived measure from the extender embedding: U D UjE
where jE W V ! cUltE .V/. Note that

U � P .�/ and hence U 2 V�C2. Since E is � C 2-strong, U 2 cUltE .V/ and hence
cUltE .V/ � “there’s a measure over a cardinal < jE .�/”.

This means � 2 j.¹ı < � W ı is measurableº/ and so ¹ı < � W ı is measurableº 2 U . a

Similar results happen for �C 3-strong cardinals: � is the limit of �C 2-strong cardinals and so on. There is, however,
a limit on how strong an extender can be, as evidenced by Kunen’s Inconsistency Theorem Version 2 (12D • 6).

13C • 4. Result
Let E be an extender. Therefore

1. cp.E/ < str.E/ � lh.E/ and cpl.E/ � j supr2Œ��<! �Er j
C.

2. if E is short, lh.E/ � jE .cp.E// and cpl.E/ � cp.E/C.

Proof .:.

Write cp.E/ D �, lh.E/ D �, str.E/ D �, and cpl.E/ D ı. Write � for j supr2Œ��<! �Er j.
1. Clearly � � � C 1 by Result 12A • 8. To see that � � �, note that E can be coded as a subset of V� and

so by an element of V�C1. Hence if � � �C 1, then E 2 cUltE .V/, which contradicts Lemma 13B • 10.

To see that ı � �C, suppose otherwise: that �C

cUltE .V/ � cUltE .V/. It follows that jE � �C W �C !

Ord is in cUltE .V/ and hence jE "�C 2 cUltE .V/ and so has the form �E .Œr; f �/ D jE .f /.r/ for some
r 2 Œ��<! and f W Œ�r �<! ! Ord. As Er is an ultrafilter, either 8�

Er
t .jf .t/j � �/ or 8�

Er
t .jf .t/j > �/.

a. In the first case, �C n
S
t2Œ�r �<! f .t/ is a �C-sized set minus a j�r j � � -sized set and is hence

non-empty. Such an ˛ < �C has 8t .˛ … f .t// and hence jE .˛/ … jE .f /.r/, a contradiction.
b. In the second case, where 8�

Er
t .jf .t/j > �/, enumerate Œ�r �<! by � and then inductively choose

elements of f .t/ not chosen before (whenever jf .t/j > � ). The result is an injective choice function
c such that c.t/ 2 f .t/ whenever jf .t/j > �. It follows that 8�

Er
t .constx.t/ ¤ c.t/ 2 f .t// for

every x 2 V and hence jE .x/ ¤ jE .c/.r/ 2 jE .f /.r/ so that jE .c/.r/ 2 jE .f /.r/ n jE "V and so
jE .f /.r/ ¤ jE "�C, a contradiction.

2. If E is short, Result 13A • 3 implies � � jE .�/: � D �¹˛º for every � � ˛ < � and hence jE .�/ > ˛ for
every such ˛. This also tells us that supr2Œ��<! �r D � so ı � �C by (1). a

This partially highlights the importants of long extenders: if we want more closure of the ultrapower, we need larger
and larger �rs. For the most part though, we will be focused on short extenders, because the current inner model theory
that focuses on them is richer.

Thinking about �’s strength leads to the idea of a strong cardinal, one which is arbitrarily strong. Strong cardinals can
be defined with them in a way that they can’t with mere measures, or at least in a way using ultrapowers frommeasures.

13C • 5. Definition
Let � be a cardinal. � is strong iff for every set x 2 V, there is an elementary j W V ! M with M � V an inner
model such that cp.j / D � and x 2 M.

We shouldn’t expect to be able to express this through a some special measure U , because taking the ultrapower loses
U : U 2 ¹W W V � “W is a measure over �”º … cUlt.V; U / as in Result 12C • 1 (4)xvii. Moreover, in the ultrapower,
xviiThis, of course, is not a proof that a measure U on � can't be in M: any strong cardinal will be measurable, and will have an elementary
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j.�/ � 2� by Result 12C • 1 (4). But the following characterization tells us that we will need embeddings with
j.�/ > 2� , and so measures aren’t sufficient on their own. Extenders, however, allow us to characterize the property
of being strong in much the same way that measures characterize measurables.

13C • 6. Theorem
Let � be a cardinal. Therefore, � is strong iff for each ˛ > � there is an ˛-strong short extender E with cp.E/ D �.

This equivalence is not difficult to show. But a major thing to investigate in general is why and for which ˛ V˛ is
contained in cUltE .V/. Indeed, it’s not entirely obvious that we can define what it means for an extender to be ˛-
strong. We will prove Theorem 13C • 6 after we have introduced a lemma and investigated the first-order definability
of strength.

13C • 7. Result
The strength of an extender E is FOL-definable from E.

Proof .:.

Having V˛ � cUltE .V/ requires any x 2 V˛ to be represented in the collapse of the ultrapower. But it’s
not obvious in general how to find a representative of x. So instead, note that x 2 cUltE .V/ iff trcl.¹xº/ 2
cUltE .V/. What’s useful about this is that trcl.¹xº/ is already transitive and so if htrcl.¹xº/;2i is isomorphic to the
2UltE .V/-predecessors of Œr; f � ordered by2UltE .V/, then the collapse Œr; f � in cUltE .V/ is precisely trcl.¹xº/ by the
uniqueness ofTheMostowski Collapse (4 • 1). HenceE is ˛-strong iff for every x 2 V˛ , there is an r 2 Œ��<! , an
f W Œ�r �

<! ! V, and an isomorphism F between htrcl.¹xº/;2i and h¹Œs; g� 2 UltE .V/ W hs; gi 2E hr; f iº;2E i.
Since by Scott’s Trick the equivalence class Œs; g� refers to an actual set, this is all first-order definable. a

Returning to Theorem 13C • 6, in essence, a strong cardinal has short extenders of arbitrarily large strength. In dealing
more generally with j W V! M, for E D Ej

�
, we can replace cUltE .V/ in Definition 13C • 2 with M in the sense that

E is at least ˛-strong whenever V˛ � M and jV˛jC < j.�/.
13C • 8. Lemma

Let j W V! M be traditional with cp.j / D �. Suppose V˛ � M with jV˛jC < � � j.�/. Therefore E D Ej
�
is an

˛-strong .�; �/-short extender.

Proof .:.

For ˛ � � C 1, we already know that any such E is ˛-strong. So assume ˛ > � C 1. In essence, we will work
with a coded version of V˛ to show that kE .V˛/ D V˛ 2 cUltE .V/ where kE W cUltE .V/ ! M is given by
Theorem 13A • 13 (11): j D kE ı jE . We do this as follows. Let � D jV˛j < � and consider the corresponding
subset of � � � isomorphic to hV˛;2i. Because kE � � D id, this means

M � “9R � k.�/ � k.�/ .hk.�/;Ri Š hVk.˛/;2i/”
so by elementarity,

cUltE .V/ � “9R � � � � .h�;Ri Š hV˛;2i/”.
So h�; k.R/i Š VM

k.˛/
D V˛ . Again, since kE � � D id, k.R/ D R 2 cUltE .V/ (since � 2 k.R/ iff

k.�/ 2 k.R/ iff � 2 R) so that h�;Ri Š hVcUltE .V/
˛ ;2i Š hV˛;2i, showing that V˛ � cUltE .V/. a

A combinatorial result is the following.
13C • 9. Corollary

Let j W V ! M be traditional with cp.j / D � < � � j.�/ with � a cardinal that is ℶ-closed (i.e. � < � implies
jV�j < �) and V� � M. Therefore there is a �-strong .�; �/-short extender E.

Proof .:.

Since � is a strong limit, for any ˛ < �, jV˛jC < � and hence applying Lemma 13C • 8, V˛ � cUltE .V/ where

j W V ! M with U 2 M, for example. It's just that in these cases, cUlt.V;U / ¤ M.
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E D E
j

�
. Taking the union of such V˛s yields that V� � cUltE .V/ a.

As a result, we can easily characterize strong cardinals in terms of sufficiently strong short extenders.
Proof of Theorem 13C • 6 .:.

Suppose � is strong. To generate an ˛-strong short extender, let j W V ! M be traditional with cp.j / D �

and V˛C! 2 M. Note that then jV˛jC < j.�/ since j.�/ is inaccessible in M and M correctly computes the
cardinality of V˛ due to V˛C! � M. As a result, using Lemma 13C • 8 gives that Ej

j.�/
is an ˛-strong .�; j.�//-

short extender.

For the other direction, let x 2 V be arbitrary. Let ˛ D rank.x/ so by hypothesis, there is an ˛ C 1-strong short
extender E with cp.E/ D �. Thus jE W V! cUltE .V/ has cp.jE / D � and x 2 V˛C1 � cUltE .V/, as desired.
a

Strength also allows us to properly calculate cardinality.
13C • 10. Theorem

Let E be a .�; �/-extender with � < str.E/ � �. Therefore ℵV
˛ D ℵcUltE .V/

˛ for ˛ < str.E/.

Proof .:.

Proceed by induction on ˛. Trivially, ℵV
˛ � ℵcUltE .V/

˛ since cUltE .V/ � V is a transitive class, so it suffices to
show ℵV

˛ � ℵcUltE .V/
˛ . For ˛ < � this is easy. For ˛ D �, this is also easy since � is still inaccessible in both

models. For limit ˛, if � < ℵV
˛ then � � ℵV

ˇ
so inductively, � � ℵcUltE .V/

ˇ
for some ˇ < ˛. Hence ℵcUltE .V/

˛ D ℵV
˛ .

For ˛ C 1 > �, write ℵ˛ for both interpretations since they’re inductively equal. Note that every � < .ℵC
˛ /

V is
in bijection with ℵ˛ and thus induces a well-order hℵ˛ � ℵ˛; Ri of order-type � . R � ℵ˛ � ℵ˛ can be coded
by a subset of ℵ˛ . Since ˛ < str.E/, ˛ C 1 � str.E/ and hence V˛C1 � cUltE .V/, i.e. P .ℵ˛/ � cUltE .V/.
And hence this subset coding R is in cUltE .V/, meaning R 2 cUltE .V/ and hence cUltE .V/ knows j�j D ℵ˛ , as
desired. a

In particular, a �C2-strong extender has the ultrapower correctly compute �CC, and similarly a �C� -strong extender
correctly computes �C� (the � th cardinal larger than �).

We also have some closure properties of the ultrapower, assuming the extender is “nice”.
13C • 11. Theorem

LetE be a .�; �/-short extender with str.E/ D lh.E/ D �where � D �Cı and cof.�Cı/ > � for some ı. Therefore
cpl.E/ D �C in that � cUltE .V/ � cUltE .V/.

Proof .:.

For any �-length sequence hX˛ W ˛ < �i,X˛ 2 cUltE .V/, we have a representationX˛ D jE .f˛/.r˛/ for various
f˛ W Œ��

<! ! V and r˛ 2 Œ��<! for ˛ < �. Note that jE .hf˛ W ˛ < �i/ D hF˛ W ˛ < j.�/i where F˛ D jE .f˛/
for ˛ < �. So restricting this sequence down to � yields jE .hf˛ W ˛ < �i/ � � D hjE .f˛/ W ˛ < �i.
Thus it suffices to show that hr˛ W ˛ < �i 2 cUltE .V/. To do this, becase we can code finite subsets of �
just as elements of �, we can regard hr˛ W ˛ < �i as a �-length sequence of ordinals in � D � C ı < �Cı .
Therefore sup˛<� r˛ < �

Cı by the cofinality restriction. It follows by the �-strength ofE and Result 12A • 9 that
hr˛ W ˛ < �i 2 HV

�Cı D HcUltE .V/
�Cı . Hence the composition hjE .f˛/.r˛/ W ˛ < �i 2 cUltE .V/, as desired. a

In particular, measures—which can be identified with .�; �C 1/-extenders—have ultrapowers that are � �-closed. So
they are closed under !-length sequences, and thus are well-founded (which, of course, we already knew).

As a final note for this subsection, let’s investigate ultrapowers of set-sized models, and in particular V˛ for E 2 V˛ .
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Firstly, note that since P .Œ��<!/ and P .Œ��<!/ are absolute between V and V˛ for ˛ � max.�; �/ C !, being an
extender is aboslute between V and V˛ for ˛ � �C !.

13C • 12. Result
Let E 2 V˛ be a .�; �/-short extender. Let jE W V ! cUltE .V/ be the canonical embedding. Therefore
cUltV˛

E .V˛/ D
S
ˇ<˛ V

cUltE .V/
jE .ˇ/

.

Proof .:.

Looking back to Definition 13A • 8, note that hr; f i �E hs; gi and hr; f i 2E hs; gi is absolute between V˛ and
V whenever f; g 2 V˛ since it only references E, r , and s which are all in V˛ whenever E 2 V˛ . Moreover, if
hr; f i 2E hs; gi and g 2 V˛ , then hr; f i �E hr; f 0i for some f 0 2 V˛: just set

f 0.t/ D

´
0 if f .t/ … V˛ _ f .t/ … g.t/
f .t/ if f .t/ 2 g.t/ 2 V˛ .

Since g 2 V˛ , f .t/ 2 V˛ for Er -almost all t 2 Œ��jrj. Since hr; f i 2E hs; gi already, it follows that hr; f i �E
hr; f 0i. It should also be clear that f 0 2 V˛ since f � Œ��jrj � .im.g/ [ ¹0º/ 2 V˛ . All of this tells us that
Œr; f �V \ V˛ D Œr; f �V˛ whenever f 2 V˛ , and modulo this translation, their predecessors are the same too:
UltE .V/ � “s; g� 2 Œr; f �” iff UltV˛

E .V˛/ � “Œs; g� \ V˛ 2 Œr; f � \ V˛”.

Let j D jE W V ! cUltE .V/. Suppose f 2 V˛ so that imf � Vˇ for some ˇ < ˛. It follows that for every
r 2 Œ��<! , j.f /.r/ � VcUltE .V/

j.ˇ/
. Hence cUltV˛

E .V˛/ �
S
ˇ<˛ V

cUltE .V/
j.ˇ/

. Similarly, if x 2
S
ˇ<˛ V

cUltE .V/
j.ˇ/

is
represented by j.f /.r/ 2 VcUltE .V/

j.ˇ/
for some ˇ < ˛ then Er -almost every t has rank.f .t// < ˇ. Without loss of

generality, this happens for all t , meaning f 2 V˛ , meaning Œr; f � also represents x. Therefore
S
ˇ<˛ V

cUltE .V/
j.ˇ/

�

cUltV˛

E .V˛/. a

In particular, for regular � > �, cUltV�

E .V�/ D VcUltE .V/
jE .�/

. More generally, we have the following.

13C • 13. Corollary
Let E be a-short extender with cp.E/ D �. Let ˛ 2 Ord. Therefore cof.˛/ ¤ � implies jE .˛/ D sup¹jE .ˇ/ W ˇ <
˛º. In particular, if cof.˛/ ¤ �, and ˛ > �, cUltV˛

E .V˛/ D VcUltE .V/
jE .˛/

.

Proof .:.

Let j D jE W V ! cUltE .V/. To show that ¹j.ˇ/ W ˇ < ˛º is unbounded in ˛, let � < j.˛/ be arbitrary. It
suffices to find a ˇ < ˛ with j.ˇ/ � �. Represent � D j.f /.r/ by Œr; f � for r 2 Œlh.E/�<! and f W Œ��jrj ! V.
Since UltE .V/ � “Œr; f � < Œ;; const˛�”, without loss of generality, imf � ˛.

• First suppose cof.˛/ < �. Let ˛ D sup¹ˇ W  < cof.˛/º and now for t 2 Œ��jrj, let t < cof.˛/ < � be the
least such that f .t/ < ˇt

. Since there are at most cof.˛/ < � many options, �-completeness gives some
 such that 8�

Er
t .t D /. Hence UltE .V/ � “Œr; f � < Œ;; constˇ

�” and thus � D j.f /.r/ < j.ˇ /.
• Now suppose cof.˛/ > � so that f is bounded in ˛ by some ˇ. It follows that UltE .V/ �
“Œr; f � < Œ;; constˇ �” and hence � D j.f /.r/ < j.ˇ/. a

Note that if � > � is regular, cUltE .V/ � “jE .�/ is regular”. This might seem to conflict with Corollary 13C • 13,
which says cof.jE .�// D cof.�/ D �, but note that cUltE .V/ doesn’t have access to jE and—being closed only under
�-length sequences, not �-length ones—doesn’t know about the �-length sequence hjE .˛/ W ˛ < �i whereas V does.

§13D. Generators and length

Beyond these �rs, there’s the notion of a generator of an extender and the natural length of an extender, being the limit
of the generators. Note that we can trivially get extenders with arbitrarily large length that fundamentally are the same
as an extender with a smaller length. The natural length is the minimal such length.
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13D • 1. Example
Let E be a .�; � C 1/-short extender and let � > � be arbitrarily large. Let F D E

jE

�
, the .�; �/-short extender

derived from jE W V! cUltE .V/. Therefore cUltE .V/ D cUltF .V/.

To prove the statement of Example 13D • 1, we need to examine what happens when we “cut off” extenders to yield
other extenders.

13D • 2. Lemma
Let E be an extender and let � be such that cp.E/ < � � lh.E/. Therefore

E � � D ¹hr; Xi 2 E W r 2 Œ��<!º
is a .cp.E/; �/-extender.

Proof .:.

Write cp.E/ D �, lh.E/ D �. That E � � meets Definition 13B • 1 is trivial by previous results:
1. Trivially each Er is still a �-complete ultrafilter over Œ��<! with Œ��jrj 2 Er the least such.
2. We have ¹�º 2 Œ��<! which gives that E¹�º is a �-complete ultrafilter that is not �C-complete by Result

13A • 5, noting that �¹�º D � and E¹�º cannot be �C-complete over � without being principal. That E¹�º

is non-principal follows from the fact that the derived ultrafilter U D ¹X � � W � 2 j.X/º is non-
principal—Result 12B • 8—and that U is essentially the same as E¹�º D ¹X � Œ��

1 W ¹�º 2 j.X/º by the
map X 7! ¹¹xº W x 2 Xº � Œ��1.

3. That every ˛ < � has an r with 8�
Er
t .˛ 2 t/ follows from the fact that such an r is just any r 2 Œ��<!

with ˛ 2 r by the proof of Result 13A • 5.
4. Coherency is immediate from the coherency of E.
5. Normality is immediate from the normality of E in conjunction with Lemma 13A • 15 to tell us that the

required s � r is still contained in � if r � � .
6. Well-foundedness is immediate from the well-foundedness of E. a

With this in mind, we can also define the limit ultrapowers for E � � just as with E itself.
13D • 3. Theorem

Let E be an extender and cp.E/ < � � lh.E/. Therefore
1. UltE��.V/ is the direct limit of the system of ultrapowers ¹Ult.V; Er /; Q| r;s W r � s 2 Œ��<!º.
2. UltE��.V/ is elementarily embedded in UltE .V/ via Œr; f �E�� 7! Œr; f �E .
3. Hence there’s an elementary k� W cUltE��.V/ ! cUltE .V/ such that jE D k� ı jE�� and defined by
k�.jE��.f /.r// D jE .f /.r/.

4. cp.k�/, if it exists, is at least � .
5. Thus k�" cUltE��.V/ D ¹jE .f /.r/ W r 2 Œ��<! ^ f W Œ�r �jrj ! Vº.
6. Moreover, for r 2 Œ��<! , jr;1 D k� ı jr;� where jr;1 W cUlt.V; Er /! cUltE .V/ and jr;� W cUlt.V; Er /!

cUltE��.V/ are the direct limit embeddings.

Proof .:.
1. The first statement holds by Corollary 13A • 10.
2. The second holds by Łoś’s Theorem for Extenders (13A • 9) when we consider the embedding defined by
Qk�.Œr; f �E��/ D Œr; f �E .

3. The third holds by considering the factor map k� D �E ı Qk� ı ��1
E�� where �E W UltE .V/! cUltE .V/ is

the collapsing isomorphism and similarly for �E�� . That jE D k� ı jE�� is immediate:
k�.jE��.x// D �E . Qk�.Œ;; constx �E��// D �E .Œ;; constx �E / D jE .x/.

4. If ˛ < � , then by Lemma 13B • 5, �E��.Œ¹˛º;max�E��/ D ˛ D �E .Œ¹˛º;max�E / and hence ˛ D �E ı
Qk� ı �

�1
E��.˛/ D k�.˛/.

5. This follows by Lemma 13B • 6 and applying k� , noting that k�.r/ D r for r 2 Œ��<! .

149



INTRODUCING EXTENDERS CH II §13D

6. Note that jr;1.x/ D jE .f /.r/ whenever �r .Œf �Er
/ D x and similarly for jr;� : jr;�.x/ D jE��.f /.r/.

Moreover, since k�.r/ D r , k�.jE��.f /.r/ D k� ı jE��.f /.k�.r// D jE .f /.r/. Thus for any x 2
cUlt.V; Er /, there’s some f where jr;1.x/ D jE .f /.r/ D k� ı jr;�.x/. a

Of course, there’s no reason to think that k� needs to have a critical point �. For example, k�C1 for any extender of
length � � C 2, does not have critical point � C 1, since this isn’t even a limit ordinal in cUltE��C1.V/. Moreover,
even if � D cp.k�/, there’s no reason to think � is a cardinal in V, just in cUltE��.V/.

Why do we care about the critical points of these k�s? They allow us to give a more natural characterization of length
in the following sense.

13D • 4. Theorem
Let E be an extender. Let � D sup¹� C 1; � C 1 � lh.E/ W cp.k�/ D �º. Therefore cUltE��.V/ D cUltE .V/.

Proof .:.

Consider Qk W UltE��.V/ ! UltE .V/ defined by Qk.Œr; f �E��/ D Œr; f �E by Theorem 13D • 3 (2). It suffices to
show this is surjective by identifying an arbitrary Œr; f �E with some Œs; g�E�� . We do this by showing we never
add any information after stage �: the copy of cUltE��.V/ in cUltE .V/ is contained in the copy of cUltE��.V/
in cUltE .V/ for every � < lh.E/. Given that the copy of cUltE��.V/ is composed of copies of cUlt.V; Er / for
r 2 Œ��<! and given Theorem 13D • 3 (5) and (6), it suffices to show

.8r 2 Œ��<!/ .8f W Œ�r �
jrj
! V/ .9s 2 Œ��<!/ .9g W Œ�s�jsj ! V/ .jE .f /.r/ D jE .g/.s// (�)

Clearly if � � � already we’re done. So assume (�) inductively holds for all �0 < �. If � is a limit, the result for
� is immediate by induction.

So assume � D �0 C 1 and without loss of generality, max.r/ D �0. Because �0 � �, �0 > � for any � such that
� D cp.k�/. So if k�0 is non-trivial, then cp.k�0/ � �0C 1 D �. Hence k�0.r/ D r and thus k�0.jE��0.f /.r// D

jE .f /.r/ and jE��0.f /.r/ 2 cUltE��0.V/. Hence inductively, k�1
�
.jE .f /.r// 2 cUltE��.V/ exists, i.e.

jE .f /.r/ can be represented by jE .g/.s/ for s 2 Œ��<! and g W Œ�s�jsj ! V, as desired. a

So these critical points are interesting to investigate. We have the following definition.
13D • 5. Definition

Let E be an extender. An ordinal � with cp.E/ � � � lh.E/ is a generator of E iff � D cp.E/ or � D cp.k�/.
The natural length of E is sup¹� C 1 W � is a generator of Eº � lh.E/.

Note that although the generators contain the information of the extender’s embedding, they are not necessarily the
�rs associated with extender. An alternative, more first-order definition is the following, motivating why we should
include the special case of cp.E/.

13D • 6. Result
LetE be an extender and � 2 Œcp.E/; lh.E/�. Therefore � is a generator iff there is no r 2 Œ��<! and f W Œ�r �jrj ! V
such that jE .f /.r/ D �.

Proof .:.

Suppose � is a generator. Let r 2 Œ��<! and f W Œ�r �jrj ! V. Since k�.r/ D r , it follows that jE .f /.r/ D
k�.jE��.f /.r//. Since cp.k�/ D �, � … im k� and hence jE .f /.r/ ¤ �. Conversely, let � D jE��.f /.r/ in
cUltE��.V/ for some r 2 Œ��<! and f W Œ�r �jrj ! V. It follows that k�.jE��.f /.r// D jE .f /.r/ ¤ � meaning
k�.�/ ¤ � and thus as the least possible ordinal where this happens, cp.k�/ D �. a

So this tells us why cp.E/ D � should be considered a generator of E: j.f /.r/ for some finite subset r � � and
f W Œ��jrj ! V would yield jE .f /.r/ D f .r/. So if this were �, then we’d have 8�

Er
t .f .t/ � const�.t// meaning

jE .f /.r/ � jE .�/ > �, a contradiction.
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13D • 7. Corollary
Let E be an extender. Therefore the natural length of E is the least � such that cUltE��.V/ D cUltE .V/.

Proof .:.

We have cUltE��.V/ D cUltE .V/ by Theorem 13D • 4. That � is the least such follows from the fact that any
˛ < � has some generator ˛ < � < � with then k� non-trivial, meaning k˛ W cUltE�˛.V/ ! cUltE .V/ is
non-trivial. a

Another corollary tells us that we can therefore artificially increase the length of an extender without harm, showing
Example 13D • 1. The basic idea is that if we derive an extender from an ultrapower embedding, taking the length of
the new extender to be long enough doesn’t add anything to the natural length.

13D • 8. Corollary
Let E be an extender. Therefore there are extenders F with arbitrarily large lengths such that cUltE .V/ D cUltF .V/.

Proof .:.

Without loss of generality, assume lh.E/ is the natural length of E. Let jE W V ! cUltE .V/ be the canonical
embedding, and let F D E

jE

�
for an arbitrarily large �. Hence E D F � lh.E/ and so �Er D �Fr for r 2

Œlh.E/�<! . Note that by Theorem 13A • 13 (where the extender embedding is jF and j D jE is the given
traditional embedding) that

cUltE .V/ D ¹jE .f /.r/ W r 2 Œlh.E/�<! ^ f W Œ�Fr �
<!
! Vº

cUltF .V/ D ¹jE .f /.r/ W r 2 Œ��<! ^ f W Œ�Fr �
<!
! Vº � cUltE .V/.

So that cUltE .V/ � cUltF .V/ � cUltE .V/. a
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Section 14. External Ultrapowers

So far, there’s nothing stopping us from considering ultrapowers for models that don’t have the model in them. Indeed,
in model theory, ultrapowers are taken as in Definition 12 • 1 with no issue. But for us, Definition 12 • 1 can be more
of an issue because it can allow too many functions, and so we’d have little control over what the ultrapower looked
like in different background universes that might have more or fewer functions. As with Corollary 13C • 13, we can
consider ultrapowers of small models, but this also includes inner models which may not have the measure inside them.

One major motivation for external ultrapowers is from external elementary embeddings. It may be that there is an
elementary embedding j W L ! L, but this embedding cannot exist as a class of L itself. External elementary
embeddings will have derived measures and extenders that allow us to make similar conclusions as previously, but
require slightly more finesse to work with. Nevertheless, external elementary embeddings of models are generally
more common than the internal ones (which require measurable cardinals), and so understanding and working with
them will be quite useful in understanding iterations and comparisons between iterates.

§14A. External measures

For the most part, we will only consider ultrapowers by extenders and measures that are “close” to being inside the
relevant models, enough so that the usual arguments about extenders apply. In particular, we require a condition called
amenability.

14A • 1. Definition
Let M be a model of (some fragment of) set theory. Let U � P .�/ \M for some �.

• U is weakly amenable to M iff x \ U 2M for any x 2 M such that M � “x � P .�/ ^ jxj D �”.
• U is an M-measure iff hM;2; U i � “U is a measure over �”. We similarly define M-ultrafilters, M-�-
completeness, M-normality, and so on.

• U is a weakly amenable M-measure iff U is an M-measure weakly amenable to hM;2; U i.
External measures refer to U that are M-measures for some M, and where stereotypically U … M.

There are several things to consider here. Firstly, the usual non-weak version of amenability would say x\U 2 M for
any x 2 M, not just those of size � in M. That of course would be too strong for us, because then U \ P .P .�//M D
U \M D U would be in M. Secondly, the model hM;2; U i does not necessarily work nicely with U (excluding weak
amenability). The sentence that “U is a measure over �” is stated in the language of FOL.2; U /, meaning we are able
to ask questions about what is or is not in U including things like �-completeness, which is stated as “for all ˇ < �,
for all f W ˇ ! M (in M) if 8˛ < ˇ .f .˛/ 2 U/ then

T
˛<ˇ f .˛/ 2 U ” for example. This doesn’t mean we can

form U D ¹x 2 P .�/ W x 2 U º in hM;2; U i however, as there is no reason to believe that hM;2; U i satisfies the
comprehension scheme lifted to the language of FOL.2; U /. All of this is just to say that U need not be in M, which
is the entire point of this discussion. This will be useful for us, especially when we consider small “toy” models of set
theory like from Subsection 7C.

The weak amenability condition defined above is a less useful formulation compared to the following.
14A • 2. Lemma

Let M be a transitive model of some (suitable) fragment of set theory. Let U be an M-measure. Therefore U is
weakly amenable to M iff for every f W � ! M in M, ¹x < � W f .x/ 2 U º D f �1"U 2 M.
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Proof .:.

For one direction, suppose U is weakly amenable and f 2 �M \M. Thus j im.f / \ P .�/j � � (just by †0-
replacement to remove repeated values and reindex to get a bijection between it and �) so by weak amenability
im.f / \ U 2 M. By †0-comprehension, ¹x < � W f .x/ 2 im.f / \ U º D f �1"U 2 M. For the other
direction, suppose f �1"U 2 M for every f 2 �M \ M. If x � P .�/ has size jxj � �, then there is some
surjection f W � ! x. It follows that f �1"U D ¹˛ < � W f .˛/ 2 x \ U º is in M by hypothesis. Thus
f ".f �1"U/ D x \ U 2 M by †0-replacement, as desired, meaning U is weakly amenable. a

The word “suitable” is used above in a vague way for the amount of ZFC that M satisfies. This is really just to say that
we don’t need to consider only inner models, but also certain set models of the form L˛ , H�, or V˛ . Usually this just
requires enough replacement and comprehension to carry out Transfinite Recursion (3C • 2) and define certain sets,
and the reader can take it to be ZFC�P, which is more than enough. Later on, we’ll use this with fine structural models
of the form J˛ŒE�, which often don’t satisfy a full version of comprehension or replacement, but which nevertheless
satisfy enough set theory to be relevant in this discussion, although perhaps in a restricted way.

External elementary embeddings, regardless of whether they are classes of M, give rise to these M-measures.
14A • 3. Result
• Let M, N be transitive models of (some fragment of) set theory such that P .�/M D P .�/N.
• Let j W M! N be elementary with cp.j / D �.

Therefore, Uj D ¹X 2 P .�/M W � 2 j.X/º is a weakly amenable M-measure over �.

Proof .:.

The fact thatU is an M-measure is exactly Result 12B • 8. So it suffices to show weak amenability. Using Lemma
14A • 2, let f W � ! P .�/M in M be arbitrary. We want to show ¹˛ < � W f .˛/ 2 U º 2 M. Since this is a
subset of � and P .�/ is the same in both M and N, it suffices to show this set is in N. Note by elementarity,
j.f .˛// D j.f /.j.˛// for any ˛. Since cp.j / D �, j.f .˛// D j.f /.˛/ whenever ˛ < �. Clearly j.f / 2 N
so that

¹˛ < � W f .˛/ 2 U º D ¹˛ < � W � 2 j.f .˛//º D ¹˛ < � W � 2 j.f /.˛/º 2 N.
Hence this set f �1"U 2 P .�/N � M. a

Now, given such an M-measure, we can form the external ultrapower of M, but not in the sense of Definition 12 • 1,
which considers Ult.M; U / D ¹Œf �U W f 2 �Mº. Again, the reason we don’t consider this is that frequently, �M 6� M,
and this can result in some things being harder to control and argue about. So instead, we consider only functions in
M, and call the result UltŒM; U �. The interpretation 2UltŒM;U � remains as before, but nowM may not be able to form the
resulting model because, again, U might not be in M.

14A • 4. Definition
LetM be a model of (some fragment of) set theory. LetU be an M-measure over �. In this case, we define everything
exactly as in Definition 12 • 1, but additionally

UltŒM; U � D ¹Œf �U W f 2 M \ �Mº.

IfU 2 M then we get back the original notion of an ultrapower interpreted in themodel itself: UltŒM; U � D UltM.M; U /.
This also gives another kind of measure over the ultrapower according to the language of FOL.2; U /: U UltŒM;U � should
be a UltŒM; U �-measure by elementarity assuming we have weak amenability. Speaking of elementarity, we should
establish Łoś’s Theorem (12 • 2) for these external ultrapowers, which also features weak amenability.

14A • 5. Theorem (Łoś's Theorem)
1. Let � be a signature.
2. Let M � AC be a transitive FOL.2/-model of some (suitable) fragment of set theory.
3. Let U be an M-measure over �.
4. Let '.x/ be a FOL.2/-formula.
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Therefore, for any Œf � 2 UltŒM; U �,
UltŒM; U � � “'.Œf �/” iff 8

�
Ux .M � “'.f .x//”/.

If in addtion, U is weakly amenable to M, then this also holds for FOL.2; U /-formulas.

Proof .:.

The proof of this is almost exactly the same as with Łoś’s Theorem (12 • 2) with the only two hiccups:
1. The atomic formulas (specifically those asserting membership in U UltŒM;U �) require weak amenability.
2. We need AC to hold in M to find witnesses for existential statements.

For (1), we’ll use PU as a symbol to distinguish it from U . In this case, we have by Definition 12 • 1 that
UltŒM; U � � “Œf � 2 PU ” iff ¹x < � W f .x/ 2 U º 2 U .

In this way, we need to have ¹x < � W f .x/ 2 U º 2 M to even talk about this. Weak amenability proves this by
Lemma 14A • 2. Hence the atomic case is makes sense, and is therefore trivially true by Definition 12 • 1.

For (2), only one direction changes: suppose 8�x M � “9y '.f .x/; y/”. We want to show UltŒM; U � �
“9y '.Œf �; y/” and thus find a g 2 �M\M such that UltŒM; U � � “'.Œf �; Œg�/”. To do this, we have someX � �
in U such that M � “8x 2 X 9y '.f .x/; y/”. So by AC let g W � ! M be defined in M by choosing some such
y for each x 2 X , and define g.x/ D 0 for x 2 � nX . We have g 2 M andM � “8x 2 X '.f .x/; g.x//” so that
by structural induction on formulas, UltŒM; U � � “'.Œf �; Œg�/” and so UltŒM; U � � “9y '.Œf �; y/”, as desired.

The rest of the induction and proof is exactly the same as Łoś’s Theorem (12 • 2). a

We still get Łoś’s Theorem (14A • 5) for FOL.2/-formulas if we don’t have weak amenability, but if we do, then the
interpretation of the M-measure is again an (external) measure. This is at the heart of why we want weak amenability:
to be able to use the same measure and consider iterated ultrapowers.

14A • 6. Corollary

• Let M � AC be a transitive model of some (large) fragment of set theory.
• Let U be a weakly amenable M-measure over �.
• Suppose UltŒM; U � is well-founded with transitive collapse map � W UltŒM; U �! cUltŒM; U �.

Write PU for a symbolwith PUM D U . Therefore PU cUltŒM;U � is a weakly amenable cUltŒM; U �-measure over�.Œconst� �/.

Proof .:.

Write W for PU cUltŒM;U �. We know that M � “ PU is a measure over const�.˛/” for every ˛ < �. So by Łoś’s
Theorem (14A • 5),

UltŒM; U � � “ PU is a measure over Œconst� �”.
Hence W is a cUltŒM; U �-measure over �.Œconst� �/, and it suffices to show weak amenability. Suppose that
X 2 P .�.Œconst� �//cUltŒM;U � has size jX jcUltŒM;U � D �.Œconst� �/. We’d like to show X \ U 2 cUltŒM; U �.
Firstly, let F 2 cUltŒM; U � be a bijection F W �.Œconst� �/! X . We have that X D �.Œ��/ and F D �.Œf �/ for
some �; f 2 �M \M. Note that therefore

UltŒM; U � � “Œf � is a bijection with domain Œconst� � and range Œ�� ^ Œ�� is a subset of P .Œconst� �/”.
So by Łoś’s Theorem (14A • 5), f .˛/ W � ! �.˛/ is a bijection and �.˛/ is a subset of P .�/M for almost every
˛ (so without loss of generality, for every ˛). So consider

S
˛<� �.˛/ � P .�/M which still has size � in M.

Write A D U \
S
˛<� �.˛/ so that A 2 M by weak amenability. Therefore the map �0 W � ! M defined by

˛ 7! �.˛/ \ A D �.˛/ \ U is in M. We can show that �.Œ�0�/ D X \W : for any g 2 �M \M,
�.Œg�/ 2 X \W iff UltŒM; U � � “Œg� 2 Œ�� \ PU ”

iff 8
�˛ .g.˛/ 2 �.˛/ \ U D �0.˛//

iff UltŒM; U � � “Œg� 2 Œ�0�” iff �.Œg�/ 2 �.Œ�0�/.
It follows that X \W D �.Œ�0�/ 2 cUltŒM; U �. Hence W is weakly amenable to cUltŒM; U �. a
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Another corollary is that we get an elementary embedding from M into UltŒM; U �. One crucial point, however, is that
this embedding is not necessarily traditional: UltŒM; U � need not be an inner model of M. The proof here is again the
exact same as before with the analogous result for an internal ultrapower from Theorem 12B • 1.

14A • 7. Corollary
LetM � AC be a transitivemodel of some (suitable) fragment of set theory. LetU be anM-measure over �. Therefore

1. Q| W M! UltŒM; U � is elementary, defined by Q|.x/ D Œconstx �.
2. Moreover, if i W M! N is elementary with N transitive and such that U is the derived measure, then there is

an elementary k W UltŒM; U �! N defined by k.Œf �/ D i.f /.�/. In this case, UltŒM; U � is well-founded, and
the transitive collapse cUltŒM; U � D ¹i.f /.�/ W f 2 �M \Mº.

Proof .:.
1. This follows just by Łoś’s Theorem (14A • 5): M � “'.x/” iff 8˛ .M � “'.constx.˛/”/ iff UltŒM; U � �

“'.Œconstx �/” iff UltŒM; U � � “'. Q|.x//”.
2. The proof that k exists and takes this form is just Factoring (12B • 9). This implies UltŒM; U � is well-

founded, because any ill-founded sequence hxn W n < !i (in V) yields an illfounded sequence hk.xn/ W n <
!i

We also get a number of similar results as with internal ultrapowers, similar to Result 12C • 1 and Lemma 12B • 10.
14A • 8. Definition

Let M � AC be a transitive model of some (suitable) fragment of set theory. Let U be an M-measure over � 2 Ord
such that UltŒM; U � is well-founded.

• Write cUltŒM; U � for the transitive class, and let �U W UltŒM; U �! cUltŒM; U � be the collapsing isomorphism.
• Write Q|U W M! UltŒM; U � for the canonical embedding defined by Q|.x/ D Œconstx �U .
• Write jU W M! cUltŒM; U � for �U ı jU .
• If j W M! N is elementary andU D Uj , then write QkU W UltŒM; U �! N for the map defined by QkU .Œf �U / D
j.f /.�/. Write kU W cUltŒM; U �! N for QkU ı ��1

U .

14A • 9. Lemma
LetM � AC be a transitive model of some (suitable) fragment of set theory. LetU be a weakly amenable M-measure
over � 2 Ord such that UltŒM; U �. Therefore,

1. cp.j / D �.
2. VM

� D VcUltŒM;U �
� and P .�/M D P .�/cUltŒM;U �.

3. � is strongly inaccessible in M.
4. U … cUltŒM; U �.
5. If M is a set, jMj D j cUltŒM; U �j.

Proof .:.

1. This follows just as with Theorem 12B • 5. In particular, suppose inductively that j � � D id � �, aiming
to show j.�/ D � for � < �. Thus ˛ 2 � implies ˛ D j.˛/ 2 j.�/, meaning � � j.�/. For the other
direction, let � < j.�/ be arbitrary. � D �.Œf �/ for some f W � ! Mwith f 2 M, and j.�/ D �.Œconst� �/,
meaning by Łoś’s Theorem (14A • 5) that

cUltŒM; U � � “�.Œf �/ < �.Œconst� �/” iff UltŒM; U � � “Œf � < Œconst� �” iff 8
�˛ .f .˛/ < �/.

It follows that f is constant on a large set by �-completeness since � < �. Hence8�˛ .f .˛/ D "/ for some
" < � , and therefore Œf � D Œconst"�. Thus � D �.Œconst"�/ D j."/ D " < � by the inductive hypothesis.
So j.�/ < � .

To see that � ¤ j.�/—and thus that cp.j / D �—consider the identity function. Note that 8� <

� 8�˛ .˛ > �/, i.e. for every � < �, 8�˛ .id.˛/ > const�.˛//. Hence �.Œid�/ > �.Œconst� �/ D j.�/ D �
for every � < �. This means � � �.Œid�/. On the other hand, 8�˛ .id.˛/ < const�.˛//, meaning
�.Œid�/ < �.Œconst� �/ D j.�/. Thus � � �.Œid�/ < j.�/ so that cp.j / D �.
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2. This is less obvious than one might think at first glace. Generally speaking, cp.j / D � doesn’t imply M
and cUltŒM; U � agree up to � unless the ultrapower is contained in the original model. Instead, we only get
VM
� � VcUltŒM;U �

� because j "VM
� D VM

� � cUltŒM; U �. For the other direction, assume inductively that M
and cUltŒM; U � agree on V˛ for ˛ < �. To see that the two agree on V˛C1, let x 2 VcUltŒM;U �

˛C1 be arbitrary.
We can write x D �.Œf �/ for some f W � ! M with f 2 M. Since VM

˛ D VcUltŒM;U �
˛ , x � M. Because

cp.j / D � > ˛, j "x D x, and so by Łoś’s Theorem (14A • 5),
�.Œconsty �/ D j.y/ D y 2 x D �.Œf �/ iff UltŒM; U � � “Œconsty � 2 Œf �” iff 8

�� .y 2 f .�//.
Hence we can define x by

�.Œf �/ D ¹y 2 VM
˛ W ¹� < � W y 2 f .�/º 2 U º.

This seems like it’s in M but to check this, we need to use weak amenability, which means calculating
cardinality.

Claim 1
We have x 2 M and therefore, as x was arbitrary, VcUltŒM;U �

˛C1 � VM
˛C1.

Proof .:.

Ostensibly, we’d set F W VM
˛ ! P .�/ by F.y/ D ¹� < � W y 2 f .�/º and then note x D F �1"U ,

motivated Lemma 14A • 2 to show F �1"U 2 M if U is weakly amenable to M. But showing this
requires VM

˛ to have size � � inM. We can restrict ourselves to only considering y 2
S

im.f / since
y 2 x iff 8�� .y 2 f .�//. So now it suffices to show im.f / has size � � in M, which is less of an
issue. To see that j

S
im.f /jM < �, suppose otherwise and by AC get an injection g W � !

S
im.f /.

It follows that g.�/ has rank � ˛ < � for every � < �, meaning �.Œg�/ 2 VcUltŒM;U �
˛ D VM

˛ . As
cp.j / D � > ˛, �.Œg�/ D z D j.z/ D �.Œconstz �/ for some z 2 VM

˛ . This means 8�� .g.�/ D z/,
which contradicts that g is injective. Hence j

S
im.f /j < � and so taking F.y/ D ¹� < � W y 2

f .�/º yields F W
S

im.f /! P .�/ with x D �.Œf �/ D F �1"U 2 M by weak amenability. a

Hence VcUltŒM;U �
˛C1 D VM

˛C1. This completes the successor stage of the induction, and as limit stages are just
unions, this implies by induction that VM

� D VcUltŒM;U �
� .

We also get thatM and cUltŒM; U � agree on P .�/. One direction is as before: j.x/\ � D x for x 2 P .�/M

since every ˛ < � has ˛ 2 x iff j.˛/ D ˛ 2 j.x/. This implies P .�/M � P .�/cUltŒM;U �. So suppose
x 2 P .�/cUltŒM;U � with x D �.Œf �/ for some f 2 �M \M. As previously,

x D ¹˛ 2 � W ¹� < � W ˛ < f .�/º 2 U º.
By weak amenability, the version from Lemma 14A • 2, this implies x 2 M: let F W � ! P .�/ be defined
by F.˛/ D ¹� < � W ˛ < f .�/º so that x D F �1"U .

3. The fact that � is regular follows by �-completeness of U : if h˛ W ˛ < �i 2 M is cofinal in � with � < �,
consider the statement 8˛ < � 8�� .˛ < �/ which implies by �-completeness 8�� 8˛ < � .˛ < �/

and in particular, 9� < � 8˛ < � .˛ < �/, which contradicts that the ˛s are cofinal. The fact that � is
uncountable in M is proven as follows. Note j.!/ D !—so that ! < cp.j / D �—and if x � ! codes a
well-order of length �, then j.x/ codes a well-order of length j.�/. But j.x/ D x because ! < � implies
! C 1 < � and so j � VM

!C1 D id � VM
!C1. This is a contradiction because x cannot code a well-order of

length both � and j.�/ ¤ �.

The fact that � is strongly inaccessible follows in just the same way as Lemma 12C • 2, but with some
careful checking to ensure we’re still working in M. Suppose � < � has 2� � �. Let ƒ � P .�/M have
size � in M as witnessed by a bijection g W ƒ! �. Consider Ug D ¹x 2 P .ƒ/M W g"x 2 U º which need
not be in M. Now we can specify any element of ƒ with just �-many pieces of information, and we can
use the �-completeness of U to bring all of these pieces together into a single x 2 ƒ.

Consider the function f W �! P .�/ that decides whether ˛ 2 x: define f .˛/ D g"¹y 2 ƒ W ˛ 2 yº. By
weak amenability, f �1"U 2 M, and this will be our x. Now we can consider X˛ � ƒ incorporating the
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information about whether ˛ 2 x or ˛ … x: define for ˛ < �,

X˛ D

´
¹y 2 ƒ W ˛ 2 yº if ˛ 2 f �1"U i.e. if ¹y 2 ƒ W ˛ 2 yº 2 Ug
¹y 2 ƒ W ˛ … yº if ˛ … f �1"U .

As a result, X˛ 2 Ug for every ˛ < � because if ˛ 2 f �1"U , f .˛/ D g"X˛ 2 U so X˛ 2 Ug , and
otherwise if ˛ … f �1"U then f .˛/ D g"¹y 2 ƒ W ˛ 2 yº … U so that as an M-ultrafilter, � n g"¹y 2 ƒ W
˛ 2 yº 2 U . As a bijection, this is equal to g"¹y 2 ƒ W ˛ … yº D g"X˛ so that X˛ 2 Ug . Note that hX˛ W
˛ < �i 2 M. So by �-completeness,

T
˛<� g"X˛ 2 U . But as a bijection,

T
˛<� g"X˛ D g"

T
˛<�X˛

and
T
˛<�X˛ is at most a singleton: it is either empty or ¹f �1"U º, which means either g"; D ; or the

singleton ¹g.f �1"U/º is in U , contradicting that U is non-principal.

4. If U 2 cUltŒM; U �, then consider in cUltŒM; U � the relation � on .��/cUltŒM;U � D .��/M—which are equal
by 2—defined by f � g iff ¹˛ < � W f .˛/ < g.˛/º 2 U . We know this relation is a well-order, because
it is precisely the ordering 2UltŒM;U � on the predecessors of Œconst� � in UltŒM; U � whose transitive collapse
is the membership relation on the ordinal �.Œconst� �/ D j.�/. Hence in cUltŒM; U �, there is a surjection
from 2� onto j.�/, which contradicts by elementarity that j.�/ is strongly inaccessible in cUltŒM; U �.

5. Clearly every element of cUltŒM; U � can be identified with an element of �M\M � M. So j cUltŒM; U �j �
jMj. On the other hand, j W M! cUltŒM; U � is an injection, meaning jMj � j cUltŒM; U �j. a

(2) and (4) together tell us thatM and cUltŒM; U � agree on V�C1 as well since jV� jM D � and so VM
�C1 can be identified

with P .�/M. This also tells us � is the �th inaccessible, mahlo, the �th mahlo, and so forth for the same reason as in
Corollary 12D • 3.

Now we come to a point where the theory of internal and external ultrapowers diverge. Here is a list of several things
that can go differently:

1. cUltŒM; U � need not be contained in M.
2. Ord\M can be strictly smaller thanOrd\cUltŒM; U �, meaning the height ofM is strictly less than the ultrapower

cUltŒM; U �.
3. � need not be measurable in M, just a property called weak compactness.
4. UltŒM; U � need not be well-founded.

The last point is the most important for us. The issue is that even if U is �-complete for sequences in M, V may still
contain sequences that witness that the ultrapower is ill-founded. This is made formal with the following, which has the
same proof as with ultrapowers by U 2 M, Theorem 12B • 3. Note that we do not get an equivalence as with Theorem
12B • 3.

14A • 10. Result
LetM be a transitive model of some (suitable) fragment of set theory. Let U be an M-measure. Therefore UltŒM; U �
is well-founded if

T
n<! Xn ¤ ; for any family ¹Xn W n < !º 2 P .U /V (this weakens ℵ1-completeness which

requires
T
n<! Xn 2 U )

Proof .:.

Suppose U satisfies the hypothesis but UltŒM; U � is ill-founded. Let hfn W n 2 !i 2 M be a descending 2UltŒM;U �-
sequence in UltŒM; U �: for every n 2 !, UltŒM; U � � “ŒfnC1� 2 Œfn�”. It follows by Łoś’s Theorem (14A • 5),^

n2!

8
�˛ .M � “fnC1.˛/ 2 fn.˛/”/

By the hypothesis, the intersection of these large sets is non-empty in V:
9˛

^
n2!

M � “fnC1.˛/ 2 fn.˛/”.

But any such ˛ yields an infinite, decreasing sequence hfn.˛/ W n 2 !i in M and V, a contradiction. a

This leads to the idea of iterability. Even if the external ultrapower is well-founded, the iterated ultrapowers as in
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Subsection 12 E may not be. So we’d like to know when a model is “iterable” in the sense that its external ultrapowers
are well-founded. This is actually closed tied with weak amenability as ultrapowers of weakly amenable measures over
� preserve P .�/ by Lemma 14A • 9 (2) which is a kind of partial converse of Result 14A • 3. The weak amenability
portion is necessary to get another measure over the ultrapower and continue the iteration as per Corollary 14A • 6.

14A • 11. Lemma
Let M � AC be a transitive model of some (suitable) fragment of set theory. Let U be an M-measure such that
UltŒM; U � is well-founded. Therefore the derived measure Uj D U where j W M ! cUltŒM; U � is the canonical
embedding.

Proof .:.

By Corollary 14A • 7, there is a unique factor embedding Qk W UltŒM; U �! cUltŒM; U � with Qk.Œf �/ D j.f /.�/.
Since the transitive collapse is unique, Qk D �U so that �U .Œf �/ D j.f /.�/. As a result, for X � �,

X 2 Uj iff � 2 j.X/

iff j.id/.�/ D k.Œid�/ D �U .Œid�/ 2 �U .ŒconstX �/
iff UltŒM; U � � “Œid� 2 ŒconstX �”
iff 8

�˛ .id.˛/ D ˛ 2 X D constX .˛//, by Łoś’s Theorem (14A • 5),
iff X 2 U . a

14A • 12. Corollary
Let M � AC be a transitive model of some (suitable) fragment of set theory. Let U be an M-measure such that
UltŒM; U � is well-founded. Therefore U is weakly amenable to M iff P .�/M D P .�/cUltŒM;U �.

Proof .:.

Note that Lemma 14A • 9 (2) gives one direction: if U is weakly amenable to M, then the two models agree on
P .�/. For the other direction, assume P .�/M D P .�/cUltŒM;U �. By Result 14A • 3, the derived measure UjU

is
weakly amenable to M. By Lemma 14A • 11, UjU

D U . a

This is sometimes incorrectly interpreted as saying that weak amenability is equivalent to preserving the powerset (in
the sense that if the measure derived from j W M ! N is weakly amenable then M and N agree on P .�/), but this
isn’t true generally.[?gitmanwelchiterablecards] Instead, we only get the equivalence forN as the ultrapower, and
more broadly speaking, preserving the powerset of � is stronger than weak amenability as shown with Result 14A • 3.

§14B. Linear iterations of external measures

We proceed in a similar way to Subsection 12 E. The downside to using external measures, however, is that the direct
limit need not be well-founded anymore unless we have something like the ℵ1-completeness from Result 14A • 10. In
such a case, we can present a similar proof of well-foundedness for limit ultrapowers as in The Wellfoundedness of
Iterated Ultrapowers (12 E • 4). But we will give an alternative route that we could have also used there.

14B • 1. Definition
Let � 2 Ord. Let M D hM˛ W ˛ < �i and U D hU˛ W ˛ < �i. We call hM;Ui a linear iteration iff for all ˛ < �,

1. MU
˛ is a transitive model of some (suitable) fragment of set theory.

2. U˛ is an MU
˛ -measure such that UltŒMU

˛ ; U˛� is well-founded.
3. MU

˛C1 D cUltŒMU
˛ ; U˛�.

4. For limit ˛, MU
˛ is the direct limit of MU

ˇ
for ˇ < ˛, where the embeddings jˇ; W MU

ˇ
! MU

 are given by
composition: jˇ;ˇC1 is the canonical embedding, jˇ; D jı; ı jˇ;ı for any ı with ˇ � ı �  < ˛.

In this case, we can define MU
1 as the direct limit of M using the embeddings above.

We say U is weakly amenable to M iff each U˛ is weakly amenable to MU
˛ .
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So this generalizes Definition 12 E • 2 in two major respects: the measures U˛ need not be in MU
˛ , and U˛ need not be

j0;˛.U˛/. Later on, we’ll generalize this further into iteration trees whereMU
˛C1 need not be cUlt.MU

˛ ; U˛/ but instead
cUlt.MU

˛� ; U˛�/ for some ˛� � ˛.xviii For now, though, we indeed only care about when U˛ does equal j0;˛.U˛/,
because it helps us understand what properties of U we need to be able to iterate it ˛ steps.

As before, it’s not clear when MU
1 is well-founded. For example, U could be as nice as we’d like, but if take U D

hU W ˛ < !i, then MU
1 is always illfounded. Indeed, just having the same critical point implies illfoundedness: if

U D hUn W n < !i with cp.jn;nC1/ D � for all n, then MU
1 is illfounded. This can be seen with Figure 14B • 2.

�

j0;1.�/

j0;2.�/

�

j1;2.�/

�

j0;1.�/

j1;1.�/

j2;1.�/
:::

MU
0 MU

1 MU
2

� � � MU
1

14B • 2. Figure: An Illfounded Iteration

What matters for us is how long iterations can go on. It’s consistent that MU
n exists for n < !, but the direct limit

MU
1 is ill-founded. Indeed, one sufficient condition to being fully iterable—in that the ˛th linear iterate exists for all

˛ 2 Ord—is a form of countable completeness from Result 14A • 10.
14B • 3. Definition

A set U is σ-complete iff for any ¹Xn W n < !º � U ,
T
n<! Xn ¤ ;.

Again, Result 14A • 10 tells us that being σ-complete implies the ultrapower is well-founded. Note that if U is an
ultrafilter in V, this idea doesn’t make any difference from ℵ1-completeness before, but it can if U is an M-measure
and M does not contain all such countable sequences in !U .

14B • 4. Result
Let U be an ultrafilter (in V). Then U is σ-complete iff U is ℵ1-complete.

Proof .:.

Suppose U is σ-complete. If
T
n<! Xn D Y … U then as an ultrafilter,Zn D Xn nY 2 U and so

T
n<! Zn D ;

which contradicts σ-completeness. This shows U is also ℵ1-complete. The other direction is trivial. a

Let us give an overview of why the iterates of a model M by a σ-complete, weakly amenable M-measure U are well-
founded.

M

N NW
1 NW

2 � � � NW
1

�0 �1 �2

14B • 5. Figure: Realizing Iterates Back intoM

xviiiSo the production of ultrapowers is still “linear” in these iteration trees in that we proceed one-by-one, but the resulting graph of embeddings is
not a line but instead a tree as there is ostensibly no embedding from M˛ to M˛C1, just from M˛� to M˛C1.

159



EXTERNAL ULTRAPOWERS CH II §14B

1. If M has an iteration of length ˛, then so do its countable hulls.
2. Moreover, if M doesn’t have an iteration of length ˛, then a countable hull has an ill-founded iteration.
3. Ultrapowers of hulls can be realized back into M.
4. So if M isn’t fully iterable, then some countable hull N isn’t fully iterable, but nevertheless, every iterate can be

realized back intoM, meaning the direct limit can be realized back intoM. This shows the direct limit should be
well-founded because M is transitive, and we get a contradiction. This is shown in Figure 14B • 5

The ideas here require weak amenability mostly just for us to be able to define the iterated ultrapower by the same
measure (translated by the embedding of course). The property of σ-completeness comes into play in realizing hulls
back into M. All of this is quite vague for now, but let us get started in proving these.

We have another characterization of σ-completeness, which is useful for us in the context of taking hulls. First let’s
show that hulls still have measures over them when the original models do too. This marks a shift in how we should
think about the ultrapowers of a model being well-founded according to whether hulls are well-founded, and eventually
this changes our perspective from how sets are measured to instead what the resulting embeddings look like.

14B • 6. Lemma
• Let M be a transitive model of a (sufficient) fragment of set theory.
• Let U be an M-measure on some �.
• Let Hull 42 M (not necessarily a skolem hull, though this is what you should have in mind, also recall the
notation of 4� from Definition 6A • 1) with � 2 Hull (e.g. if Hull 4

2; PU M).
• Let � W Hull! N be the collapsing isomorphism.

Therefore �"U is an N-measure over �.�/.

Proof .:.

Suppose �"U is not an N-measure over �.�/. Clearly �"U is still a filter for subsets in P .�/\N: if x; y 2 �"U
then ��1.x/\��1.y/ 2 U . As an isomorphism, ��1.x/\��1.y/ D ��1..x\y/Hull/ 2 Hull. Since Hull 4 M,
.x \ y/Hull D x \ y and so x \ y 2 �"U . We similarly get upward closure under �.

�"U is an N-ultrafilter because if x 2 P .�.�// n �"U , then x D �.y/ where by elementarity, Hull � “y � �”.
Since Hull 4 M and M is transitive, y is truly a subset of � and y … U . Thus � n y 2 U . By the same sort of
elementarity argument from before, �.� n y/ D �.�/ n x 2 �"U . Thus �"U is an N-ultrafilter.

N-�.�/-completeness and N-normality are straightforward too. To see that �"U is N-�.�/-complete, let f W
 ! �"U be in N with  < �.�/. Note by elementarity, ��1.f / W ��1./ ! U with ��1./ < �. It
follows that

T
˛<��1./ �

�1.f /.˛/ 2 U . By elementarity, this is also ��1.
T
˛< f .˛// and it follows thatT

˛< f .˛/ 2 �"U . To see that �"U is N-normal, let f W �.�/ ! �.�/ be regressive on a set in �"U . It
follows that ��1.f / is regressive and hence constant on a set in U . It follows that f is therefore constant on a
set in �"U . a

Weak amenability is a more difficult condition as weak amenability to N requires weak amenability to Hull, and osten-
sibly we might only have weak amenability to M. Nevertheless, countable hulls are also important more generally for
understanding when M is iterable, and it tells us that countable iterations suffice to show full iterability.

14B • 7. Lemma
Let M be a transitive model of a (sufficient) fragment of set theory. Let U be an M-measure on �. Therefore, the
following are equivalent:

1. U is σ-complete
2. For any countable Hull 42 M with � 2 Hull (or for any Hull 4

2; PU M) and with collapse map � W Hull! N ,
there is an elementary embedding k W UltŒN; �"U �! M such that ��1 D k ı j�"U W N ! M as below:
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N Hull 4 M

UltŒN; �"U �

��1

j�"U

˚
k

Proof .:.

• (1 ! 2) Suppose that U is σ-complete. The factor map is defined outside of N by noting that since N
is countable, we can intersect all elements in �"U : consider Hull\U which is countable and thereforeT
x2Hull \U x ¤ ; by σ-completeness. If ˛ is in this set, we can define k W UltŒN; �"U �! M by k.Œf �/ D

��1.f /.˛/. This is well-defined by the choice of ˛:
Œf � D Œg� $ 8

�
�"U � .f .�/ D g.�//

$ 8
�
Hull \U � .�

�1.f /.�/ D ��1.g/.�//

! k.Œf �/ D ��1.f /.˛/ D ��1.g/.˛/ D k.Œg�/.
The fact that k is elementary follows in the same way as with other ultrapower factor maps, but now using
Hull. Note by Lemma 14B • 6 that �"U is indeed an N-measure. So if UltŒN; �"U � � “'.Œf �/” then by
Łoś’s Theorem (14A • 5), N � “'.f .�//” for �"U -almost every � and hence Hull � “'.��1.f /.�//”
for U \ Hull-almost every �. In particular, this means it holds for � D ˛ and since Hull 42 M, we get
M � “'.��1.f /.˛//”, i.e. M � “'.k.Œf �//”. So

UltŒN; �"U � � “'.Œf �/” implies M � “'.k.Œf �//”.
Note that this suffices for elementarity since ifM � “'.k.Œf �//” but UltŒN; �"U � 6� “'.Œf �/” then it models
the negation “:'.Œf �/” and so the above implication gives M � “:'.k.Œf �//”, a contradiction.

• (2! 1) Let ¹Xn W n < !º � U be arbitrary. Consider Hull D HullM.¹�;Xn W n < !º/ 4¹2;�;XnWn<!º M
so that Hull is countable, and ¹�;Xn W n < !º � Hull (as per Taking a Skolem Hull (6A • 2)). Let
� W Hull ! cHull be the collapsing map so that by Lemma 14B • 6, �"U is a cHull-measure over �.�/.
We can then define UltŒcHull; �"U �. By (2), there is an elementary k W UltŒcHull; �"U � ! M such that
��1 D k ı j�"U W cHull! M.

Now with all of that set up, we get onto the meat of the proof. Let f W �.�/ ! cHull be arbitrary. Thus
8�
�"U˛ .f .˛/ D f .˛//. By Łoś’s Theorem (14A • 5), we can view this as equivalent to

UltŒcHull; �"U � � “Œf � D Œconstf �.Œid�/”.
After applying k we get by elementarity that k.Œf �/ is the function k.Œconstf �/ evaluated at the point k.Œid�/.
Note that k.Œconstf �/ D k.j�"U .f // D �

�1.f / and since Œid� is an ordinal of UltŒcHull; �"U �, k.Œid�/ D ˛
is some particular ordinal. Hence we can generally say k.Œf �/ D ��1.f /.˛/ for some fixed ˛.

Now consider in M the characteristic function fn for Xn: fn.�/ D 1 if � 2 Xn and fn.�/ D 0 otherwise.
Thus fn 2 cHull for each n < ! and gn D �.fn/ is the characteristic function for �.Xn/. Note that
Œgn� D Œconst1� for every n because gn.�/ D 1 for all � 2 �.Xn/ 2 �"U . Thus k.Œgn�/ D k.Œconst1�/ D
��1.const1/.˛/ D 1. But since

T
n<! Xn D ;, there is some n such that ˛ … Xn in which case k.Œgn�/ D

��1.gn/.˛/ D fn.˛/ D 0, a contradiction. a

This idea is at the heart of showing that the limit iterations of M by a σ-complete M-measure are well-founded. If
instead of the collapsing map � W Hull ! N as fundamental, we regard the inverse uncollapsing map � W N ! Hull
as fundamental, the factor map k W UltŒN; �"U �! Hull is sometimes called the � -realization of UltŒN; �"U �, because
properties of the ultrapower can be realized back into properties of Hull (and ofM) through k. And crucially, this idea
can be iterated as long as the critical points of the measures are in the hulls.

14B • 8. Lemma
• Let M be a transitive model of a (sufficient) fragment of set theory.
• Let hM;Ui be a linear iteration with first model MU

0 D M and length �, where U D hU˛ � P .�˛/ W ˛ < �i.
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• Suppose � W N ! M is FOL.2/-elementary such that N is transitive and � 2 im.�/ (e.g. � is FOL.2; PU/-
elementary).

Therefore,
1. There is a linear iteration hN ;Wi with first model NW

0 D N and length �0 where 1 � �0 � �.
2. Moreover, there is an FOL.2/-elementary (or FOL.2; PU/-elementary if � is) �˛ W NW

˛ ! MU
˛ for all ˛ � �0

such that W D hW˛ D ��1
˛ "U˛ W ˛ < �0i, and these commute with the iterations of hM;Ui and hN ;Wi: if

˛ � ˇ < �0, then jU
˛;ˇ
ı �˛ D �ˇ ı j

W
˛;ˇ

as pictured:

M MU
0 MU

1 MU
2 � � � MU

�0 � � � MU

N NW
0 NW

1 NW
2 � � � NW

1

D
jU

0;1

˚

jU
1;2

jU
2;3

jU
�0;�0C1

D

�0

jW
0;1

�1

jW
1;2

�2

jW
2;3

��0

3. And if �˛ 2 im.�˛/ at each stage (e.g. if �˛ D jU
0;˛.�0/ for each ˛ < �), then we can ensure �0 D �.

Proof .:.

Regard �0 D � and N0 D N. Now proceed by induction on ˛ < �, stopping and declaring ˛ D �0 if �˛ … im.�˛/.
For ˛ D 0, the result is just the hypothesis. For limit ˛, the claim follows using the direct limit embeddings. For
the successor stage, suppose the elementary �˛ W NW�˛

˛ ! MU
˛ exists where W � ˛ D hW� W � < ˛i as been

defined so far. nductively set W˛ D ��1
˛ "U˛ . Regard Hull D �˛"NW�˛

˛ so that Hull 4 MU
˛ . Collapsing Hull

yields, by uniqueness of the transitive collapse, the original model NW�˛
˛ so that by Lemma 14B • 6, ��1

˛ "U˛ is
an NW�˛

˛ -measure over ��1.�˛/.

So it suffices to show there is an elementary
Q�˛C1 W UltŒNW�˛

˛ ;W˛�! UltŒMU
˛ ; U˛�.

We define Q�˛C1 in the only reasonable way, and check that this works: for f 2 �
�1
˛ .�˛/NW�˛

˛ \ NW�˛
˛ , set

Q�˛C1.Œf �W˛
/ D Œ�˛.f /�U˛

.
This is well-defined because if f; g 2 ��1

˛ .�˛/NW�˛
˛ and f and g agree on a set X 2 W˛ then �˛.f / and �˛.g/

agree on the set �.X/ 2 U˛ . This is elementary due to Łoś’s Theorem (14A • 5):

UltŒNW�˛
˛ ;W˛� � “'.Œf �W˛

/” iff 8
�
W˛
�
�
NW�˛
˛ � “'.f .�//”

�
iff 8

�
U˛
�
�
MU
˛ � “'.�˛.f /.�//”

�
iff UltŒMU

˛ ; U˛� � “'.Œ�˛.f /�U˛
/”

iff UltŒMU
˛ ; U˛� � “'. Q�˛C1.Œf �W˛

//”.

Note that this means UltŒNW�˛
˛ ;W˛� is well-founded because UltŒMU

˛ ; U˛� Š MU
˛C1 is. Hence N

W�˛C1
˛C1 makes

sense, and we define �˛ as induced by Q�˛ and the collapsing maps on UltŒMU
˛ ; U˛� and UltŒNW�˛

˛ ;W˛�. So we
have defined hN � ˛ C 1;W � ˛ C 1i as an ˛ C 1-length linear iteration, and �˛C1 as desired.

Finally, we can show the map �˛C1 commutes with the iteration maps for hM;Ui and hN � ˛C 1;W � ˛C 1i.
To see this, we first show just the case that jU

˛;˛C1 ı �˛ D �˛C1 ı j
W
˛;˛C1. Let �U

˛ be the collapsing map with
image MU

˛ and similarly for NW
˛ so that �˛ D �U

˛ ı Q�˛ ı .�
W
˛ /

�1. Thus
�˛C1 ı j

W
˛;˛C1.x/ D �

U
˛C1 ı Q�˛C1 ı .�

W
˛C1/

�1
ı jW

˛;˛C1.x/

D �U
˛C1 ı Q�˛C1.Œconstx �W˛

/

D �U
˛C1.Œ�˛.constx/�U˛

/

D �U
˛C1.Œconst�˛.x/�U˛

/ D jU
˛;˛C1 ı �˛.x/.
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Now for any � < ˛, and any x 2 NW
�
, we get inductively

jU
�;˛C1 ı ��.x/ D j

U
˛;˛C1 ı j

U
�;˛ ı ��.x/ D j

U
˛;˛C1 ı �˛ ı j

W
�;˛.x/ D �˛C1 ı j

W
˛;˛C1 ı j

W
�;˛.x/ D �˛C1 ı j

W
�;˛C1.

And this completes the induction and proof. a

Let’s now shift to using the same measure, translated by the embeddings, every time we iterate. In other words, we
have M; U and form M1 D cUltŒM; U � if this is well-founded now with measure U1 D j0;1"U where j0;1 is the
canonical embedding. Then we can take another ultrapower to get M2 now with measure U2 D j0;2"U D j1;2"U1,
and so on. Then we can This simplifies the situation considerably, and gives a good understanding of when the direct
limit ultrapowers are well-founded, similar to The Wellfoundedness of Iterated Ultrapowers (12 E • 4). What Lemma
14B • 8 then shows is that weak amenability toM doesn’t need to translate to weak amenability to N for N to continue
its iteration. This is very nice for us. For example, if we use the samemeasure, then!1-iterability implies full iterability
in the following sense.

14B • 9. Definition
Let M be a transitive model of some fragment of set theory. Let U be a weakly amenable M-measure over � 2 M.

• A �-length linear iteration of M by U (if it exists) is the iteration hM;Ui where MU
0 D M and U D hU˛ W

˛ < �i is defined by U˛ D PUMU
˛ where each MU

˛ is a FOL.2; PU/-model and U D PUM. We frequently write
MU˛ for MU

˛ in this case.
• We say M; U is �-linearly iterable iff MU˛ exists for every ˛ < �.
• We say M; U is fully linearly iterable iff it is �-iterable for all � < Ord.

Again, we need weak amenability at the start to ensure jU
0;1"U is an MU

1 -measure (that is also weakly amenable), but
Lemma 14B • 8 tells us we don’t need weak amenability for the hulls.

14B • 10. Lemma
LetM be a transitive set model of some (suitable) fragment of set theory, and letU be a weakly amenableM -measure
over �. Therefore the following are equivalent:

1. M; U is fully linearly iterable.
2. M; U is !1-linearly iterable.
3. N; PU N is !1-linearly iterable for any countable, transitive N with FOL.2; PU/-elementary � W N !M .

Proof .:.

Clearly (1) implies (2). For (2) implies (3), suppose (2) holds. For any �-length linear iteration of M by U ,
� < !1, the critical point of Uˇ is jU

0;ˇ
.�/ for any ˇ < ˛. Let N be countable and transitive with FOL.2; PU/-

elementary � W N ! M so that � 2 im.�/. By Lemma 14B • 8, because the hypothesis of (3) is satisfied, N has
an ˛-length linear iteration hN ;Wi. Hence N; PU N is !1-linearly iterable.

For (3) implies (1), suppose (1) is false: M; U is not fully linearly iterable. Let � be the length of a linear iteration
hM;Ui where MU

1 is ill-founded. Let � be large enough such that hM;Ui 2 H� , and consider the skolem
hull Hull D HullH�.¹M; U; �;M;Uº/ which is countable and an FOL.2; PU/-elementary submodel of H� . The
transitive collapse map � yields a transitive model cHull. By elementarity, it follows that cHull � “�.M/; �.U /
is not �.�/-iterable” because it knows hM;Ui is a �.�/-length linear iteration with ill-founded last model. As ill-
foundedness is absolute between transitive models of ZF� P, it follows that in H� (and hence in V) �.M/; �.U /
is not �.�/-iterable. Note that as cHull is countable, �.�/ < !1. Note also that ��1 � N W N ! M is
FOL.2; PU/-elementary by the FOL.2; PU/-elementarity of Hull in H�:

x 2 N and N � “'.x/” iff cHull � “x 2 N ^ N � “'.x/””
iff cHull � “��1.x/ 2 ��1.N / DM ^ ��1.N/ D M � “'.��1.x//””.

Elementarity also gives PU N D �.U /. But then the hypotheses of (3) hold, but N; �.U / is not �.�/-iterable, and
hence not !1-iterable. This shows (3) is false and hence we’ve shown the contrapositive. a

This also proves the result for class models due to ill-foundedness being a result of only a bounded amount of infor-
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mation from M; if M is a class, we can bound all of the problems in some set, and then do the same proof. Of course,
this requires quite a bit of ugly technical problem checking, and so it is left to a diligent reader who is for some reason
interested.

As a result, if we continually use only a single measure, the well-foundedness of the external ultrapowers becomes
clear.

14B • 11. Theorem (Wellfoundedness of Iterations)
Let M be a transitive model of a (sufficient) fragment of set theory. Let U be a σ-complete, weakly amenable M-
measure over �. Therefore M; U is fully lineary iterable.

Proof .:.

Suppose M; U is not linearly iterable. By Lemma 14B • 10, there is some countable N; PU N and � W N ! M that
is FOL.2; PU/-elementary, but N is not !1-iterable. This results in some ˛ < !1-length iteration hN ;Wi with
NW
0 D N, and W D hW� W � < ˛i with PU N D W0 such that NW

1 is ill-founded. But note that by Lemma 14B • 7,
each NW

�
can be realized back intoM: there is some FOL.2/-elementary �� W NW

�
! M. But then by definition of

the direct limit, there is an elementary �1 W N
W
1 ! M which means that NW

1 is well-founded, a contradiction.a

§14C. External Extenders
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Section 15. Exercises
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Chapter III. Relative Definability and Constructibility*

Inner model theory deals with inner models of set theory, so it makes sense to start with the first non-trivial example: the
constructible hierarchy L. The usual definition Definition 8A • 1 of L will be used here, although there is an alternative
characterization with fine-structure in mind. In particular, L0 D ;, L D

S
˛< L˛ for  a limit ordinal, and

L˛C1 ��D FOLp.L˛/ D ¹s � L˛ W s is FOLp.2/-definable over hL˛;2iº.
The resulting structure L ��D

S
˛2Ord L˛ will satisfy ZFC by Theorem 8A • 7 and Theorem 8A • 8 and will have strong

canonicity properties, including Condensation (8B • 3), which yields nice, useful combinatorial properties like GCH
by Theorem 8C • 5.

Generally speaking, the way we form L is very useful and the results of Section 8 generalize if we are trying to get
a “canonical” inner model that includes some set X . For instance, X might be a measure or an extender, something
incompatible with L by L Has No Measurable Cardinals (12D • 4). In the resulting model, LŒX�, we have a model
which acts very much like L, having lots of the same desirable properties, but which is now compatible with certain
large cardinals where L was not.

We will be working with a slightly different language here than FOL.2/. For the sake of being explicit, for any language
extending FOL.2/, we make the following definition for how to modify the axioms of ZFC.

15 • 1. Definition
Let � be consist of non-logical symbols, including the symbol ‘2’. Define the FOL.�/-theory ZFC.�/ and its variants
as follows.

• (FOL.�/-Comprehension, Comp.�/) for each x, and for each FOL.�/-formula '.v; Ew/,
8w0 � � � 8wn 8x 9z 8v .v 2 z $ v 2 x ^ '.v; Ew//.

• (FOL.�/-Replacement, Rep.�/) for each FOL.�/-formula ',
8w0 � � � 8wn8D

�
8x.x 2 D ! 9Šy '.x; y; Ew//! 9R.y 2 R$ 9x.x 2 D ^ '.x; y; Ew///

�
.

ZFC.�/ consists of ZFC C Comp.�/ C Rep.�/. We similarly define ZF.�/, and so forth. Typically for ease of
notation, if � D ¹2; A; B; � � � ; Zº then we just write ZFC.A;B; � � � ; Z/ rather than ZFC.¹2; A; B; � � � ; Zº/.

Section 16. Relative Constructibility

The general idea behind relative constructibility is just that want to build inner models, and generally we want some
“least” inner model that contains some desired set X , and the way this is done is by starting with X and then forming
L as usual from X . This, however, is a vague idea and there are a few ways to interpret this.

1. We allowX as a predicate, essentially taking FOLp.2; X/-definable subsets of the previous stage to form the next
stage where ‘X ’ as a symbol is interpreted as J \X for each stage J . In this way, we form things constructible
using X as a predicate. Call the result LŒX�.

2. We start with trcl.X/ as the first stage and then take FOLp.2/-definable subsets of the previous stage to form the
next stage. In this way, we form things constructible after being given access to all of X . Call the result L.X/.

The formal definitions of these things are unfortunately technical, but aren’t that much more than slight variants of
Definition 8A • 1.

As before there is a little bit of technical worry here about what it means to be truly FOLp-definable, but just note that
we are interpreting all of this relative to the background model V. So if we consider a non-standard universe M that is
not transitive or not well-founded or some other such oddity, then we interpret definability according to this model: we
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allow potentially non-standard “formulas” in “definitions” over previous stages. More precisely, we can use Theorem
6B • 6 and disregard the restriction that we need to code a real-world formula, taking whatever the model thinks of as
a formula as a legitimate.

Note that defining L.E/ requires that E is a set rather than a proper class, but we will want to consider proper class E

when defining LŒE�.i

16 • 1. Definition
Let E be an arbitrary class. Regarding ‘E’ as a symbol, for any transitive modelM, the interpretation of this symbol
is just E \M . We frequently write hM;2;Ei for hM;2;E \M i. Now define

L0ŒE� D ; L0.E/ D trcl.E/

L ŒE� D
[

�<
L� ŒE� L .E/ D

[
�<

L�.E/, for  a limit,

and crucially, for successor stages,
L˛C1ŒE� D ¹s � L˛ŒE� W s is FOLp.2;E/-definable over hL˛ŒE�;2;Eiº
L˛C1.E/ D ¹s � L˛.E/ W s is FOLp.2/-definable over hL˛.E/;2iº.

This gives LŒE� as LOrdŒE� and similarly for L.E/. As a model, we usually regard these in the language FOL.2;E/.

With those technical consideration aside, note that the two interpretations can be different.
16 • 2. Example

If P .!/V ¤ P .!/L, then L D LŒP .!/� ¤ L.P .!//.

Proof .:.

In this case, the additional predicate of being an element of P .!/ is already FOLp.2/-definable. So we should
have LŒP .!/� is just L: we never gain anything new from having access to an oracle that tells us whether or not
something is a subset of !. More precisely, clearly L˛ � L˛ŒP .!/� for all ˛. For equality, L0 D L0ŒP .!/�. For
˛ > 0, L˛ŒP .!/� \ P .!/ D P .!/ \ L˛ inductively. But P .!/ \ L˛ is already FOLp.2/-definable over hL˛;2i
(regardless of whether ! 2 L˛ or not):

x 2 P .!/ \ L˛ iff L˛ � “x � Ord ^ there is no limit ordinal < sup.x/”.
Hence we can always just replace the new predicate for being in P .!/ \ L˛ with this above definition to get
L˛C1ŒP .!/� � L˛C1 and hence equality. Thus LŒP .!/� D L.

On the other hand, P .!/ D trcl.P .!// � L.P .!// and thus P .!/V D P .!/L.P .!// ¤ P .!/L shows that
LŒP .!/� D L ¤ L.P .!//. a

We also get standard results similar to L. Note that often people require E to be transitive to consider L.E/, so in such
cases, trcl.E/ D E.

16 • 3. Result
For any class E and any ˛ 2 Ord, L˛ŒE� is transitive and FOL.2;E/-definable in a way that is absolute between
transitive models of ZF.E/ � P. Assuming E is a set, we have the same for L˛.E/ but with E replaced by trcl.E/
above.
Proof .:.

Definability and absoluteness follows in just the same way as Corollary 8A • 4 and Absoluteness of L (8 B • 1).

iPart of the reason why is the following. We will eventually consider adding extenders to L to form LŒE� that witnesses various large cardinal
properties inside an L-like model. Adding more extenders allows us to witness multiple large cardinals. This all works out fine and dandy if we only
work with L� ŒE� with � sufficiently larger than the E , and we can use similar techniques to L like condensation in conjunction with skolem hulls
like Corollary 8C • 4 for stages � �. But this might not be true for smaller �s because we can't easily define LŒE� without access to all of E : if
E … L� ŒE�, what is LŒE�L� ŒE�? We can't argue about the absoluteness of construction to say that the theory determines what it means to be an
initial segment of LŒE�. Why is this really a problem? Ideally, we'd also like the ability to work with a proper class of measurable cardinals, and
for a proper class, there is no such � that will be sufficiently large to work with. In such cases, we need to be able to talk about mere portions of the
class.
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For transitivity, L0 D L0ŒE� D ; and L0.E/ D trcl.E/ are by definition transitive. Limit stages are obvious: x
in the limit stage ˛ must be in a previous stage � so inductively is a subset of stage � , and hence a subset of the
union: stage ˛. For transitivity for successor stages, we only prove the result for L˛ŒE� since the result similarly
holds for L˛.E/. First we show L˛ŒE� � L˛C1ŒE�. Let x 2 L˛ŒE� be arbitrary so that inductively x � L˛ŒE�.
Then we can define

y 2 x iff L˛ŒE� � “y 2 x”.
So x is FOLp.2/-definable over L˛ŒE� and hence x 2 L˛C1ŒE�. So L˛ŒE� � L˛C1ŒE�. Since each element
s 2 L˛C1ŒE� has s � L˛ŒE� � L˛C1ŒE�, transitivity follows. a

This implies that LŒE� and L.E/ are stratified and hence satisfy a pretty significant portion of ZF. We state the following
without proof as the proofs are identical to the case for L in Subsection 8A.

16 • 4. Result
Let E be a class. Assume when working with L.E/ that E D E is a set.

1. LŒE� � ZFC and L.E/ � ZF.
2. L � LŒE� and L � L.E/.
3. If E is a set, LŒE� is the least inner model M of ZF � P such that E \M 2 M.
4. More generally, LŒE� is the least inner model of the theory ZF.E/ � P.
5. L.E/ is the least inner model M of ZF � P such that trcl.E/ 2 M.

Proof .:.
1. That both model ZF.E/ follows from the same proofs as Lemma 8A • 6, Theorem 8A • 7, and using Result

7D • 3. That LŒE� � AC follows by the same proof as Theorem 8A • 8. This doesn’t work for L.E/ because
of the potential lack of an ability to definably order the starting point, trcl.E/. Indeed from the existence
of sufficiently large cardinals, it’s possible that L.R/ � :AC.

2. This follows from Absoluteness of L (8 B • 1).
3. Clearly LŒE� is such an inner model (if E � V˛ then E \ LŒE� D E \ V˛ \ LŒE� D E \ VLŒE�

˛ and so
E \ LŒE� is a FOLp.2;E/-definable subset of VLŒE�

˛ and hence in LŒE�). So we need to show that LŒE� is
the least such inner model. Let M � ZF� P be an inner model such that E \M 2 M. By the absoluteness
of LŒE \ M�, we get that LŒE \ M�M D LŒE \ M� � M. We now show that LŒE \ M� D LŒE�. We
show a level by level equivalence by induction: L0ŒE \ M� D L0ŒE�. Limit stages are immediate. For
successor stages, assume inductively that L˛ŒE \ M� D L˛ŒE� so that both interpret ‘E’ the same way,
and hence have the same FOLp.2;E/-definable subsets, meaning L˛C1ŒE \M� D L˛C1ŒE�. It follows that
LŒE \M� D LŒE� � M, as desired.

4. LŒE� is such an inner model of the modified theory by the same reasoning as with Theorem 8A • 7 and
Result 7D • 3. LetM � ZF.E/�P be an inner model. Since E \M is a class of M, we can define LŒE \M�
and the exact same reasoning as in (3) goes through to tell us LŒE� D LŒE \M� D LŒE \M�M � M.

5. Clearly L.E/ has this property. So suppose M � ZF � P is an inner model with trcl.E/ 2 M. We can thus
form L.E/ in an absolute way as with Absoluteness of L (8 B • 1) and hence L.E/M D L.E/ � M. a

In particular, if E � L, then LŒE� D L.E/ which need not be L. For example, suppose P .!/ ¤ P .!/L with
x 2 P .!/ n L. It follows that LŒx� ¤ L but nevertheless, since both are the least inner model containing x \ ! D x,
LŒx� D L.x/. This is despite Example 16 • 2 which showed that LŒP .!/� D L always: knowing whether something
is a subset of ! isn’t helpful, but knowing whether something is in some undefinable, complicated subset of ! does
give us something new: x. So even if X 2 Y or X � Y , we don’t necessarily have LŒX� � LŒY �.ii Nevertheless, we
always have X 2 Y implies L.X/ � L.Y /.

16 • 5. Corollary
Let X 2 Y be arbitrary sets. Therefore L.X/ � L.Y /.

iiFor example, above, x � ! but LŒx� ¤ LŒ!� D L.
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Proof .:.

Since X 2 trcl.Y / � L.Y / we get trcl.X/ 2 L.Y /. As the least such model, L.X/ � L.Y /. a

We unfortunately cannot get any such relation for LŒX� and LŒY � in general for the examples stated above. More
generally, for each X , there is a Y such that X � Y and X 2 Y but LŒY � D L: consider sufficiently large ˛ such
that X 2 V˛ so that V˛ \ L D VL

˛ 2 L implies LŒV˛� D L. If X is a proper class, take Y D V for the same result.
The issue really is that often small sets carry more specific information than larger sets, and LŒX� uses this information
rather than any surrounding context.

16 • 6. Theorem (Relative Condensation)
Suppose M � ZF.E/ � P is transitive.

1. Suppose M � “V D LŒE�”. Therefore M D LOrd\MŒE�.
2. Suppose M � “V D L.E/” for E D E 2 M. Therefore M D LOrd\M.E/.

Proof .:.

By the definability and absoluteness of the construction of LŒE�, it follows that VM D LŒE�M D LOrd\MŒE�, and
similarly for L.E/. a

And we can use this with skolem hulls as with L to get similar properties. Recall that for L, if � is regular in L, then
L� � ZFC � PC “V D L” by Result 8 C • 2. Hence taking the skolem hull of cHullL� .A/ for some A � L� yields by
condensation another level L˛ for some ˛ < �. We’d like the same sort of situation to happen for LŒE� and L.E/.

16 • 7. Lemma
Let E be a class. Let � > ℵ0 be regular. Therefore

1. jL˛ŒE�j D j˛j for every infinite ˛ 2 Ord; and
2. L� ŒE� � ZFC � PC “V D LŒE�”.

Proof .:.
1. Note that L˛C1ŒE� is given by the closure of L˛ŒE� under countably many operations, just as with getting

L˛C1 fromL˛ but with with the ability to checkmembership inE\L˛ŒE�. As a result, jL˛C1ŒE�j � jL˛ŒE�j�
ℵ0 which for ˛ � ! clearly has ! � L˛ŒE� meaning jL˛ŒE�j � ℵ0 D jL˛ŒE�j and so jL˛C1ŒE�j D jL˛ŒE�j.
Inductively this is j˛j D j˛C1j. For limit  , jL ŒE�j �  �sup˛< jL˛ŒE�j �  � D  . Clearly  � L ŒE�
implies jL ŒE�j � j j and so we have equality.

2. L� ŒE� � ZF.E/ � P by the same proof as in Result 8 C • 2, using (1) for wRep.E/. So by Result 16 • 4 (4)
and absoluteness from Result 16 • 3,

L� ŒE� � L� ŒE \ L� ŒE��L� ŒE� D L� ŒE \ L� ŒE�� D L� ŒE�. a

When working with mere FOL.2/-models like hL� ŒE�;2i (rather than hL� ŒE�;2;Ei) we might not be able to define
E as a class in L� ŒE�, and so the ability to define LŒE� inside L� ŒE� isn’t true, and in such cases, we require � to be
sufficiently large such that LŒE� \ E 2 L� ŒE� to argue as above.

This allows us to prove things like GCH in a similar way to Theorem 8C • 5. But there is a little bit of a hiccup. For
example, if R codes ℵ2-many real numbers, then we should not expect LŒR� � CH. So instead, we only get GCH for
cardinals left unaffected by R, i.e. cardinals above j trcl.R/j.

16 • 8. Corollary
Let E be a set, and write E 0 D E \ LŒE� 2 LŒE�. Therefore, LŒE� � “8� � ℵ0 � j trcl.E 0/j .2j�j D j�jC/”.

Proof .:.

Argue in LŒE�. Let � � j trcl.E 0/j;ℵ0. It follows that E 0 2 L�ŒE� for some sufficiently large, regular �. Let
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A � � be in LŒE� and without loss of generality, � is large enough that A 2 L�ŒE�. Consider the FOL.2/-hull
H D HullL�ŒE�.¹Aº [ � [ trcl.E 0/ [ ¹E 0

º/.
Since L�ŒE� � ZF.E/ � PC “V D LŒE�” by Lemma 16 • 7, H does the same. Thus when we collapse by some
� W H! M, whereM is transitive, we get that M � ZF.�.E 0// � PC “V D LŒ�.E 0/�”. Recalling properties of
the transitive collapse from Definition 4 • 6, note that trcl.E 0/ [ ¹trcl.E 0/; E 0º � H and so � � trcl.E 0/ D id �
trcl.E 0/ by Corollary 6C • 2. Thus

�.E 0/ D ¹�.x/ W x 2 E 0
� trcl.E 0/º D ¹x W x 2 E 0

º D E 0.
Thus M � ZF.E/ � P C “V D LŒE�”. So by Relative Condensation (16 • 6), M D L˛ŒE� for some ˛ < �. In
fact, since jH j D jM j � � C j trcl.E 0/j D �, by size restrictions—(1) of Lemma 16 • 7—we get j˛j D � and
so ˛ < �C. Moreover, �.A/ D A 2 M D L˛ŒE� by the same reasoning as with �.E 0/ D E 0, meaning that
A 2 L�C ŒE�. As A � � was arbitrary, it follows that P .�/ � L�C ŒE�, which has only �C-many elements by (1)
of Lemma 16 • 7. a

The restriction on � > trcl.E 0/ is necessary, since by techniques of forcing, we can force the failure of 2� D �C for
smaller cardinals. Similarly, the requirement on E being a set is necessary since it’s consistent for a proper class E
to yield that GCH fails at arbitrarily large cardinals in LŒE�. This is discussed more in the context of forcing in a later
chapter.

Unfortunately, we cannot have Corollary 16 • 8 for L.E/ so easily. It’s consistent relative to sufficiently large cardinals
that AC is false in L.P .!//, meaning that we can’t really consider the cardinality of P .�/ as a cardinal, i.e. as an element
of Ord.

Lastly, it will be very useful to simply assume E 2 LŒE� by way of replacing E with E 0 D E \ LŒE� and deducing
E 0 2 LŒE 0� D LŒE�.

16 • 9. Result
For any class E , LŒE� D LŒE \ LŒE��.

Proof .:.

Write E 0 D E \ LŒE�. Since E 0 is a class of LŒE�, we can define LŒE 0� in LŒE� in an absolute way: LŒE 0�LŒE� D

LŒE 0� � LŒE�. As a result,
E \ LŒE 0� D E \ LŒE� \ LŒE 0� D E 0

\ LŒE 0�

is a class of LŒE 0� and thus LŒE 0� � ZFC.E/ by Result 16 • 4 (1), meaning as the minimal such inner model,
LŒE� � LŒE 0� by Result 16 • 4 (4). Hence we have equality. a

§16A. Constructibility and measures

The first important fact about relative constructibility, which is partially our aim in introducing it, is its compatibility
with measurable cardinals. In particular, if we have a measure U in V, U will (more or less) still be a measure in LŒU �.

16A • 1. Theorem
Let U be a measure on � in V. Therefore LŒU � � “U \ LŒU � is a measure”. In particular, � is measurable in LŒU �.

Proof .:.

We must show that U 0 D U \ LŒU � is
1. an ultrafilter;
2. non-principal;
3. �-complete; and
4. normal

in LŒU �. These are mostly immediate from the fact that U is a measure in V.
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1. ThatU 0 is an ultrafilter over P .�/\LŒU � is almost immediate fromU being an ultrafilter: if x; y 2 U 0 � U

then x \ y 2 U \ LŒU � D U 0. x … U 0 for x 2 LŒU � means x … U so � n x 2 U 0, and vice versa. Upward
closure and that ; … U , � 2 U are straightforward.

2. This follows since U is non-principal: every bounded subset of � has its complement in U \ LŒU � D U 0.
3. If hx˛ 2 U W ˛ < i 2 LŒU � for  < �, then

T
˛< x˛ 2 U \ LŒU � D U 0.

4. If f W X ! � is decreasing for X 2 U 0 and f 2 LŒU �, then there is some ˛ such that f �1¹˛º 2 U . But
clearly f �1¹˛º 2 LŒU � and so it’s in U 0. a

So this already shows the compatibility of measurable cardinals with L-like inner models. Note that there are some
interesting consequences of the above. In particular, we can consider countable models with (what they believe are)
measurables in them. We use Result 16 • 9 to get rid of the annoying notation of U \ LŒU � as in Theorem 16A • 1,
replacing this just with U without issue.

16A • 2. Corollary
Let U be a measure in LŒU �. Therefore there are W , ˛ < !1 such that L˛ŒW � � ZF � PC “W is a measure”.

Proof .:.

Let � be sufficiently large and regular such that U 2 L�ŒU �. Consider the FOL.2/-hull cHullL�ŒU �.¹U º/ which
is therefore a countable, transitive model of ZFC� PC “there is a measurable cardinal”C“V D LŒW �” for some
W a measure (as understood in the hull). W itself is just given by �.U / for the transitive collapse map � W
HullL�ŒU �.¹U º/ ! cHullL�ŒU �.¹U º/. By Relative Condensation (16 • 6), the hull is L˛ŒW � for some countable
˛. a

This guarantees the existence of a “mouse” relative to the existence of a measurable cardinal. A “mouse” is a vague
notion that can kind of be thought of as a building block for an inner model. There are lots of standard techniques
involving mice, but one of the most fundamental is that of comparison, which basically means that if we have two
“mice” and continually iterate them using their measures, we’ll eventually arrive at the same place: LŒE� for some E.
In this place, we can then compare them as initial segments of each other.

Section 17. Sharp Objects

Section 18. Multiple Measures and Comparison

Section 19. Extenders and Sequences of Extenders

Section 20. Exercises

172



RELEVANT TOPOLOGY CH IV §21A

Chapter IV. Descriptive Set Theory*

Modern descriptive set theory is a diverse and complicated field that interacts with a wide variety of other fields of
mathematics, especially group theory, measure theory, computability theory, and of course set theory. We will not be
so interested in these connections for now. Instead, we will focus on the basics needed for inner model theory.

Section 21. Relevant Topology

Formally, R is usually taken as a set of dedekind cuts of Q, itself a set of equivalence classes formed from either ! or
Z. This formal notion is not easy to work with, and is basically abandoned outside of demonstrating the power of ZFC
as a mathematical foundation. So instead, we will work with R as the branches of the binary tree <!2, or the branches
of <!!, or as the space !�!!�!!, and so on. The part of the structure that we care about will not change with these
technically different spaces, since there is a unique standard borel space that is uncountable. The proof of this highly
nontrivial theorem can be found in classic books on descriptive set theory like [18].

§21A. Metric and topological spaces

We begin with some very basic topological and metric space results. Many of these will not be proven here as the reader
is assumed to be somewhat familiar with them.i Nevertheless, we will still preset the results if only to be thorough. A
reader unfamiliar with these concepts is encouraged to read a standard analysis book like [28] and [29].

21A • 1. Definition
Let X be set. A metric on X is a function d W X �X ! R such that

• d.x; x/ D 0;
• d.x; y/ > 0 for all x ¤ y;
• d.x; y/ D d.y; x/; and
• (the triangle inequality) d.x; y/C d.y; z/ � d.x; z/.

For d W X2 ! R a metric, the open ball around x of radius r is just the set Br .x/ D ¹y 2 X W d.x; y/ < rº.

Ametric space is just a set with a “metric” on it, which really just gives the notion of a distance between two elements of
the set. In the case ofR, the standard metric is just the absolute value of one number minus the other: d.x; y/ D jx�yj.
But there are many others for R: hx; yi 7! jx�yj

jx�yjC1
and hx; yi 7! 3jx � yj2, for example. On any given set, we can

take the discrete metric, defined by

d.x; y/ D

´
1 if x ¤ y
0 if x D y.

This is called discrete because all points are “separated” from each other. Whereas R always has infinitely many points
in the open interval .a; b/ (a; b 2 R), the open ball B1.x/ D ¹xº in the discrete topology has just one element, as
d.x; y/ < 1 implies d.x; y/ D 0 and thus x D y.

In some sense, the triangle inequality just ensures that the “distance” understanding makes sense. More precisely, it
ensures that the actual distance from x to z is the least of all paths: if we go from x to y and then from y to z, the
distance from x to z should be no more than the total distance of this detour through y. In other words, “distance”

iIndeed, it's quite rare for someone to have come into contact with advanced mathematics without having encountered these ideas in a basic real
analysis course.
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should be measuring the shortest path. Of course, this has all been abstracted away, and there need not be any sensible
notion of “path” anymore, but that is the motivation behind the triangle inequality. For the most part, we will have
very little direct need of the triangle inequality beyond establishing the basic results about metric spaces. These results
will have far reaching consequences which then rely on the inequality, but it is rarely if ever directly referenced later.

The notion of distance also gives the notion of convergence: a sequence that gets arbitrarily close to a point in the
space (and it doesn’t eventually go further way). For the discrete topology, this only happens with eventually constant
sequences, as again, the only way to get closer than a distance of 1 to a point is to actually be that point. The notion of
convergence can also be defined more generally for any topological space, but the use of a metric makes the idea more
concrete.

21A • 2. Definition
Let hX; d i be a metric space. Let hxn 2 X W n < !i be a sequence.

• hxn W n < !i converges iff there is a unique x (also called limn!1 xn) where for every " > 0 in R, d.xn; x/ <
" for sufficiently large n < !. Equivalently,

9Šx 2 X 8" 2 R ." > 0! 9N 2 ! 8n 2 ! .n > N ! d.x; xn/ < "//.
• hxn W n < !i is cauchy iff for every " > 0 in R, d.xn; xm/ < " for sufficiently large n;m < !. Equivalently,

8" 2 R ." > 0! 9N 2 ! 8n;m 2 ! .n;m > N ! d.xn; xm/ < "//.
• hX; d i is complete iff every cauchy sequence converges.

21A • 3. Result
Let hX; d i be a metric space and let Ex 2 !X be a convergent sequence in hX; d i. Therefore Ex is cauchy.

Proof Sketch .:.

Let Ex 2 !X converge to x. Let " > 0 be arbitrary and consider "=2 > 0 with the definition of convergence: if for
all n > N we get d.x; xn/ < "=2, then in particular, for all n;m > N we get d.xn; xm/ � d.xn; x/Cd.x; xm/ <
"=2C "=2 D ", showing Ex is cauchy. a

Moreover, for any metric space, we can consider the completion of it. In some sense, this means all cauchy sequences
should converge, but might not because the metric space is “missing” some points. For example, consider the open
interval .0; 1/ D ¹x 2 R W 0 < x < 1º with the usual metric d.x; y/ D jx � yj. It’s not hard to see that the sequence
h1=n W n < !i is cauchy, but doesn’t converge in h.0; 1/; d i, precisely because the point it should converge to, 0, isn’t
an element of .0; 1/.

21A • 4. Theorem
• R with the usual metric is complete.
• Every set X with the discrete metric is complete.
• Every metric space hX; dX i has a completion hY; dY i, i.e. a complete metric space hY; dY i such that Y � X
and dY � X �X D dX .

Proof Sketch .:.

That R is complete follows from the fact that it is defined as the completion of Q with its usual metric: d.x; y/ D
jx�yj. Every discrete space is complete as any cauchy sequence is easily seen to be eventually constant (consider
" D 1 in Definition 21A • 2). That every metric space has a completion just follows by considering first

Cauchy.X/ D ¹Ex 2 !X W Ex is cauchyº
We then mod out by the equivalence relation Ex � Ey iff limn!1 d.xn; yn/ D 0 to get the resulting set of equiv-
alence classes. We then define Y by replacing equivalence classes that converge in hX; d i with the point they
converge to:

Y D X [
®
ŒEx�� W Ex 2 Cauchy.X/ doesn’t converge in hX; d i

¯
.
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We can then define the metric

dY .x; y/ D

8̂<̂
:
dX .x; y/ if x; y 2 X
limn!1 dX .x; yn/ if x 2 X and y 2 Y nX
limn!1 dX .xn; yn/ if x; y 2 Y nX .

a

A metric, more than just a function, lays the groundwork for understanding the shape of the space. To describe such
things, we use topology.

21A • 5. Definition
A topological space is a pair hX;Oi where O � P .X/ is such that

1. X;; 2 O;
2. F � O implies

S
F 2 O; and

3. A;B 2 O implies A \ B 2 O.
We call an A 2 O open and call O the collection of open sets of X . Moreover,

• A set A is closed iff X n A is open.
• For x 2 X , a neighborhood of x is just an open set A 2 O with x 2 A.
• We also refer to the topological space as the topology on X .

For F � P .X/, the topology generated by F is hX;Oi where O is �-least where F � O such that hX;Oi is a
topological space. If F is closed under finite intersections, we call such an F a basis and A 2 F a basic open set.

So the properties of open sets are just that the whole space and the empty set are open, the intersection of two (equiv-
alently finitely many) open sets is open, and that the union of any collection of open sets is also open. Note that since
X n ; D X;X nX D ; 2 O, this implies X and ; both closed and open, sometimes called clopen. We have two main
trivial examples of topological spaces, and a way of generating topological spaces more generally.

21A • 6. Example
For every set X ;

• the discrete topology hX;P .X/i is a topological space;
• hX; ¹;; Xºi is a topological space; and
• For F � P .X/, taking O to be the closure of F [ ¹;º under finite intersections and arbitrary unions yields
hX;Oi as a topological space and is the topological space generated by F .

The concept of a basis is very useful, because we can represent open sets just as unions of basic open sets.
21A • 7. Result

Let F be a basis for a topology hX;Oi. Therefore, Y � X is open iff Y D
S
A for some A � F .

Proof .:.

If Y D
S
A for some A � F then clearly Y is open: A � F � O implies the union of open sets

S
A D Y is

open. So suppose Y � X is open. Since the topology is generated by F , Y appears at some stage of closing F
under unions and finite intersections. So proceed by transfinite induction on this stage. For stage 0, Y 2 F and
we’re done. For stage ˛ ¤ 0,

• Suppose Y D
S
A where A is a family of sets appearing at previous stages. Inductively we can write each

as the union of basic open sets, and therefore Y as this union.
• Suppose Y D A\B whereA;B are sets appearing at previous stages. Therefore, inductively we can write
A D

S
A0 and B D

S
B 0 where A0; B 0 � F . In particular, Y D

S
S2A0;Z2B0 S \ Z. Since F is closed

under finite intersections, this is the union of basic open sets. a

This general notion of a topological space isn’t useful itself. Mostly it just provides a concept that can be used in other
settings. For example, with R, we can define open sets as being generated by open intervals, themselves the result of
the fact that R can be regarded as a metric space. In particular, we can consider the topology generated by open balls
and by rectangles when taking products.
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21A • 8. Definition
• Let hX; d i be a metric space. The topology induced by d on X is the topological space hX;Oi where O is
generated by the family of open balls.

• For an ordinal � and topological spaces hX˛;O˛i for ˛ < �, the product space is the topology on
Q
˛<� X˛

generated by open sets of the form
Q
˛<� W˛ where each W˛ 2 O˛ all but finitely many W˛ are the whole

corresponding space, X˛ .

We have some trivial examples and non-examples of metric spaces just as with the trivial examples of topological
spaces. This hints that a metric space really does give information about the induced topology as not every topological
space comes from a metric.

21A • 9. Result
For every set X ;

1. The discrete metric on X induces the discrete topology on X .
2. There is no metric where the induced topology is hX; ¹;; Xºi unless jX j � 1.
3. Let hX; d i be a metric space. Therefore for U � X , U is open iff for every x 2 U , there is some open ball B

centered on x with B � U .
4. Let hX; d i be a metric space. Therefore Y � X is closed iff every Ex 2 !Y that converges in hX; d i converges

to a point in Y .

Proof .:.

The key point here is that we just need to consider open balls of sufficiently small radius.
1. d.x; y/ is either 1 or 0, meaning that d.x; y/ < 1 iff x D y. In particular, for each x 2 X , the open ball
B1.x/ D ¹xº. As a result, for O the induced topology and for any Y � X , ¹¹yº W y 2 Y º � O implies the
union of this, just Y itself, is also open: P .X/ � O � P .X/ yields equality.

2. If jX j � 2, then let x; y 2 X be two distinct elements. Let d.x; y/ D r . Therefore, the open ball
Br .x/ 2 O yet y 2 X n Br .x/ and x 2 Br .x/. Thus O ¤ ¹X;;º.

3. If U D ;, this is trivial. So suppose U ¤ ;. For the  direction, if every x 2 U has an open ball
B"x

.x/ � U centered on x of radius "x , then U D
S
x2U B"x

.x/ is open as the union of basic open sets.

So suppose U is open. Proceed by structural induction to show U as the desired property. If U is basic
open, then the result holds easily: U D Br .x/ is the ball of radius r centered on some x. Hence y 2 U
with d.x; y/ D � has Br��.y/ � Br .x/ D U by the triangle inequality:

z 2 Br��.y/ implies d.x; z/ � d.x; y/C d.y; z/ < �C .r � �/ D r .
If U if the union of a family of open sets for which the result holds, then clearly the result holds for U as
well. If U is the intersection of two open sets, then we just take a sufficiently small radius: x 2 U \W has
B"0

.x/ � U and B"1
.x/ � W for some "0; "1 > 0. So then Bmin."0;"1/.x/ � U \W . As all (non-empty)

open sets are generated in this way, it follows that all open sets of the induced topology have this property.

4. Suppose Y � X is closed, but Ex converges to x 2 X n Y . Since X n Y is open, there is some " > 0 where
B".x/ � X n Y . But then there can be no entry of Ex 2 !Y within " of x, contradicting that Ex converges to
x.

Suppose every convergent sequence in Y converges to a point in Y . We need to show X n Y is open, so
let x 2 X n Y . If there is no 0 < " 2 R where B".x/ � X n Y , then in particular, for every n < !,
there is some xn 2 B1=n.x/ \ Y . Hence hxn W n < !i converges to x and is a subsequence of y. But this
contradicts x … Y . Hence some "x has B"x

.x/ � X n Y and therefore X n Y is the union of the open ballsS
x2XnY B"x

.x/ and is then open. a
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21A • 10. Definition
Let hX;Oi be a topological space. A subset Y � X is dense in X iff Y \ U ¤ ; for every U 2 O. A topological
space hX;Oi is separable iff it has a countable, dense subset.

21A • 11. Example
R with the standard topology induced by the standard metric is separable, as witnessed by Q � R.

Now we have the central definition for descriptive set theory of a polish space, which R with its usual structure is an
example of by Example 21A • 11 and Theorem 21A • 4.

21A • 12. Definition
A metric space is polish iff it is separable and complete.
A topological space hX;Oi is metrizable iff there is a metric d W X � X ! R that induces the same topology via
open balls. In this case, d is called a compatible metric.
A topological space is polish iff it is metrizable, and polish as a metric space.

We also have several other examples, as seen below.
21A • 13. Example
1. The unit interval Œ0; 1� � R with the usual topology is polish.
2. The discrete topology on any n � ! is a polish space.
3. If X and Y are polish spaces, then the product topology X�Y is polish. More generally, if Xn is polish for each
n < !, then

Q
n2! Xn is polish.

As a result, the baire spaceii,
�
N D

Q
n2!h!;P .!/i is polish; and so is the cantor space, �

� D
Q
n2!h2;P .2/i.

Proof .:.

(1) is clear. For (2), for jX j � ℵ0 implies separability and the discrete metric induces the discrete topology.

To show (3), the result for products of polish spaces, note that for d W X � X ! R a metric, we can consider
d 0 D

d
1Cd

. This gives the same topology, but d 0.x; y/ < 1 for all x; y 2 X . This is useful, because we can now
have some assurance that certain infinite sums will converge. Write

�
X for

Q
n<! Xn, and so X for

Q
n<! Xn.

In particular, for n 2 !, let dn be a compatible metric on Xn such that dn.x; y/ < 1 for all x; y 2 Xn. Define
d W X �X ! R as follows. It’s easy to check that this will define a metric on X: for Ex D hxn 2 Xn W n < !i

and Ey D hyn 2 Xn W n < !i,

d.Ex; Ey/ D
X
n2!

dn.xn; yn/

2n
.

The metric space is complete, since if hxn W n 2 !i is cauchy, then each hxn.m/ W m 2 !i is cauchy for n 2 !
and so converges to some x.n/. Thus hxn W n 2 !i converges to x D hx.n/ W n 2 !i. So it suffices to show that
the induced topology on X from d , call this

�
Xd , is precisely the product topology

�
X . To do this, we need to

show any subset is open in the metric sense iff it is open in the other sense.

We must show two things: for each Ex 2 X,
a. For NEx a neighborhood of Ex in

�
X , there is a neighborhood N 0

Ex
� NEx of Ex in

�
Xd .

b. For NEx a neighborhood of Ex in
�
Xd , there is a neighborhood N 0

Ex
� NEx of Ex in

�
X .

In fact, it suffices to show the above for NEx as a basic open set. The idea is that if Y � X is open in
�
X ,

Y D
S

Ex2Y NEx and (a) then implies Y D
S

Ex2Y N
0

Ex
is open in

�
Xd . And the other direction is similar. So let

Ex D hxn 2 Xn W n < !i be arbitrary.

To show (a), basic open sets in
�
X are rectangles R D

Q
n<N Un �

Q
N�n<! Xn, where N < ! and Un is open

in Xn. Without loss of generality, since R is a neighborhood of Ex and we can safely take subsets, assume each
Un is a ball centered on xn with radius rn. Hence for each Ey 2 X, Ey 2 R iff 8n < N .dn.xn; yn/ < rn/. So let

iiAs far as I know, the notation N comes from thinking of
�
N as the second order analogue of N D h!;0; 1;C; �i, meaning we can think of

�
N

as essentially a two-sorted model of arithmetic where we have access to !! in addition to !. Clearly the notation of N is motivated from the usual
mathematical notation of N D !.
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r D minn<N rn
2n . Consider the open ball

B D ¹Ey 2 X W d.Ex; Ey/ < rº.
If Ey 2 B , then d.Ex; Ey/ < r . Note that if dn.xn; yn/ � rn for any n < N , then d.Ex; Ey/ � rn

2n . Therefore
dn.xn; yn/ < rn for each n < N , and thus Ey 2 R.

To show (b), let B D B.Ex; r/ D ¹Ey 2 X W d.Ex; Ey/ < rº be the ball of radius r centered at Ex. Let N be large
enough such that

P
n�N

1
2n D

1
2N �1 < r , which means 1

2N < r
2
. Consider now the open set

R D
Y
n<N

Bn.xn; r=4/ �
Y

N�n<!

Xn.

We will show that R � B and (b) holds Let Ey 2 R. Note that

d.Ex; Ey/ D
X
n<N

dn.xn; yn/

2n
C
X
n�N

dn.xn; yn/

2n
�
X
n<N

r=4

2n
C
X
n�N

1

2n

�
r

2

�
1 �

1

2N�1

�
C

1

2N
<
r

2
C
r

2
D r → Ey 2 R. a

As metric spaces can also play nicely with topology, it follows that being polish does too.
21A • 14. Result

Let
�
M D hM;OMi be polish and let X �M be closed. Therefore X D hX; ¹X \ U W U 2 OMºi, i.e. the topology

on X inhereted from
�
M, is also polish. Moreover, this topology is induced by the same metric (restricted to X ).

Proof .:.

It’s not difficult to see that the topology on X inhereted from
�
M is given by ¹X \ U W U 2 OMº by the

following observation. If d is a compatible metric for
�
M, every open set is the union of open balls of the form

B".x/ D ¹y 2M W d.x; y/ < "º for some 0 < " 2 R and x 2M. Hence the restricted metric d � X2 gives the
open ball of radius " centered on x as just ¹y 2 X W d.x; y/ < "º D B".x/\X . As intersections distribute over
unions, this gives the result.

Let Y �M be countable and dense so that Y \ X is a countable, dense subset of X . To see that X is complete,
let d be a compatible metric for

�
M. It’s not difficult to see that d � X � X is a compatible metric for X. So

suppose hxn 2 X W n < !i is cauchy. Therefore this converges in
�
M to some x 2 M. It then suffices to show

x 2 X . To see this, we use that X is closed: suppose x 2M nX , an open set. Therefore, there is some open ball
B D ¹y 2M W d.x; y/ < rº �M nX . But this prevents hxn 2 X W n < !i from converging to x as " D r has
that eventually an n < ! has d.xn; x/ < r and therefore xn 2 X \ B �M nX , a contradiction. Thus x 2 X .a

We cannot do exactly the same for open subsets, since using the same metric may not yield a complete metric space
as with closed sets: .0; 1/ is an open subset of Œ0; 1� with the standard metric, but this metric isn’t complete on .0; 1/.
Nevertheless, we can find a different metric that yields the subspace as polish. This also tells us that being a compatible
metric doesn’t imply that the metric space is complete.

21A • 15. Result
Let

�
M D hM;OMi be polish and let X �M be open. Therefore X D hX; ¹X \ U W U 2 OMºi is also polish.

Proof .:.

Let d be a complete, compatible metric on
�
M. For x 2M, writeD.x/ for inf¹d.x; z/ W z … Xº. Now define the

metric d 0 W X �X ! R by

d 0.x; y/ D d.x; y/C
jD.x/ �D.y/j

D.x/ �D.y/
D d.x; y/C

ˇ̌̌̌
1

D.x/
�

1

D.y/

ˇ̌̌̌
.

The idea here is that for a fixed x, as y gets closer to M nX , d 0.x; y/ goes to infinity in the same way we might
identify the entire real line with instead just .0; 1/.
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Claim 1
hX; d 0i is a complete metric space.

Proof .:.

It’s clear that d 0.x; y/ � d.x; y/ � 0 for all x; y 2 X . Moreover, x D y implies d 0.x; y/ D 0. The
other direction is also easy as the sum of two non-negative real numbers is 0 iff both are 0. For the triangle
inequality,

d 0.x; y/C d 0.y; z/ D d.x; y/C d.y; z/C

ˇ̌̌̌
1

D.x/
�

1

D.y/

ˇ̌̌̌
C j

ˇ̌̌̌
1

D.y/
�

1

D.z/

ˇ̌̌̌
� d.x; z/C

ˇ̌̌̌
1

D.x/
�

1

D.y/
C

1

D.y/
�

1

D.z/

ˇ̌̌̌
� d.x; z/C

ˇ̌̌̌
1

D.x/
�

1

D.z/

ˇ̌̌̌
D d 0.x; z/.

Hence d 0 is ametric. To see that hX; d 0i is complete, suppose Ex D hxn 2 X W n < !i is cauchy. Again, since
d 0.x; y/ � d.x; y/ this means Ex is cauchy with respect to d and hence converges in

�
M to some x 2M. Fix

" > 0. As a cauchy sequence for d 0, we have not only that d.xn; xm/ < "=2 for sufficiently large n;m < !,
but also

ˇ̌̌
1

D.xn/
�

1
D.xm/

ˇ̌̌
< "=2 for sufficiently large n;m < ! and so h 1

D.xn/
W n < !i is cauchy in R with

its standard metric. Therefore this sequence converges in R and in particular,D.x/ D limn!1D.xn/ ¤ 0,
i.e. x 2 X . a

So now it suffices to show d 0 gives the same topology on X as O D ¹X \U W U 2 OMº. Let O0 be the topology
on X induced by d 0. Write B".x/ for the open ball of radius " around x with respect to d , and similarly B 0

".x/ is
the same for d 0. We aim to show O0 D O.
(�) Suppose A 2 O0 so that A � X is the union of open balls (with respect to d 0): A D

S
x2A B

0
"x
.x/

where 0 < "x 2 R is such that B 0
"x
.x/ � A for each x 2 A. It then suffices to show each B 0

".x/ 2 O.
To do this, we want every y 2 B 0

".x/ to have an "y where B"y .y/ � B 0
".x/ � X . This would imply

B 0
".x/ D

S
y2B0

".x/
B"y .y/ 2 O.

Let x 2 X and " > 0 be arbitrary. For any � > 0, if y 2 B�.x/ then D.x/ � � � D.y/ � D.x/C �. In
particular, d.x; y/ < � implies

d 0.x; y/ D d.x; y/C
jD.x/ �D.y/j

D.x/ �D.y/
� �C

�

D.x/ � .D.x/ � �/
. (�)

Since lim�!0.� C
�

D.x/�.D.x/��/
/ D 0, let "y be sufficiently small such that "y C "y

D.x/�.D.x/�"y/
< ".

Therefore y 2 B"y .x/ implies y 2 B 0
".x/. Thus B 0

".x/ D
S
y2B0

".x/
B"y .y/ 2 O.

(�) Suppose A D X \ U 2 O for U 2 OM. We have U D
S
x2U B"x

.x/ for 0 < "x 2 R such that
B"x

.x/ � U . Hence A D
S
x2U X \ B"x

.x/ and it suffices to show X \ B".x/ 2 O0 for each x 2 M

and 0 < " 2 R. So let y 2 X \ B".x/. As an open set, there is some "y with B"y .y/ � X \ B".x/.
Since d 0.a; b/ � d.a; b/ for all a; b 2 X , it follows that B 0

"y
.y/ � B"y .y/ and therefore X \ B".x/ DS

y2X\B".x/
B"y .y/ D

S
y2X\B".x/

B 0
"y
.x/ 2 O0. a

§21B. The main takeaways

We will mainly work with spaces like N and products of N . But we also might identify ! with, say, ! � !. Note the
following property which is basically stating the definition of a product space.

21B • 1. Result
Let

�
M be a product of copies of

�
N . Therefore if X0; X1; � � � ; Xn � N , n < !, are open in

�
N then the product of

X0 �X1 � � � � �Xn (with perhaps a bunch of copies of N ) is open in M. Similarly, the product topology on <!! is
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the discrete topology, and thus we can consider basic open sets as just singletons.

Now we prove some easy results about the baire space. For the most part, we will just consider products of the baire
space. The following also easily generalizes to cantor space,

�
� . First we introduce some basic notation. We say

� is an initial segment of � , written � 6| � , iff � and � are functions with dom.�/; dom.�/ 2 Ord—i.e. they are
sequences—and � � � . As sequences, we write lh.�/ for the length of � (which is just the domain).

21B • 2. Result
For � 2 <!!, let N� D ¹x 2 N W � 6| xº. Therefore each N� is open, and the collection of cones is a basis for �

N .

Proof .:.

Recall that
�
N is just the product topology on

Q
n2! !, where the topology on ! is discrete. The basic open

sets in
�
N are then rectangles that can be broken up into finitely many non-trivial open rectangles and co-finitely

many copies of the whole space: R D
Q
n<N Un �

Q
N�n<! !, where N < ! and each Un � ! (every

Un works since all subsets are open). Clearly each cone is open in this topology as we just consider N� DQ
n<lh.�/¹�nº �

Q
lh.�/�n<! !.

So it suffices to show that any rectangle R D
Q
n<N Un �

Q
N�n<! ! can be written as a union of cones. If we

consider T D ¹� 2 N! W 9x 2 R .� 6| x/º, then R D
S
�2T N� yields the result. a

The general picture one should have in their head is the following figure.

N�

�

N

<!!

21B • 3. Figure: Cones in baire space

The good thing about all of these products being polish is that it’s easy to characterize and check whether a given
function is continuous. We will often need continuous functions between product spaces in our arguments, and want
an easy way to check whether these functions are actually continuous without resorting back to arguments regarding
rectangles of open sets.

21B • 4. Corollary
Let

�
M be polish. Therefore a function f W N !M is continuous iff for any x 2 N ,

T
n<! f "Nx�n D ¹f .x/º.

This is really just characterizing continuity in terms of the complete metric instead of open sets. Note that
�
N is

particularly important for us because of the following two results.
21B • 5. Theorem

Let
�
M be a polish space. Therefore, there is some continuous surjection f W N !M.

Proof .:.

As
�
M is separable, there is some countable dense set Q � M which can be enumerated as ¹qn W n < !º. Also

let d be a compatible metric. For each r 2 N , we define the converging sequence r� 2 !Q by recursion. Firstly,
set r�

0 D qr.0/ and then take r�
nC1 to be qr.nC1/ if this is close enough: if d.r�

n ; qr.nC1// < 1=2
n. Otherwise, we

stay put: r�
nC1 D r�

n . It’s easy to see that this sequence is then cauchy and so as
�
M is complete, it has a limit

lim r� 2M. So take f W N !M to be the map f .r/ D lim r�. It’s easy to see that this map is continuous since
if r 0 agrees with r up to n, i.e. r � n D r 0 � n, then .r 0/� agrees with r� up to stage n and hence the limits f .r/
and f .r 0/ have a distance less than 1

2n C
1
2n D 1=2

n�1.
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To see that f is surjective, becauseQ is dense, for any p 2M, we can consider the function p0 W ! ! ! where
p0.n/ is the least such that d.p; qp0.n// < 2

nC1. This p0 2 N then clearly has f .p0/ D p. a

The only obstacle in containing a copy of
�
N is if the space looks like !. More precisely, the basic open sets of

�
N

all have size jN j D 2ℵ0 , meaning there are always lots of points surrounding any given real in
�
N . So in a map

f W N !M, we shouldn’t map x 2 N to a point in M that isn’t surrounded by lots of points too.
21B • 6. Definition

Let
�
M be a topological space. A point m 2M is isolated iff ¹mº is open in

�
M.

For a metric space, this just means that as we zoom in on m, eventually we notice that there are no elements around:
for some " > 0, the only element within " ofm ism itself. It’s not difficult to see that

�
N has no isolated points whereas

h!;P .!/i consists only of isolated points.
21B • 7. Theorem

Let
�
M be a polish space with no isolated points. Therefore, there is some continuous injection f W N !M.

Proof .:.

First we will show that there is a continuous injection nc W
�
N !

�
� from baire space to cantor space. Then

we will show there is a continuous injection from cantorspace into
�
M, and so we reach the conclusion just by

composition.

For n < !, let 0n be the constant sequence of 0s of length n. So for x D hxn W n < !i 2 N , let nc.x/ be the
sequence

h1i_0x0

_
h1i_0x1

_
h1i_ � � �_ h1i_0xn

_
h1i_ � � � .

This map is continuous since if we’ve determined the first N entries of x, then we’ve determined the firstP
n<N xn � N entries of nc.x/. It should be clear that this map is injective. So there is a continuous injec-

tion from baire space to cantor space. It then suffices to find a continuous injection from cantor space to
�
M.

Let d be a compatible metric for
�
M. Without loss of generality, we can assume d.x; y/ � 1 for all x; y 2M. We

identify � 2 <!2 with neighborhoods of
�
M. In particular, define open sets M� �M by recursion. Firstly, define

M; D M, and for M� already defined, as no points are isolated, let x; y 2 M� be two distinct points. Let B0
be the ball around x of radius r0 < d.x; y/=2lh.�/C1 while B1 is the ball around y of radius r1 < d.x; y/=2lh.�/.
Then define M�_h0i D B0 \M� and M�_h1i D B1 \M� .

We thus have M� \M�; iff � 6| � or � 6| � . Also, by the restriction on the sizes of the balls, for any x 2 N ,
any sequence of points hpn 2 Mx�n W n < !i is cauchy and thus converges to some (unique) point px 2 M.
If we define f W N ! M by f .x/ D px 2

T
n<! Mx�n, then we have that f is injective: x ¤ y implies

x � n ¤ y � n for some n < ! where then px …My�n while py 2My�n.

To see that f is continuous, just note that if y agrees with x up to n, y � n D x � n, then f .y/ 2My�n DMx�n
meaning d.f .y/; f .x// < 1=2n. a

As a result, we have restrictions around the size of a polish space and so the resulting topology.
21B • 8. Corollary

Let
�
M be a polish space. Therefore, either jMj � ℵ0, or else jMj D 2ℵ0 . Moreover, if M is countable, then

�
M is

the discrete topology on M.

Proof .:.

We know jMj � 2ℵ0 byTheorem 21B • 5. There can be at most countably many isolated points ofM, as otherwise
�
M won’t be separable. Let I � M be the set of isolated points, which is then open and hence removing these
isolated points, M n I , we have a closed subset of M. By continuing this removal of isolated points (at most
countably many times), we can assume M n I has no isolated points.
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Claim 1
There is a countable set J �M such that M n J has no isolated points.

Proof .:.

To formalize “continually removing isolated points”, for X � M, let X 0 be X n ¹x 2 X W x is isolatedº.
Then we define by recursion

M0 DM, M˛C1 DM0
˛ , and M˛ D

\
�<˛

M� for limit ˛.

Note that inductively, if X is a polish space, then X 0 is closed and hence another polish space with the
restricted topology. Since the intersection of closed sets is closed, it follows that each M˛ is closed.

We now show that at some point this process stabilizes and we get M˛ D Mˇ for sufficiently large ˛; ˇ.
Specifically, we will get that this holds after some countable ordinal. To show this, let U D ¹Un W n 2 !º
be a countable basis for M since it’s separable. We can identify any closed set X � M with its basic
neighborhoodsNX D ¹Un W Un\X ¤ ;º in that x 2 X iff x …

S
.U nNX /. (To see this, M nX is open so

x 2 M n X iff x is in some Un disjoint from X .) As a result, any two closed sets X ¤ Y have NX ¤ NY
and it’s not difficult to see X � Y implies NX � NY .

Since the sequence of M˛s is�-decreasing, the sequence of NM˛
s is�-increasing. But since each NM˛

is
contained in the countable set U , we cannot have an uncountable strictly ¨-increasing sequence of NM˛

.
Thus NM˛

D NM˛C1
for some ˛ < !1 which then tells us M˛ D M˛C1 and therefore M˛ D Mˇ for all

ˇ > ˛.

Define recursively Jˇ D M nMˇ . Clearly J0 D M nM0 D ; is countable. If Jˇ is countable, then
JˇC1 D Jˇ [Mˇ nMˇC1 is also countable since Mˇ nMˇC1 is countable by separability. At limit stages
ˇ < !1, Jˇ D

S
�<ˇ J� which is the countable union of countable sets and is thus countable. It follows

that J D J˛ DM nM˛ is countable. Since M˛ DM˛C1, M n J DM˛ has no isolated points. a

If MnJ ¤ ;, then restricting the topology of
�
M to MnJ yields another polish space with no isolated points (it’s

clearly separable still, and the metric is still complete asMnJ closed). Hence byTheorem 21B • 7, 2ℵ0 � jMnJ j

and therefore 2ℵ0 � jMj � 2ℵ0 C ℵ0 D 2ℵ0 . a

The above idea supports the idea that polish spaces can basically be thought of as just copies of N with countably many
isolated points. The topologies can be different, however, as we will see. Indeed, even cantor space and baire space
differ fundamentally in that one is compact while the other isn’t.

21B • 9. Definition
A topological space hX;Oi is compact iff for any A � O, X D

S
A implies X D

S
� for some finite � � A.

21B • 10. Result
�
� is compact while

�
N isn’t.

Proof .:.

It’s easy to see that
�
N isn’t compact, since

S
n<! Nhni D N , but there is no N < ! where

S
n<N Nhni D N .

To see that
�
� is compact, write �� for the cone ¹x 2 � W � C xº for � 2 <!2. For A � <!2, write �A forS

�2A �� . Suppose � isn’t compact. Because open sets for
�
� are unions of cones, we can then assume � D �A

for some A � <!2, but for any finite � � A, � ¤ ��.

Note that since each cone is open and closed, �� (as the finite union of closed sets) is also closed whenever
� � A is finite. Hence if x … C�, there is a � 2 Awith � C x with �� \C� D ;. This motiviates the following
tree where branches attempt to build an element of � n CA D ; according to the fact that � n C� is never ; for
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finite � � A. Consider the tree
T D ¹h�;�i W �� \ �� D ; ^ � 2 A ^� � A ^� � ¹� C � W � 2 Aºº,

ordered by 6|: h�;�i preceeds h�;†i iff � 6| � and � [ ¹�º � †. By the argument above, any h�;�i has an
extension h�;� [ ¹�ºi in T (with then � C � ) and so T is infinite. Since the levels of T are finite (any level
of <!2 is finite, and there can be only finitely many subsets of the finite set ¹� 2 A W � C �º for � 2 <!2), it
follows from Kőnig’s Lemma on Trees (9 B • 5) that T has an infinite branch B � T .

Set x D
S

h�;�i2B � 2 � . Such an x cannot exist: for hx � n;�i 2 B , we have some extension hx � n;�i 6|
hx � m;†i 2 B for some m � n and † � � [ ¹�º. As an extension, �x�m \ ��[¹x�nº D ;. But by definition
of x, x 2 �x�m \ ��[¹x�nº, a contradiction. Hence no such x can exist, and therefore T can’t be infinite, and
therefore some � must have �� D � . As A was arbitrary,

�
� is compact. a
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Section 22. The Boldface Hierarchies

Rather than work towards the formal presentation of R, we will work with a space that is homeomorphiciii to the set
of irrational numbers. We restate the topological characterization gleamed from Result 21B • 2.

22 • 1. Definition
The baire space

�
N is the product topology on

Q
n2!h!;P .!/i. More precisely, N D !!, and a set A � N is open

iff A is the union of cones: for � 2 <!!, the cone for � is the set N� D ¹x 2
!! W � � xº.

As a result, we can see that A � N is open iff every x 2 A has some initial segment � C x with N� � A. So A being
closed—meaning N nA is open—just says that for each x … A, there is some initial segment � C x with N� � N nA,
i.e. N� \ A D ;. Note that N D N; is then both closed and open.

Disregarding the formality about what exactly R is as a setiv, we get the following result. The connection is that two
reals are close if they agree on a large initial segment. So this is why our topology looks the way it does: cones N�

for � 6| x correspond to open balls around x in the sense that we’re looking at points that are sufficiently close to x by
sharing the initial segment � . Smaller balls correspond to larger initial segments, and so on.

22 • 2. Theorem
�
N is homeomorphic to the space of real, irrational numbers, i.e. R nQ, with the standard topology induced by the
usual metric d.x; y/ D jx � yj.

The proof of this theorem isn’t relevant for us, but it does show the connection between the usual interpretation of R
and the sequences of natural numbers that descriptive set theory considers. With this correspondence, we will often
call x 2 N a “real”. And so using the increasing enumeration (repeating the last element forever if finite), we identify
subsets of ! with reals.

There are two fundamental concepts we will look at: complexity and trees. We have already introduced the open sets
which will eventually give rise to the borel hierarchy and eventually the projective and analytical hierarchies. Trees
will be a major way that we examine the projective and analytical hierarchies. To hint at the connection, we have the
following definition and result.

22 • 3. Definition
Let X be a set. T � <!X is a tree over X iff T is closed under initial segments: � 6| � 2 T implies � 2 T . So
hT;6|i is a tree in the usual mathematical sense.
For T a tree over X , the set of infinite branches of T is denoted ŒT � D ¹x 2 !X W 8n < ! .x � n 2 T /º.

22 • 4. Result
A set A � N is closed iff there is some tree T over ! where A D ŒT �.

Proof .:.

So suppose T is an arbitrary tree over !. To show that A D ŒT � is closed, suppose x 2 N n ŒT �. Because x is
not an infinite branch of T , some initial segment � C x has � … T . But then no extension of � is in T meaning
N� \ ŒT � D ;, i.e. N� � N n ŒT �. Thus N n ŒT � is open so A D ŒT � is closed.

Let A be a closed set. Consider T as the set of initial segments of elements in A:
T D ¹� 2 <!! W 9x 2 A .� 6| x/º D ¹� 2 <!! W N� \ A ¤ ;º.

iiiTwo topologies hX1;N1i and hX2;N2i are homeomorphic if there is a function f W X1 ! X2 such that for any A � X1, A 2 N1 iff
f "A 2 N2, meaning A is open iff f "A is open.

ivWe think of R as the canonical completion of Q under Cauchy sequences with the usual metric. There are various ways to define this in set
theory—usually using lots and lots of equivalence classes—but it's unimportant for our purposes.
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It should be obvious that T is a tree, so it suffices to show that A D ŒT �. Clearly A � ŒT �, as x 2 A implies every
initial segment is in T by definition, which then implies x 2 ŒT �. To show ŒT � � A, we use that A is closed.
Suppose x 2 ŒT � but x … A. As N nA is open, there is some neighborhood x 2 N� � N nA so that N� \A D ;.
But � 2 T as an initial segment of x 2 ŒT �, so N� \ A ¤ ;, a contradiction. a

§22A. The borel hierarchy

Our first hierarchy to consider is the hierarchy of borel sets, named after Émile Borel. In general, for any collection
of subsets S � P .X/, we can close S under countable intersections, countable unions, and complements. This forms
a σ-algebra, and we get a hierarchy describing how any particular set is built up from S . Note that we only need
countable unions, since complements give us closure under countable intersections: X n

S
n<!.X nAn/ D

T
n<! An.

22A • 1. Definition
For X a set, S � P .X/ is a σ-algebra over X iff for all A,

• A 2 S implies X n A 2 S ; and
• ¹An W n < !º � S implies

S
n<! An 2 S .

We will be interested mostly in the hierarchy built up from the open sets. This generally forms the borel hierarchy on
any topological space, but we will be interested in

�
N . Moreover, we want results about the whole topology of

�
N .

Easily enough, we could instead consider the collection of clopen sets, which fairly trivially is seen to be a σ-algebra
for R but not for

�
N . The clopen sets, however, ignore much of the topology.

22A • 2. Definition
For S � P .X/, the σ-algebra generated by S is the �-least σ-algebra containing S .
The set BM of borel subsets of a topological space

�
M is the σ-algebra generated by open sets. This induces a

hierarchy: for X �M and ˛ 2 Ord,
• X is

�
†
0;M
1 iff X is open;

• X is
�
†
0;M
˛ for ˛ > 1 iff X is the countable union of sets in

S
ˇ<˛ �

…
0;M
ˇ

;

• X is
�
…
0;M
˛ iff N nX is

�
†
0;M
˛ ;

• X is
�
�
0;M
˛ iff X is

�
…
0;M
˛ and

�
†
0;M
˛ .

These
�
†
0;M
˛ ,

�
…
0;M
˛ , and

�
�
0;M
˛ are called the borel pointclasses. We write just

�
†0
˛ for

�
†
0;N
˛ and similarly for the

other borel pointclasses.

This yields a hierarchy similar to the arithmetical hierarchy in Appendix Section A3, but significantly longer.

�
�0
1

�
†0
1

�
…0
1

�
�0
2

�
†0
2

�
…0
2

� � � ¨
�
�0
!

�
†0
!

�
�0
!C1

�
…0
!

�
†0
!C1

�
…0
!C1

� � � �
�
�0
!1

�
†0
!1

�
…0
!1

D
D

D B
¨
¨

¨

¨

¨
¨ ¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

22A • 3. Figure: The borel hierarchy

We can easily show the following, which yields some nice corollaries like the various containments above. Showing
that the containments are strict is more difficult, of course. It should be obvious that

�
…0
˛ � �

†0
ˇ
for ˛ < ˇ since x 2

�
…0
˛

has x D
S
n<! x 2 �

†0
ˇ
as a countable union of sets in

S
�<ˇ �

…0
�
.

22A • 4. Result
Let 1 � ˛ < ˇ < !1. Therefore,

1.
�
†0
1 � �

†0
2 ;

2.
�
†0
˛ � �

†0
ˇ
, and

�
…0
˛ � �

…0
ˇ
; and
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3.
�
�0
˛ � �

†0
˛ � �

�0
˛C1, and similarly for

�
…0
˛;

Proof .:.

1. We actually need this in order to show (2) and (3). Suppose X 2
�
†0
1 is open. We need to show X is the

countable union of closed sets. We know X is the union of basic open sets (cones in the case of
�
N ) of

which there are only countably many.

So it suffices to show that each cone N� is actually closed (and hence clopen). To see this, just note that
T� D ¹� 2

<!! W � 6| � _ � 6| �º is a tree with ŒT� � D N� . By Result 22 • 4, it follows that N� is closed.
So as the countable union of cones, X 2

�
†0
2 .

2. We only prove the first containment in general, as the second follows from the first (to see this, X 2
�
…0
˛

implies N nX 2
�
†0
˛ � �

†0
ˇ
so that X 2

�
…0
ˇ
). But this is easy: fix ˇ and proceed by induction on ˛ < ˇ.

For ˛ D 1, this is just (1). For ˛ > 1, suppose X 2
�
†0
˛ . This means X D

S
n<! Xn where, since ˛ < ˇ,

¹Xn W n 2 !º �
[

�<˛ �
…0
� �

[
�<ˇ �

…0
� implying

[
n2!

Xn 2 �
†0
ˇ .

3. That
�
�0
˛ � �

†0
˛ is obvious by definition. For

�
†0
˛ � �

�0
˛C1, we already have

�
†0
˛ � �

†0
˛C1. To show

�
†0
˛ � �

…0
˛C1, if N nX 2

�
…0
˛ then N nX D

S
¹N nXº 2

�
†0
˛C1 so that X 2 �

…0
˛C1. a

22A • 5. Corollary
For 1 < ˛ < !1, X 2 �

†0
˛C1 iff X D

S
n<! Xn for some ¹Xn W n < !º � �

…0
˛ .

We can also easily confirm various closure properties for the borel pointclasses.
22A • 6. Result

Let 1 � ˛ < !1. Therefore
1.

�
†0
˛ is closed under countable unions, and finite intersections;

2.
�
…0
˛ is closed under finite unions, and countable intersections;

3.
�
�0
˛ is closed under finite unions, finite intersections, and complements.

Proof .:.

1. For countable unions, if ¹Xn W n < !º � �
†0
˛ , then for each n < ! let ¹Xn;m W m < !º �

S
�<˛ �

…0
�
witness

Xn 2 �
†0
˛ , i.e.

S
m<! Xn;m D Xn. Therefore, as a countable union,

S
n;m<! Xn;m D

S
n<! Xn 2 �

†0
˛ .

For finite intersections, suppose X D
S
n<! Xn 2 �

†0
˛ and Y D

S
n<! Yn 2 �

†0
˛ where Xn; Yn 2S

�<˛ �
…0
�
for each n < !. Note that X \ Y D

S
n;m<! Xm \ Yn. Inductively, Xm \ Yn 2 �

…0
�
for

some � < ˛ (in some sense, we’re proving (1)–(3) simultaneously by induction on ˛). It follows thatS
n;m<! Xm \ Yn D X \ Y 2 �

†0
˛ .

2. If ¹Xn W n < !º �
�
…0
˛ , then N n Xn 2 �

†0
˛ so by (1) the countable union

S
n<! N n Xn 2 �

†0
˛

and therefore the complement N n
S
n<! N n Xn D

T
n<! Xn 2 �

…0
˛ . Same reasoning of applying

complements everywhere shows closure under finite unions.

3. Closure under finite unions and intersections follows just from the fact that both
�
†0
˛ and

�
…0
˛ are closed

under these. For complements,X 2
�
�0
˛ impliesX 2

�
†0
˛ so that N nX 2

�
…0
˛ . But we also haveX 2 �

…0
˛ ,

implying N nX 2
�
†0
˛ . Hence X;N nX 2 �

†0
˛ \ �

…0
˛ D �

�0
˛ . a

As we will also be concerned with product spaces, it’s important to note that taking products doesn’t increase com-
plexity. In fact, we have the more general result below.
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22A • 7. Result
Let

�
M and

�
W be topologies. Let f W M ! W be continuous and ˛ > 0. Therefore X 2

�
†
0;W
˛ implies f �1"X 2

�
†
0;M
˛ , and similarly for

�
…
0;W
˛ and

�
�
0;W
˛ .

Proof .:.

As f is continuous, it is trivially true for open sets, i.e. ˛ D 1. For ˛ > 1, preimages works well with unions and
complements, showing the result by an easy induction: f �1"

S
n<! Xn D

S
n<! f

�1"Xn and f �1".W nX/ D
M n f �1"X . a

22A • 8. Corollary
If

�
M and

�
W are homeomorphic by some f , then X 2

�
†
0;M
˛ iff f "X 2

�
†
0;W
˛ .

The above is useful, because products of baire space are all homeomorphic to baire space.
22A • 9. Result

!
�
N (or similarly <!

�
N ) is homeomorphic to

�
N . Hence their borel hierarchies are (in essence) the same through

this coding by f .

Proof .:.

Consider the map f W !N ! N defined by f .hxn W n < !i/ D hx.n/ W n < !i where x.code.n;m// D xn.m/.
More precisely, the map code W ! � ! ! ! is a bijection where code.x; y/ � max.x; y/ (e.g. code.a; b/ is the
length of the path that spirals around the origin, skipping repeated points, and ends at the point ha; bi). So really
we say x.n/ D xa.b/ where code�1.n/ D ha; bi.

In checking that things converge, note that in the product space !
�
N , a sequence hExn W n < !i converges

to Ex D hxm W m < !i iff—regarding Exn as the real sequence of reals hxn.m/ < !i—for each m < !,
hxn.m/ W n < !i converges to xm. In other words, a sequence converges iff it converges pointwise.

This f is a homeomorphism. To see this, f is clearly a bijection. f is continuous: suppose Ex D hExn 2 !N W

n < !i converges to x D hxn W n < !i 2 !N . We want to show hf .Exn/ 2 N W n < !i converges to f .x/.
Without loss of generality (just by ignoring issues of indices and passing to a subsequence), for each N < ! and
each n < N , say .ExN /n � N 6| xn, meaning the first N entries of ExN each approximate the first N entries of x.
If this is the case, then f .ExN / approximates x up to at least N since code.x; y/ � max.x; y/. More explicitly,
for code.a; b/ < N , we have a; b < N and since .ExN /a � N 6| xa,

f .ExN /.code.a; b// D .ExN /a.b/ D xa.b/ D f .x/.code.a; b//.
f �1 is continuous: if Ex D hxn 2 N W n < !i converges to x 2 N , we may assume without loss of generality
that xn � n 6| x for n < !. We want to show hf �1.xm/ 2

!N W m < !i converges to f �1.x/ 2 !N . Note that
f �1.y/a.b/ D y.code.a; b// for all a; b < ! and y 2 N . Let m < ! and n < ! be fixed. We want to show
that for sufficiently large N , f �1.xN /m � n 6| f �1.x/m. Let N > code.m; n/ > max.m; n/. For k < n, since
code.m; k/ < code.m; n/ < N has xN � N 6| x,

f �1.xN /m.k/ D xN .code.m; k// D x.code.m; k// D f �1.x/m.k/.
Thus for any m; n < !, there is some sufficiently large N where f �1.xN /m � n 6| f �1.x/. This tells us that
hf �1.xn/ W n < !i converges to f �1.x/. a

At some point (how about now) we should prove this hierarchy does classify all borel sets, and in fact does this by
stage !1.

22A • 10. Theorem
B D

S
˛<!1 �

†0
˛ D

S
˛<!1 �

…0
˛ .
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Proof .:.

As the open sets are contained in
S
˛<!1 �

†0
˛ , it suffices to show two things: that

S
˛<!1 �

†0
˛ is indeed a σ-algebra,

and that
S
˛<!1 �

†0
˛ is the smallest that contains the open sets.

To see that
S
˛<!1 �

†0
˛ is a σ-algebra, we need to show that it’s closed under complements and countable

unions. But this is clear: X 2
�
†0
˛ has N n X 2

�
…0
˛ � �

†0
˛C1. Moreover, any countable collection

¹Xn W n < !º �
S
˛<!1 �

†0
˛ has each Xn 2 �

†0
˛n
�

�
…0
˛nC1 for some ˛n < !1. Since cof.!1/ > !,

¹Xn W n < !º � �
†0

supn<! ˛nC2. Thus closure under countable unions gives X 2
�
†0

supn<! ˛nC2 �
S
˛<!1 �

†0
˛ .

To see
S
˛<!1 �

†0
˛ is the least such σ-algebra, let S be a σ-algebra containing

�
†0
1 . Inductively for ˛ < !1, ifS

�<˛ �
†0
�
� S , then closure under complements yields

S
�<˛ �

…0
�
� S . Closure under countable unions yields

�
†0
˛ � S . Hence by induction, every �

†0
˛ � S and so

S
˛<!1 �

†0
˛ � S . a

22A • 11. Corollary

�
†0
!1
D
S
˛<!1 �

†0
˛ D

S
˛<!1 �

…0
˛ . In fact, �

†0
˛ D B for any ˛ � !1.

Proof .:.

Argue by induction on ˛ � !1. For ˛ D !1, this is clear by Theorem 22A • 10: if Xn 2 �
…0
˛n

for n < ! and
˛n < !1, then

S
n<! Xn 2 �

†0
ˇC1

for ˇ D supn<! ˛n < !1. Hence �
†0
!1
�
S
˛<!1 �

†0
˛ . The other containment

follows by Result 22A • 4. This shows
�
†0
!1
D B and as a σ-algebra,

�
…0
!1
D B. For ˛ > !1, the result clearly

holds since inductively
S
�<˛ �

…0
�
D
S
�<!1 �

…0
�
. a

This tells us that the length of the borel hierarchy is at most !1. We still need to show that all of the levels are different,
however. To do this, we need the concept of a universal set, analogous to the concept from computability. We then
apply a diagonalization argument. The work above tells us that there’s really no difference between N �N and N in
their borel hierarchies. Hence from now on, we drop the M in †0;M˛ when M is a (countable) product of copies of
baire space.

22A • 12. Definition
Let

�
� be a borel pointclass (or any subset of P .M �M/ for

�
M polish). A set U � N is said to be

�
� -universal iff

U 2
�
� and for every A in

�
� ,

9r 2 N8x 2 A.hr; xi 2 U $ x 2 A/.

In other words, the set of projections of U is
�
� : for Ur D ¹x W hr; xi 2 U º, ¹Ur W r 2 !2º D �

� . Most of the time, we
will be looking at sets

�
†0
˛-universal sets (or similarly for

�
…0
˛). With this new concept, we should show the existence

of universal sets.
22A • 13. Theorem

For each ˛ < !1, there is a �
†0
˛-universal set, and a �

…0
˛-universal set.

Proof .:.

It suffices to give just
�
†0
˛-universal sets, since if U is such a set, writing Ur D ¹x W hr; xi 2 U º yields U 0 D

¹hr; xi W r 2 U ^ x 2 N n Urº as a �
…0
˛-universal.

For ˛ D 1,
�
†0
˛ is just the open sets of �

N , which are given by unions of cones. Identify <!! D ¹�n W n < !º so
that X 2

�
†0
1 is

S
n2r N� for some r � !, i.e. some r 2 N . So taking U D

S
n2!¹r 2 N W r.n/ D 1º � N�n

yields a
�
†0
1-universal set: if X D

S
n2r N�n , then X D ¹x W hr; xi 2 U º.

For 1 < ˛ < !1 write ˛ D supn<!.˛n C 1/ for some sequence of ordinals h˛n W n < !i (possibly constant if ˛
is a successor). For n < !, let Un be �

…0
˛n
-universal. Each X 2

�
†0
˛ is the union of ¹Xn W n < !º �

S
n<! �

…0
˛n
.
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By the containments of Result 22A • 4, we can assume each Xn 2 �
…0
˛m

for some m � n. Thus for n < ! there
is an rn 2 N where

X D
[
n<!

Xn D
[
n<!

¹x W hrn; xi 2 Unº.

Through coding, X identified by this sequence hrn 2 N W n < !i can instead be identified through a single r as
in Result 22A • 9 so translating the Uns in this way yields a

�
†0
˛-univeral set. More explicitly, f W !N ! N a

homeomorphism yields U 0
n D ¹hr; xi 2

!N �N W hf .rn/; xi 2 Unº yields U D
S
n<! U

0
n as �

†0
˛-universal. f

is continuous as is the map projn where projn.r/ D rn. So U 0
n is �

…0
˛n

by Result 22A • 7, implying that U is
�
†0
˛ .

a

22A • 14. Corollary
For all ˛ < !1, �

†0
˛ ¤ �

…0
˛ since any �

†0
˛-universal set is not in �

…0
˛ and vice versa. In particular, all containments of

Figure 22A • 3 are strict: meaning for ˛ < !1,
•

�
�0
˛ ¨

�
†0
˛ ¨

�
�0
˛C1, and similarly for

�
…0
˛; and

• we always add sets, even at limit stages:
S
�<˛ �

†0
�

¨
�
†0
˛ and similarly for

�
�0
˛ and �

…0
˛ .

Proof .:.

Let U be
�
†0
˛-universal. Let D D ¹x W hx; xi 2 U º which is in

�
†0
˛ as the continuous preimage of U by

x 7! hx; xi. Suppose N nD 2
�
†0
˛ so by univerality, there is some r with Ur D ¹x 2 N W hr; xi 2 U º D N nD.

But then r … D iff r 2 Ur iff hr; ri 2 U iff r 2 D, a contradiction. This showsD 2
�
†0
˛ n �

…0
˛ , and an analogous

result shows
�
…0
˛ n �

†0
˛ ¤ ;.

• IfU is
�
†0
˛-universal, thenU 2 �

†0
˛ n �

…0
˛ D �

†0
˛ n �

�0
˛ , showing �

�0
˛ ¨

�
†0
˛ . Similarly, IfW is

�
…0
˛-universal,

then W 2
�
…0
˛ n �

†0
˛ � �

�0
˛C1 n �

†0
˛ , showing �

†0
˛ ¨

�
�0
˛C1. The same argument above works for

�
…0
˛ .

• A
�
†0
˛ or

�
…0
˛-universal set shows the strict containment for

�
†0
˛ and

�
…0
˛ . For

�
�0
˛ , let h˛n W n < !i be

such that supn<!.˛n C 1/ D ˛. Take increasingly complex sets Un 2 �
�0
˛nC1 n �

�0
˛n
. In particular, take

U 0
n to be

�
†0
˛n
-universal and take Un D ¹hni_x W x 2 U 0

nº � Nhni, a continuous preimage of U 0
n so that

Un \ Um D ; for n ¤ m. We thus have the following properties:
1. Un � Nhni 2 �

†0
1 (by construction);

2. Un \ Um D ; for n < m < ! (by construction);
3. N n

S
n<! Un D

S
n<! Nhni n Un (from (1) and (2));

4. Un;Nhni n Un 2 �
�0
˛nC1 n �

�0
˛n
�

�
…0
˛nC1 (by construction and properties of borel pointclasses);

(4) implies
S
n<! Un 2 �

†0
˛ . Clearly

S
n<! Un …

S
�<˛ �

�0
�
as otherwise the union is in some

�
�0
˛n

and
thus Un D Nhni \

S
m<! Um 2 �

�0
˛n
, contradicting (4). To see that

S
n<! Un 2 �

…0
˛ , (3) tells us thatS

n<! Nhni n Un 2 �
†0
˛ and therefore its complement

S
n<! Un 2 �

…0
˛ . So

S
n<! Un 2 �

�0
˛ . a

It should be noted that not all sets of reals are borel. In particular, as the union of countably many cones, there are only
2ℵ0 open sets. Similarly there are continuum many elements of

�
…0
1. One can easily show (noting that !1 � 2ℵ0 ) that

there are only 2ℵ0 many borel sets of reals. But there are 22ℵ0 sets of reals overall. Hence there must be many non borel
sets. In fact, we can come up with an example of one later through showing that the projective hierarchy, an extension
of the borel hierarchy, has distinct pointclasses.

§22B. Changing the hierarchy

The primary question for this subsection is this: to what extent does the collection of borel sets on a polish space
determine the topology on the polish space? That is to say, to what extent does BM D

S
˛<!1 �

†
0;M
˛ determine

�
†
0;M
1

(and subsequently the rest of the hierarchy)? The answer is “not at all”. Although certainly the topology determines
the borel sets, we can “refine” our topology such that any given borel subset is open and closed in the new topology.
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This, however, also suggests (which we do not prove here) that there is a unique borel space among the uncountable
polish spaces.

First we show that we can make closed sets closed and open without changing the borel sets.
22B • 1. Lemma

Let
�
M D hM; dMi and �

W D hW ; dW i be polish metric spaces. Therefore the disjoint union space
�
M t

�
W is the

polish space hM tW ;Oi where U � M tW is in O iff U \M 2 OM and U \W 2 OW ; i.e. U D A t B for
A 2 OM and B 2 OW .

Proof .:.

We need to check that hMtW ;Oi is indeed a polish space. Write U DMtW . Let O0 be the topology induced
by the metric d W U2 ! R where

d.x; y/ D

8̂<̂
:
dM.x; y/ if x; yM

dW .x; y/ if x; y 2 W

1 otherwise.
We need to show that d is indeed a metric, hU;O0i is complete, and O D O0. That

�
U is separable then follows

from the fact that both
�
W and

�
M are.

Claim 1
hU; d i is a complete metric space.

Proof .:.

Firstly, we show that d is a metric, which is easy: we clearly have d.x; y/ D 0 iff dM.x; y/ D 0 or
dW .x; y/ D 0 iff x D y, and d.x; y/ D d.y; x/. The triangle inequality is fairly clear from it holding for
dM and dW :

x; y; z 2M implies d.x; y/C d.y; z/ D dM.x; y/C dM.y; z/ � dM.x; z/ D d.x; z/

x; y 2M and z 2 W implies d.x; y/C d.y; z/ D dM.x; y/C 1 � 1 D d.x; z/

x 2M and y; z 2 W implies d.x; y/C d.y; z/ D 1C 1 � 1 D d.x; z/,
and similarly for the other cases. This establishes that hU; d i is indeed a metric space, and we merely need
to show that it’s complete.

So let Ex D hxn W n < !i 2 !U be cauchy with respect to d . We must show that Ex converges in hU; d i.
But eventually the sequence must be in either M or W where it must then stay and converge due to the
completeness of

�
M and

�
W . More explicitly, let " > 0 be arbitrary, and without loss of generality " < 1.

Therefore, for sufficiently large n;m < !, 1 > " > d.xn; xm/ which is then equal to dM.xn; xm/ or
dW .xn; xm/ and so the tail of Ex (which is then in M or W ) is cauchy and so converges to some x in M or
W , and it’s not hard to see that Ex converges to this x in hU; d i as well. a

Now we need to show O D O0, where O is defined as in the statement, and O0 is the topology induced by d .
Note that elements of O0 are just unions of open balls. For x 2 U, write B".x/ for ¹y 2 U W d.x; y/ < "º.
Write BM

" .x/ D ¹y 2 M W dM.x; y/ < "º, and similarly for BW
" .x/. Hence X 2 O0 iff there is some

F � U � ¹" 2 R W " > 0º such that X D
S

hx;"i2F B".x/.

Let 0 < " 2 R and x 2 U. Note that OM � O and OW � O.
• If " < 1 and x 2M, we have B".x/ D BM

" .x/ t ;.
• If " < 1 and x 2 W , we have B".x/ D ; t BW

" .x/.
• If " � 1 and x 2M, we have B".x/ D BM

" .x/ tW .
• If " � 1 and x 2 W , we have B 0

".x/ DM t B".x/.
Hence open balls have this form: B".x/ D Xx;" t Yx;". And so if A 2 O0, then A D

S
x2A B"x

.x/ for "x such
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that B"x
.x/ � A, and therefore

A D
[
x2A

Xx;"x
t Yx;"x

D
[

x2A\M

Xx;"x
t

[
x2A\W

Yx;"x
.

Hence O0 � O. Similarly, if A 2 O, then A D .A \M/ t .A \W/ where A \M 2 OM is the union of open
balls (with respect to d ) and A \W 2 OW is too and so A 2 O0. a

22B • 2. Lemma
Let

�
M D hM;Oi be a polish topological space with X 2

�
…
0;M
1 . Therefore, there is an O0 � O such that

1.
�
M0
D hM;O0i is a polish topological space;

2. X 2
�
�
0;M0

1 ; and
3. BM D BM0 .

Proof .:.

As X is closed, the inhereted topology X is polish by Result 21A • 14. Similarly, M nX is open, giving another
inhereted polish topology

�
M n X by Result 21A • 15. This means we can consider the disjoint union

�
M0
D

hM;O0i D .
�
M n X/t X as polish as in Lemma 22B • 1. As the topologies are inhereted, every open subset U of

M has U \X and U nX as open in X and
�
M n X respectively and therefore open in

�
M0: O � O0. This gives (1)

and the rest follow easiliy.
2. Since M n X 2 O � O0 D

�
†
0;M0

1 , we know X 2
�
…
0;M0

1 . X is also open in
�
M0, since it’s the union of

open balls
S
y2MnX B1.y/. Hence X 2 �

�
0;M0

1 .

3. It’s clear that BM � BM0 since (1) just says
�
†
0;M
1 �

�
†
0;M0

1 . For the other containment, we use Lemma
22B • 1: since X 2 BM, any open set of

�
M0 is of the form U [ .V \X/ for U; V 2 O, and hence is borel

in
�
M and so the rest of the borel hierarchy on

�
M0 is also borel in

�
M by an easy induction. a

This, in some sense, allows us to just continually collapse certain sets down to the complexity of
�
�
0;M
1 , like a

�
…
0;M
1 -

universal set for example. As a result, we can make any borel set
�
�
0;M
1 by sufficiently refining the topology according

to all the topologies that make things clopen.
22B • 3. Theorem

Let
�
M D hM;Oi be a polish topological space with X 2 BM. Therefore there is an O0 � O such that
1.

�
M0
D hM;O0i is a polish topological space;

2. X 2
�
�
0;M0

1 ; and
3. BM D BM0 .

Proof .:.

Consider the set of all X where the result holds:
B D ¹X �M W there is a polish topology

�
M0 on M where X is closed and open and BM0

D BM
º.

Clearly
�
…
0;M
1 � B. Moreover, if X 2 B, then the same topology witnessing this also witnesses that M nX 2 B

so that B is closed under complementation and thus contains all the open and closed sets. It then suffices to show
B is closed under countable intersections as this generates the borel hierarchy on

�
M: BM � B.

So suppose ¹Xn W n < !º � B with each Xn 2 B witnessed by
�
Mn D hM;Oni. Consider the productQ

n<! �
Mn, which is polish by Example 21A • 13. If we consider j W M !

Q
n<! M defined by j.x/ D

constx � !, this induces another polish topology on M by preimages:
�
M! D hM;O!i where U 2 O! iff

U D j�1"W for someW open in
Q
n<! �

Mn. It suffices to show
T
n<! Xn 2 B as witnessed by

�
M! . This may

not be true, but we can make it true by refining again.
1. This is easily checked from the definition of

�
M! because

Q
n<! �

Mn is polish and j "M! is closed.
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2.
T
n<! Xn is closed as the intersection of the closed sets j�1".

Q
i<n M � Xn �

Q
i>n M/ for i < !.T

n<! Xn may not be open, but using Lemma 22B • 2, it becomes clopen in a new polish topology
�
M0.

3. Since BM D BMn for each n, each open set U 2
�
†
0;M
1 has W D

Q
n<N M � U �

Q
N�n<! M

as open in
Q
n<! �

Mn with preimage j�1"W D U as open in
�
M! . Hence

�
†
0;M
1 �

�
†
0;M!

1 implies
BM � BM! D BM0 .

For the other containment, any open set of
Q
n<! �

Mn is given by unions of rectangles, so the open sets of

�
M! are given by unions of preimages of rectangles: j�1"

S
U2F U D

S
U2F j

�1"U for any F . So it
suffices to show j�1"R 2

�
†
0;M
1 for any open rectangle R D

Q
n<! Un where each Un is open in �

M and
only finitely Un ¤ M. The preimage j�1".

Q
n<! Un/ D

T
n<! j

�1"Un is borel in
�
M! , and therefore

BM0

D BM! � BM. a

As a result, if we can prove generally that a property holds for closed sets of any polish space, then we have in fact
proven the result for all borel sets too. We will see examples of this sort of reasoning later.

§22C. The projective hierarchy

One may have wondered what the ‘0’ in “
�
†0
˛” represented. The projective hierarchy will change this ‘0’ to a ‘1’.

Essentially, the 0 represents that we’ve really only quantified over N whereas 1 represents that we’re quantifying also
over P .N/, i.e. R. This can be made precise in terms of higher order logic, but really we just note that countable unions
act like existential quantification over N. The analogue of existential quantification over R is projection. What exactly
are we projecting?

22C • 1. Definition
Let A � X � Y , usually polish spaces. The projection pA is just domA D ¹x 2 X W 9y 2 Y .hx; yi 2 A/º � X .
Where there is ambiguity (like if X itself is a product), we also write pXA to denote this set, which can also be used
to define pYA D ranA, for example.

We can either talk about product spaces or coding. We code pairs of reals by x � y D hx.n/; y.n/ W n 2 !i, meaning
x �y.2n/ D x.n/ and x �y.2nC 1/ D y.n/. The end result is the same by Result 22A • 9. So although we only state
the definitions for N , they in principle hold for countable products of copies of N as well.

In most literature, projections of closed sets are called analytic sets, which will cause confusion with the analytical
hierarchy defined later. So we abandon this terminology, instead referring to them only as

�
†1
1-sets. The basic idea is

that we never actually have to mention spaces other than
�
N , since any witness to a set being analytic that we find over

some weird space yields a witness to being analytic over
�
N . We also note that these kinds of sets play nicely with

continuous functions, which will show that although the borel sets are closed under continuous preimages, they are not
closed under continuous images.

22C • 2. Result
Let A � N . The following are equivalent.

1. A D ¹x W 9y .x � y 2 B/º for some closed B � N .
2. A D pB for some closed B � N �N .
3. A D pB for some borel B � N �N .
4. A D pB for some polish space

�
M and closed B � N �M.

5. A D imf for some continuous f W N ! N .

Proof .:.

(1)$ (2) Supppose (1) holds. Consider B 0 D ¹hx; yi W x � y 2 Bº, the continuous preimage of hx; yi 7! x � y

so that B 0 is also closed, and clearly A D pB 0. Similarly, if (2) holds, B 0 D ¹x � y W hx; yi 2 Bº is
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the continuous preimage of x � y 7! hx; yi so that A D ¹x W 9y .x � y 2 B 0/º.

(2)$ (3) One direction is trivial since closed sets are borel. So supposeA D pB for some borelB . First we show
that B D pN �NC for some closed C � N 3. This would imply pNC D pN pN �NC D pB D A. To
show this, it suffices to show the set of projections of closed sets, call this

�
†1
1 , contains all open sets,

all closed sets, and is closed under countable unions and intersections (one can generate the borel sets
in this way).

Clearly every closed and open set is in
�
†1
1 just by coding: for U a closed set, the set U � N is also

closed as a continuous preimage of U under hx; yi 7! x. This set clearly has p.U �N / D U so that
U 2

�
†1
1 . Since �

†0
1 � �

†0
2 (i.e. every open set is the countable union of closed sets) it suffices to show

that
�
†1
1 is closed under countable unions and intersections. So suppose Xn 2 �

†1
1 for n < !. Let

Xn D pYn where each Yn � N �N is closed.

For the countable union
S
n<! Xn, consider Y 0

n D Yn �Nhni, which is also closed as the preimage by
the continuous map hx; y; hni_zi 7! hx; y; zi. Note that pN �N Y

0
n D Yn so that pN Y

0
n D pYn D Xn.

Moreover,
S
n<! Y

0
n is closed in N 3 since the complement,

N 3
n
[
n<!

Y 0
n D

[
n<!

N 2
�Nhni n Y

0
n,

is the union of a bunch of open sets, and is thus open. And it’s not difficult to then see that
pN

S
n<! Y

0
n D

S
n<! Xn 2 �

†1
1 .

For the countable intersection, let f W N ! !N be a homeomorphism. Decompose f as a sequence
of functions, f .x/ D hfn.x/ W n < !i, so that each fn W N ! N is continuous. For each n < !,
consider Y �

n D ¹hx; yi 2 N � N W hx; fn.y/i 2 Ynº, which is also closed as the preimage of Yn
under the continuous map hx; yi 7! hx; fn.y/i. Note that then

T
n<! Y

�
n is closed and it’s easy to see

p
T
n<! Y

�
n D

T
n<! pYn D

T
n<! Xn.

(2)! (4) This is trivial since
�
M D

�
N is polish.

(4)! (5) Let A D pB for B � N �M. Knowing a bit about metric spaces, closed subsets of complete metric
spaces are complete, and hence B is also a polish space. So let f W N ! B be a continuous surjection
as per Theorem 21B • 5. The projection map � W N � N ! N defined by �.hx; yi/ D x is clearly
continuous so that � ı f W N ! N is a continuous map with � ı f "N D �"B D pB D A.

(5)! (2) If f W N ! N is continuous with A D imf , then f � N � N is closed (and thus so is f �1 D

¹hy; xi W hx; yi 2 f º) with A D pf �1, giving the result. a

By continually taking projections and complements, we get another hierarchy. In principle, one could relativize this to
other polish spaces, but we will focus on

�
N and countable products of copies of

�
N .

22C • 3. Definition
We form the projective hierarchy as follows: for X � N and n < !,

• X is
�
†1
0 iff X is

�
†0
1 , i.e. X is open;

• X is
�
†1
nC1 iff X D pA for some A 2

�
…1
n;

• X is
�
…1
n iff N nX is

�
†1
n;

• X is
�
�1
n iff X is both

�
†1
n and �

…1
n.

These
�
†1
n, �

…1
n, �

�1
n are the projective pointclasses, and sets in them are called projective.

One gets the expected properties from the notation and definitions.
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�
†0
1

�
…0
1

�
†0
!1

�
†1
0

�
…1
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1

�
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2

�
†1
2

�
…1
2
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¨
¨

¨

¨

¨
¨ ¨

¨

22C • 4. Figure: The projective hierarchy

22C • 5. Result
For 0 < n < !,

1.
�
†1
n is closed under countable unions, countable intersections, and projections.

2.
�
…1
n is closed under countable unions, countable intersections, and co-projections (i.e. X 7! N n p.N nX/)

3.
�
�1
n is closed under countable unions, and complements, and is thus a � -algebra.

Proof .:.

Proceed by induction on n. For the base case n D 1, we proved the closure under countable unions and intersec-
tions in proving (2)$ (3) for Result 22C • 2. Closure under projections (or co-projections) is the same as in the
inductive case, which we will show now.

1. For countable unions, let ¹Ai W i < !º �
�
†1
nC1, where each Ai D pBi for Bi 2 �

…1
n. The inductive

hypothesis on
�
…1
n yields that B D

S
i2! Bi 2 �

…1
n so that pB D

S
i2! pBi D

S
i<! Ai 2 �

†1
nC1.

Similarly, for countable intersections,
T
i2! Bi has p

T
i2! Bi D

T
i2! pBi 2 �

†1
nC1.

Projections are trivial, because the two witnesses for x 2 ppB can be coded as a single witness: for
B � N 3, pNB D A has pNA D pN �NB 2 �

†1
n.

2. This follows from the results on
�
†1
n.

3. This follows from (1) and (2): since both
�
†1
n and �

…1
n are closed under countable unions, so is �

†1
n \ �

…1
n D

�
�1
n. It’s also easy to see that

�
�1
n is closed under complements, since X 2

�
�1
n implies X 2

�
†1
n and so

N nX 2
�
…1
n. But X 2 �

�1
n also implies X 2

�
…1
n and so N nX 2

�
†1
n, meaning N nX 2

�
�1
n. a

We again get an analogous picture to that of the borel and arithmetical hierarchies. Although the borel and projective
hierarchies both start from the open sets, the projective hierarchy reaches the borel sets almost immediately: B D

�
�1
1.

Now unlike the borel hierarchy, which stops at stage !1—meaning
�
†0
!1
D
S
˛<!1 �

†0
˛ is closed under complements

and countable unions—the projective hierarchy is much shorter, stopping by stage !:
S
n<! �

†1
n is closed under com-

plements and projection.
22C • 6. Corollary

The collection of projective sets of reals—meaning
S
n<! �

†1
n—is closed under complementation and projection.

The proof that
�
�1
1 D B uses some facts about how borel sets project and interact with

�
†1
1 sets.

22C • 7. Corollary
All borel sets are

�
�1
1.

Proof .:.

Clearly every closed set is in
�
�1
1 just by coding: for U a closed set, the set U �N is also closed as a continuous

preimage of U under hx; yi 7! x. This set clearly has p.U �N / D U so that U 2
�
�1
1. By Result 22C • 5,

�
�1
1

is a σ-algebra and therefore contains the borel σ-algebra. a

To show the converse of this, that
�
�1
1 consists only of borel sets, we need a separation property.
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22C • 8. Lemma (The
�
†1

1
-Separation Principle)

If X; Y 2
�
†1
1 are disjoint, then there is some borel B with X � B � N n Y . Such a B is said to separate X and Y .

Proof .:.

ForU; V 2
�
†1
1 , sayU B-sep V iffU and V are separated by a borel set. Firstly note thatB-sep respects unions.

Claim 1
If Vn B-sep Um for all n;m < !, then

S
n<! Vn B-sep

S
n<! Un.

Proof .:.

For each n;m < !, let Bn;m be a borel set with Vn � Bn;m � N n Um. Consider
S
n<!

T
m<! Bn;m,

which is clearly borel and satisfies the following:
Vn �

\
m<!

Bn;m �
\
m<!

N n Um D N n
[
m<!

Um for each n < !

)
[
n<!

Vn �
[
n<!

\
m<!

Bn;m D B � N n
[
m<!

Um a

To reduce the amount of sequences in play, we will opt to use coding in our projections: pA D ¹x 2 N W

9y .x � y 2 A/º for any A � N , where x � y places x on the evens and y on the odds so for any x 2 N we can
say x D xeven � xodd where xeven D hx.2n/ W n < !i and xodd D hx.2nC 1/ W n < !i.

SinceX; Y 2
�
†1
1 are projections of closed sets and closed sets are the sets of branches of trees, letX D pŒT � and

Y D pŒS� for T and S trees over !. For � 2 !<! write T � � for ¹t 2 T W � 6| t _ t 6| �º and X� for pŒT � ��
and similarly for S � � , Y� . We have the following properties that are easy to confirm: for � 2 <!!, x 2 N , and
n < !;

1. T; D T and T� D
S
n<! T�_hni.

2. X; D X and X� D
S
n<! X�_hni.

3. �even C x for every x 2 X� .
And the above similarly hold for S and Y . Suppose towards a contradiction that X D

S
n<! Xhni B-sepS

n<! Yhni D Y is false. By Claim 1, there must be some n0; m0 < ! where Xhn0i B-sep Yhm0i is
false. Since Xhn0i D

S
n<! Xhn0;ni and similarly for Y , the same argument yields n1; m1 < ! where

Xhn0;n1i B-sep Yhm0;m1i is false. So by (dependent) choice, we can construct reals n D hnk W k < !i and
m D hmk W k < !i where for each k < !, Xn�k B-sep Ym�k is false. This gives a contradiction.

To see this, clearly n 2 ŒT � and m 2 ŒS� yield x D neven 2 X and y D meven 2 Y . Since X and Y are disjoint,
x ¤ y so for some sufficiently large k, Nx�k \Ny�k D ;. By (3), Xn�2k � Nx�k and similarly for Y , meaning
that Xn�2k � Nx�k � N nNy�k � N nYm�2k and so Nx�k 2 �

†0
1 separates Xn�2k and Ym�2k , a contradiction

to the conclusion above that Xn�2k B-sep Ym�2k is false. a

22C • 9. Corollary
All

�
�1
1 sets are borel. Hence �

�1
1 D B.

Proof .:.

Let X 2
�
�1
1. Since X;N n X 2 �

†1
1 are disjoint, there is some borel B with X � B � N n .N n X/ D X ,

meaning X D B is borel. a

The proof of The
�
†1
1-Separation Principle (22C • 8) serves as an introduction trees will play in the projective hierarchy.

To finish off the basic properties of the projective hierarchy, we also get a closure property under continuous preimages,
and in fact a much stronger property.
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22C • 10. Definition
Let

�
M,

�
M0 be two topologies. A function f WM!M0 is borel iff for any Y 2 BM0 , f �1"Y 2 BM.

One can easily see that all continuous functions are therefore borel, but there are many borel functions that are not
continuous. Still, we have no increase in complexity when taking preimages.

22C • 11. Result
Let f W N ! N be borel and 0 < n < !. Therefore A 2

�
†1
n implies f �1"A 2

�
†1
n, and similarly for the other

projective pointclasses.

Proof .:.

Proceed by induction on n. For n D 1, let A D pB for B 2
�
…0
1, B � N �N . Consider the set B 0 D ¹hx; yi 2

N �N W hf .x/; yi 2 Bº which is borel since f is borel. Note that then f �1"A D pB 0. To see that pB 0 2
�
†1
1 ,

note that B 0 2
�
�1
1 � �

†1
1 , and �

†1
1 is closed under projections.

For nC 1, A D pB for B 2
�
…1
n, B � N �N yields similarly that B 0 D ¹hx; yi 2 N �N W hf .x/; yi 2 Bº

as
�
…1
n inductively. Hence the projection of this pB 0 D f �1"A 2

�
†1
nC1. The analogous property for

�
…1
n holds

because preimages play nicely with complements, and the result holds for
�
�1
n just because it holds for the other

pointclasses. a

In fact, we actually get that each
�
†1
n is closed under borel images in addition to preimages, although this fact is unproven

here. Instead, we now prove the long overdue facts about the containments shown in Figure 22C • 4.
22C • 12. Corollary

Let n < !. Therefore,
�
�1
n � �

†1
n � �

�1
nC1, and similarly for

�
…1
n.

Proof .:.

We always have
�
�1
n � �

†1
n by definition of

�
�1
n. For the other containment, proceed by induction on n. For

n D 0, we have
�
…1
0 D �

…0
1 � �

†1
1 : any closed set U is clearly the projection of the closed set U �N . This implies

�
†1
0 D �

†0
1 � �

†1
1 since by Result 22C • 5,

�
†1
1 is closed under countable unions:

�
…0
1 � �

†1
1 implies

�
†0
2 � �

†1
1 ,

and thus
�
†0
1 � �

†1
1 . But if X 2 �

†1
1 then N nX 2

�
…1
1 so �

…1
0 � �

†1
1 implies

�
†1
0 � �

…1
1 and so �

†1
0 � �

�1
1.

For n > 0, let A 2
�
…1
n. Clearly A � N 2

�
…1
n as the continuous (and hence borel) preimage of A under

hx; yi 7! x, showing A D p.A � N / 2
�
†1
nC1. This shows

�
…1
n � �

†1
nC1 and thus

�
†1
n � �

…1
nC1. Inductively,

�
…1
n�1 � �

�1
n � �

…1
n so taking projections of these yields �

†1
n � �

†1
nC1 and therefore �

†1
n � �

�1
nC1. a

To show that all of the containments of Figure 22C • 4 are actually strict, we need to make use of universal sets, just as
we did with the borel hierarchy. Recall that a set U in a pointclass

�
� is

�
� -universal iff every A 2

�
� is ¹x W hx; ri 2 U º

for some r 2 N . The projective pointclasses
�
†1
n and �

…1
n, n < !, have universal sets similar to before, and these show

the strict inequalities.
22C • 13. Theorem

Let n < !. Therefore, there is a
�
†1
n-universal set, and similarly a

�
…1
n-universal set.

Proof .:.

Proceed by induction on n. For n D 0, there is a
�
†1
0 D �

†0
1-universal set by Theorem 22A • 13. For nC 1, let

inductively W � N 3 be
�
…1
n-universal, i.e. for every B 2 �

…1
n with B � N � N , there is some r 2 N where

B D Wr D ¹hx; yi 2 N �N W hr; x; yi 2 W º. Consider
U D pW D ¹hr; xi 2 N �N W 9y 2 N .hr; x; yi 2 W /º.

We will have that is
�
†1
nC1-universal. To see this, clearly U 2 �

†1
nC1 as the projection of a �

…1
n-set. Now for any

�
†1
nC1-set A � N , we have A D pB for some

�
…1
n-set B � N �N . AsW is

�
…1
n-universal, there is some r 2 N
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where A D pWr D Ur . Hence U is
�
†1
nC1-universal. Also the complement N �N n U is

�
…1
nC1-universal. a

22C • 14. Corollary
All of the containments of the projective hierarchy are strict:

�
�1
n ¨

�
†1
n ¨

�
�1
nC1, and similarly for

�
…1
n.

Proof .:.

Firstly, for n < ! arbitrary, let U be
�
†1
n-universal. Therefore, U …

�
…1
n. To see this, if U were

�
…1
n, then

N � N n U would be
�
†1
n, and therefore D D ¹x 2 N W hx; xi … U º, the preimage of N � N n U under the

continuous map x 7! hx; xi, would also be
�
†1
n. As a �

†1
n-universal set, there must then be some r 2 N where

D D Ur . Note that r 2 D implies hr; ri … U and so r … Ur D D, a contradiction. Similarly, r … D implies
hr; ri 2 U and so r 2 Ur D D, another contradiction. Hence U …

�
…1
n.

This shows
�
�1
n ¨

�
†1
nC1 and similarly for

�
…1
n, since the �

†1
n and �

…1
n-universal sets are in �

†1
n n �

…1
n D �

†1
n n �

�1
n

and
�
…1
n n �

�1
n respectively.

We also immediately get
�
†1
n ¨

�
�1
nC1 and similarly

�
…1
n ¨

�
�1
nC1, since any �

…1
n-universal set is in �

�1
nC1 by

Corollary 22C • 12, but isn’t in
�
†1
n by the argument above. Similarly, any

�
†1
n-universal set is in �

�1
nC1 n �

…1
n. a

Let’s now reframe some of what we’ve done so far. Regarding P � N as a predicate where P.x/ stands for member-
ship x 2 P , we can write :P for N n P . Similarly, we can write 9NP for pNP both satisfying

x 2 9NP iff 9y 2 N P.x; y/.
We also write 8NP for :9N:P , and similarly for other spaces. And of course, for P;Q � N , we can write P ^Q
for P \Q, and similarly for _ and [. Similarly, for � � P .N /, we can write 9� for ¹9X W X 2 �º and so on. In
this way, the various closure properties of Result 22A • 6 and Result 22C • 5 can be restated as follows: for ˛ < !1
and n < !,

:
�
†0
˛ D �

…0
˛ :

�
�0
˛ D �

�0
˛

�
†0
˛ ^ �

†0
˛ D �

†0
˛ �

…0
˛ ^ �

…0
˛ D �

…0
˛_

i<!

�
†0
˛ D �

†0
˛

^
i<!

�
…0
˛ D �

…0
˛^

i<!

�
†0
˛ D �

…0
˛C1

_
i<!

�
…0
˛ D �

†0
˛C1

:
�
†1
n D �

…1
n :

�
�1
n D �

�1
n

�
†1
n ^ �

†1
n D �

†1
n �

…1
n ^ �

…1
n D �

…1
n

�
†1
n _ �

†1
n D �

†1
n �

…1
n _ �

…1
n D �

…1
n

9
N

�
†0
n D �

†0
n 8

N
�
…0
n D �

…0
n

8
N

�
†1
n D �

…1
nC1 9

N
�
…1
n D �

†1
nC1

In this way, we may regard sets as relations and predicates and so consider more logical notation. This puts closure
under continuous preimages in a slightly different light.

22C • 15. Corollary
Let ˛ < !1. SupposeR � N kC1 is a

�
†0
˛-relation and f W N ! N is continuous. Therefore ¹hx0; Exi W R.f .x0/; Ex/º

is a
�
†0
˛-relation.

This motivates calling closure under continuous preimages instead closure under continuous substitutions. This also
makes it clear why continuous functions are defined in terms of preimages: if P.x/ is a predicate defining a simple
(i.e. open) set, then the predicate R.x/$ P.f .x// should also define a simple (i.e. open) set.

For the sake of a picture summarizing the containments of the boldface hierarchies, we have the following figure.
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22C • 16. Figure: The borel and projective hierarchies

Section 23. Properties of Sets of Reals

The properties we will consider for now mostly come from older notions when topology was still a major subject
studied in its own right. Now topology has essentially become split into many fields where pure topology more or
less evolved into the study of independence results around topological statements, and other parts of topology became
more frequently used in a variety of places frequently as a framework to study other things in, e.g. algebraic topology,
geometry, analysis, and so forth.

We study three fundamental properties each related to different aspects of the study of the real numbers. Each of these
properties holds for all of the borel sets, and the question becomes where do they fail? It turns out that the answer is
undecidable for each property we investigate. There is some hope, however, since as large cardinal hypotheses give
explanations as to why these statements are undecidable: they hold of more of the projective hierarchy when we have
fairly large large cardinal hypotheses. We will see later that these are all related fundamentally to questions of the
determinacy of certain games. Hence the assumptions we have about the larger areas of the universe can have fairly
concrete consequences down at the level of the real numbers.

§23A. Perfect sets and trees

We first consider a somewhat natural looking property, being a “perfect” set, and investigate what sets have a subset
like this. It turns out that we can prove it happens for all borel sets and the beginning of the projective hierarchy and
the question suddenly becomes: does it fail for any projective set? This question is unanswerable in ZFC alone, and
so marks another point of interest for set theory. In studying these ideas, we will need a great amount of technology
about trees and even cardinals, helping connect the almost pure topology described thus far with set theory as we’ve
investigated in previous chapters.

The proof ofTheorem 21B • 7—and subsequently Corollary 21B • 8—hinged on the idea that we can just keep splitting
simple (i.e. open) sets into disjoint sets that are also simple. The result is not just an embedding of N , but also a way
of divvying up the space into isolated points and entire areas that look like N . This motivates the following concept.

23A • 1. Definition
Let

�
M a be polish space, and let X �M.
• An element x 2 X is isolated iff there is some open B around x and B \X D ¹xº.
• X is perfect iff X is closed and contains no isolated points.

For example, over R, Œ0; 1�[¹2; 3º is not perfect, because 2 (and also 3) is isolated. On the other hand, Œ0; 1� is perfect.
For a more complicated example, the cantor setv is perfect.

vThe cantor set is defined in stages: C0 D Œ0; 1�, and for Cn already defined, CnC1 D ¹x=3 W x 2 Cnº [ ¹.x C 2/=3 W x 2 Cnº; and we
define the cantor set to be

T
n<! Cn. If this isn't clear, what's happening is that we are removing the middle thirds of the intervals making up Cn

to form CnC1. The cantor set is then the limit of this process.
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There are a number of equivalent characterizations of a subset being perfect, mostly a result of on equivalent definitions
of

�
…
0;M
1 for polish

�
M. For example,X is closed iffX contains all its limit points, meaningX is perfect iffX is exactly

the set of all of its limits of non-constant sequences in !X .

It should be obvious that no countable polish space has any perfect subsets, precisely because all points are isolated.
�
N , on the other hand, has lots by the following well-known theorem.

23A • 2. Theorem (Cantor–Bendixson Theorem)
Every closed subset of

�
N is either countable or contains a perfect subset. In fact, any closed set can be uniquely

written in the form X [ Y where X is perfect and Y is countable.

Proof .:.

Let A � N be closed. If A is perfect, then we’re done. Otherwise let Y0 be the set of isolated points of A. By
separability, Y0 is countable. As with Corollary 21B • 8, we can continually remove the isolated points and get a
countable set Y such that X D A n Y is closed with no isolated points. To see this, define

A0 D A A˛C1 D A˛ n Y˛ D A˛ n ¹x 2 A˛ W x is isolatedº A˛ D
\
�<˛

A� for limit �.

Inductively,A0 is closed andA˛C1 remains closed ifA˛ is closed. To see this, forB D ¹� 2 <! W N� \Y˛ D ;º,
N n A˛C1 D .N n A˛/ \

[
y2Y˛

.N n ¹yº/ D .N n A˛/ \
[
�2B

N� 2 �
†0
1 .

Limit stages take intersections so they remain closed inductively. By the same reasoning in Corollary 21B • 8,
we get A˛ D A˛C1 for some ˛ < !1 and thus A˛ is closed with no isolated points. Assuming A˛ ¤ ;, this
means A˛ � A is perfect. a

This motivates the following concept.
23A • 3. Definition

Let
�
M be polish. For X �M, X has the perfect set property iff jX j � ℵ0 or X contains a perfect subset.

For � � P .M/, � has the perfect set property iff every X 2 � has the perfect set property.

As a result, Cantor–Bendixson Theorem (23A • 2) says
�
…0
1 has the perfect set property. It’s also easy to see that all

open sets have the perfect set property since each cone N� is perfect and any open set contains a cone. Indeed, any
perfect set is really just a copy of cantor space.

23A • 4. Lemma
Let

�
M be a polish space. Let f W � ! M be continuous injection as a map from

�
� , the cantor space � D !2.

Therefore imf is perfect in
�
M.

Proof .:.

It should be clear that imf has no isolated points, since if ¹f .x/º � M is open in imf , then ¹xº would be
open in

�
� , which isn’t true as

�
� has no isolated points (this requires f to be injective). So it suffices to show

C D imf is closed in
�
M.

Suppose Ey D hyi W i < !i 2 !C converges in
�
M to y 2M. Without loss of generality, yi ¤ yj for i ¤ j . We

must show y 2 C . Write yi D f .xi / for xi 2 � so that xi ¤ xj for i ¤ j . If Ex D hxi W i < !i converges to
some x 2 � , then

y D lim
i!1

f .xi / D f

�
lim
i!1

xi

�
D f .x/

by continuity. So it suffices to show Ex has a convergent subsequence. Suppose not. Therefore, each tail XN D
¹xi W N < i < !º for N < ! is a closed subset of � . We also have � D

S
n<! � n Xn so by compactness

(Result 21B • 10) there is someN < ! where � D
S
n<N � nXn. But xN 2 � n

S
n<N .� nXn/ D

T
n<N Xn,

a contradiction. Hence Ex converges to some x 2 � . a

Note that not every perfect set will be a copy of � : continuous images of compact sets like � are compact but there
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are non-compact spaces like
�
N that are perfect. Nevertheless, we at least get that every perfect set contains a copy of

� .
23A • 5. Lemma

Let
�
M be a polish space. Let P � M be perfect. Therefore there is a closed (and therefore perfect) subset C � P

that (with the inherited topology) is homeomorphic to
�
� .

Proof .:.

If P is perfect, then it’s uncountable in particular. Since perfect sets are closed, there is a continuous injection
f W � ! P by Theorem 21B • 7. Lemma 23A • 4 tells us C D imf is perfect. As a result, the inherited
topology C on C is polish, and therefore f is a continuous bijection. So to show f is a homeomorphism, it
suffices to show that f "U is open in C whenever U is open in

�
� , and in fact we only need to show the result

for when U is a cone �� D ¹x 2 � W � C xº. But this follows from how we originally defined f in Theorem
21B • 7: f "�� D C \M� where M� was constructed to be open. a

The following is the first consequence of the benefit of being able to change the topology and make any borel set clopen.
23A • 6. Corollary

Every borel subset of a polish space
�
M has the perfect set property.

Proof .:.

Let X � M be borel. By Theorem 22B • 3, there is a topology
�
M0 where X is clopen and

�
†
0;M
1 �

�
†
0;M0

1 .
Hence there is a perfect (in

�
M0) subset P � X which, without loss of generality by Lemma 23A • 5, is (with the

inherited topology) homeomorphic to
�
� by some injective f W � ! P that is continuous as a map from

�
� to

�
M0. Since

�
†
0;M
1 �

�
†
0;M0

1 , the preimages of
�
†
0;M
1 -sets are still open in

�
� so that f is continuous as a map from

�
� to

�
M. By Lemma 23A • 4, P is perfect in

�
M. a

Note that the perfect set property tells us that we won’t find a counterexample to CH with such a set.
23A • 7. Result

Suppose X has the perfect set property. Therefore jX j � ℵ0 or jX j D 2ℵ0 . In particular, X does not witness :CH.

Proof .:.

If X is uncountable, then the perfect set Y � X is closed with no isolated points. Inheriting the topology from
N , Y itself is then a polish space with no isolated points and so Theorem 21B • 7 implies jY j � 2ℵ0 . Any polish
space has size at most 2ℵ0 , giving 2ℵ0 � jY j � jX j � 2ℵ0 and so equality. a

As a result, any witness to the failure of CH must be very complicated, certainly more complicated than any borel
set. In fact, we will show that all

�
†1
1-sets have the perfect set property, but we cannot go beyond this in ZFC alone:

measurable cardinals establish the perfect set property for
�
†1
2-sets, and larger cardinal hypotheses entail the perfect

set property for more of the projective hierarchy, but it’s consistent relative to ZFC that there is a
�
�1
2-set without the

perfect set property, and L � “there’s a
�
…1
1-set without the perfect set property”. The existence of a set without the

perfect set property is provable from ZFC alone (requiring AC), although the resulting set isn’t projective.
23A • 8. Result

There is a set X � N without the perfect set property.

Proof .:.

There are ℵ0-many cones N� for � 2 <!!. Open sets of
�
N have the form

S
�2A N� for A � <!2, and since

there are jP .<!2/j D 2ℵ0 such A, there are 2ℵ0 open sets. It’s not difficult to see that there are then (at most) 2ℵ0

perfect sets. So let ¹P˛ W ˛ < 2ℵ0º enumerate the (non-empty) perfect sets. Now for ˛ < 2ℵ0 , recursively take
distinct

x˛; y˛ 2 P˛ n ¹x� ; y� W � < ˛º.
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Therefore B D ¹x˛ W ˛ < 2ℵ0º ¤ ; is distinct from every perfect set because y˛ 2 P˛ nB so B can’t be perfect.
Moreover, this also shows no subset of B can be perfect either. B also isn’t countable since jBj D 2ℵ0 . So B
doesn’t have the perfect set property. a

But the issue is that such a set is very complicated, so much so that it can’t in general be placed in our hierarchies
because it relies so much on AC. We are more interested in complexity (and later its connection with definability),
and so we are interested in which of our pointclasses have the perfect set property. To do this, we want an alternative
characterization of perfect subsets in terms of trees.

23A • 9. Definition
A tree T over ! is perfect iff it always eventually splits, i.e. for every � 2 T there are �0; �1 2 T with � 6| �0 and
� 6| �1 but �0 66| �1 and �1 66| �0.

23A • 10. Result
A set X � N is perfect iff X D ŒT � for some perfect tree T over !.

Proof .:.
(!) Since X is closed, using the tree of approximations from Result 22 • 4,

T D ¹� 2 <!! W 9x 2 X .� 6| x/º,
we get that ŒT � D X . Moreover, it’s not difficult to see that T is perfect just because X has no isolated
points. To see this, if T isn’t perfect, then there is some � 2 <!! where all extensions of � in T are
comparable. In particular, there is some x 2 X where N� \ X D N� \ ŒT � D ¹xº, meaning x is isolated
in X , contradicting that X is perfect.

( ) Since X D ŒT �, it follows from Result 22 • 4 that X is closed, so it suffices to show X has no isolated
points. Without loss of generality, just by considering the new tree where we remove them, T has no
finite branches. So suppose x 2 X is isolated. Therefore for some � 6| x, N� \ X D ¹xº. But then
� 2 T has no incompatible extensions, i.e. every �0; �1 2 T with � 6| �0; �1 has �0 6| �1 or vice versa,
because otherwise we extend �0 and �1 to elements y0; y1 2 ŒT � where then y0; y1 2 N� \ X ¤ ¹xº, a
contradiction. Hence X has no isolated points and is therefore perfect. a

Our main goal is now to show the following theorem:
23A • 11. Theorem

�
†1
1 has the perfect set property.

To show this, we must expand the kinds of trees we’re looking at.
23A • 12. Definition

Let X � N and ˛ 2 Ord. We call X ˛-suslin iff X D pN ŒT � for some tree T over ! � ˛ (regarding T �S
n<!

n! � n˛ so that ŒT � � N � !˛).

It’s not difficult to see that if X is ˛-suslin, then X is also ˇ-suslin for every ˇ > ˛.

Technically speaking, the above definition doesn’t really make sense. In particular, for T a tree on ! � ˛ Definition
22 • 3 would say that T � <!.! � ˛/. This would imply that the above notation pN ŒT �makes no sense as elements of
T are of the form hhni ; �i i 2 ! � ˛ W i < N i for some N < ! and hence elements of ŒT � are in !.! � ˛/ ¤ !! � !˛.
To remedy this problem, we will instead identify such sequences of pairs instead with the pair of sequences: hhni 2
! W i < N i; h�i 2 ˛ W i < N ii 2

N! � N˛. Thus we regard T as a subset of
S
n<!

n! � n˛ closed under entry-wise
initial segments: h�; �i 2 T implies h� � n; � � ni 2 T for every n < !. When we do this, the notation pŒT � now
makes sense: before ŒT � � !.! � ˛/, but now ŒT � � !! � !˛ D N � !˛. We also commonly identify branches as
pairs, because any branch of such a T is of the form hhx � n; y � ni 2 <!! � <!˛ W n < !i for some x 2 N and
y 2 !˛, and it’s easier to identify this with just hx; yi 2 N � !˛.

One result of the axiom of choice is that we can regard every set of reals as ˛-suslin for some ˛. This then forms a
natural way of categorizing sets of reals according to which ˛ they are ˛-suslin. In particular, as Result 22 • 4 tells
us

�
…0
1-sets are the branches of trees on ! (and so through coding, also trees on ! � !),

�
†1
1 consists of precisely the
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ℵ0-suslin sets.
23A • 13. Corollary

Let X � N . Therefore X 2
�
†1
1 iff X is ℵ0-suslin.

23A • 14. Result
Let X � N . Therefore, X is jX j-suslin. In particular, every subset of N is 2ℵ0 -suslin.

Proof .:.

Let f W X ! jX j be a bijection. Consider the tree (which is visually more like a bunch of separate lines sharing
only the point h;;;i)

T D ¹hx � n; constf .x/ � ni 2 n! � njX j W n < ! ^ x 2 Xº.
It’s not difficult to see that T is a tree over !�jX j. We clearly haveX � pŒT �. The other direction is what makes
use of f : any branch of T is of the form hx; const˛i for some x 2 N and ˛ < jX j which requires ˛ D f .x/.
Thus X D pŒT � is jX j-suslin. a

It’s a good exercise to note why this doesn’t work if we naively consider the tree T 0 D ¹hx � n; const0 � ni W n < !º
building up to X . Often times, we are not interested in such general results as Result 23A • 14, because they don’t
give explicit ways of forming the tree: they rely on this bijection which ignores the complexity of X . Hence we are
more interested in the correspondence between complexity and which ˛s the sets are ˛-suslin for. We also may place
definability restrictions on the sorts of trees we care about.

In L or any other model of CH, it follows that all sets of reals are ℵ1-suslin. Therefore we cannot identify the ℵ1-suslin
sets with any particular pointclass in our hierarchies. Nevertheless, we can get partial results that establish that various
sets are ℵ1-suslin in general. For example, we have the following.

23A • 15. Result
Let X � N . Therefore X 2

�
…1
1 implies X is ℵ1-suslin.

Proof .:.

If X 2
�
…1
1, then N nX is ℵ0-suslin, meaning N nX D pŒT � for some tree T over ! � !. In particular, x 2 X

iff there is no infinite branch hx; yi 2 N 2 of ŒT �. In particular, if we turn the tree upside down, and restrict our
attention to x, we get a well-founded partial order:

Tx D ¹� 2
n! W n < ! ^ hx � n; �i 2 T º,

ordered by � 4 � iff � 6| � . There can be no infinite branch y 2 N of hTx ;6|i since otherwise hx; yi 2 ŒT � so
that x 2 pŒT � D N n X , a contradiction. Stated in another way, hTx ;4i is well-founded. There is then a rank
function rank W Tx ! Ord, i.e. a function where y � z ! rank.y/ < rank.z/ for all y; z 2 Tx . Since T (and
therefore Tx) is countable, we can assume rank W Tx ! !1.

The point of considering Tx is to now build a tree ST over ! � !1 of approximations to such rank functions. We
define the shoenfield tree for T by

ST D
®
hx;Ri 2 <!! � <!!1 W 8�; � < lh.x/ Œ� 4 � ^ hx � lh.�/; �i 2 T ! R.�/ < R.�/�

¯
.

By identifying <!! with ! through coding (with code.� � n/ � code.�/ for � 2 <!! and n 2 !), we don’t run
into any issues, and may see that pŒS� D N n pŒT � D X . Explicitly, x 2 X iff hTx ;4 ti is illfounded, which is
equivalent to there being a rank function rank W Tx ! !1, meaning hx; ranki 2 ŒST �, i.e. x 2 pŒST �. a

The tree used for the above proof is very important as we will later study the importance of figuring out which trees
have infinite branches through the identification of rank functions on their “upside down” versions.

23A • 16. Definition
Let T be a tree over ! � !. The shoenfield tree of T , denoted here by ST , is the tree

ST D
®
hx;Ri 2 <!! � <!!1 W 8�; � < lh.x/ Œ� C � ^ hx � lh.�/; �i 2 T ! R.�/ < R.�/�

¯
.

Firstly, a few remarks about the shoenfield tree. Note that � C � ^ hx � lh.�/; �i 2 T implies hx � lh.�/; �i 2 T
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since T as a tree is closed under entrywise initial segments. So it makes sense to talk about R.�/. One might also
wonder why we need all of !1. After all, if T has no infinite branches, then any rank function rank W T ! Ord on
hT;6|i is actually a function into !. Presumably, we then just reverse the order and get a rank function for hT;Bi,
rank W T ! !. The issue with this is that while T may have no infinite branches, the height of T may still be infinite
in a complicated way. For example, consider the figure below.

x0

: : :

T D hT;Ci

x0

: : :

OT D hT;Bi

23A • 17. Figure: A tree T with ŒT � D ; and no rank function on OT into !

In Figure 23A • 17, there can be no rank function on OT into !, precisely because the endpoint x0 of the tree must have
a rank at least as large as any given (finite) branch length. So we would be required to set rank.x0/ D ! and thus have
rank W T ! ! C 1. We can similarly construct more complicated trees requiring larger (countable) ordinals.

We also then get a structural consequence for
�
…1
1-sets.

23A • 18. Corollary
Every

�
…1
1-set is the union of ℵ1-many borel sets.

Proof .:.

Let X 2
�
…1
1 so that N n X D pŒT � for some T over ! � !. It follows that X D pŒST � where ST is the

shoenfield tree for T as in the proof of Result 23A • 15. We may restrict our attention from ST � <!!�<!!1 to
ST � ˛ D ST \ .<!! � <!˛/ for ˛ < !1. In particular, ST D

S
˛<!1

ST � ˛. Since T is countable, any rank
function for T is bounded in !1 so that ŒST � D

S
˛<!1

ŒST � ˛� and therefore X D pŒST � D
S
˛<!1

pŒST � ˛�.
Since each ˛ < !1 is countable, we may find a tree S˛ over !�! with pŒS˛� D pŒST � ˛�. Thus pŒS � ˛� 2

�
†1
1

with pŒS � ˛�\pŒT � D ; for each ˛ < !1. Since pŒT � is also
�
†1
1 , by The

�
†1
1-Separation Principle (22C • 8) for

each ˛ < !1 there is a borel B˛ with pŒS � ˛� � B˛ � N n pŒT � D X . It then follows that X D
S
˛<!1

B˛ . a

23A • 19. Corollary
Every

�
…1
1-set is either countable, of size ℵ1, or of size 2ℵ0 .

Proof .:.

We know fromCorollary 23A • 6 that every borel set has the perfect set propertywhich, byResult 23A • 7, is either
countable or of size continuum. As the ℵ1-union of borel sets, any given X 2 �

…1
1 has X D

S
˛<!1

B˛ for borel
B˛ and therefore jX j � ℵ1 �sup˛<!1

jB˛j � ℵ1 �max¹jB˛j W ˛ < !1º. Since each jB˛j 2 ¹n W n < !º[¹ℵ0; 2ℵ0º,
the result holds. a

We are getting somewhat offtrack with our investigation of ℵ1-suslin sets. Let us now think about why �-suslin sets
are generally important when thinking about the perfect set property.

23A • 20. Theorem
Let � � ℵ0 be a cardinal. Let X � N be �-suslin with jX j > �. Therefore X has the perfect set property.

Proof .:.

It suffices to show X has a perfect subset, and we do this through an argument similar to Result 23A • 10 and
Cantor–Bendixson Theorem (23A • 2). Firstly, for any given tree, we will remove the parts that yield isolated
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points. For T is a tree on ! � �, assume without loss of generality that T has no finite branches. We set
h�; ri 2 prune.T / iff 9hx0; R0i; hx1; R1i 2 ŒT � .x0 ¤ x1 ^ � C x0; x1 ^ r C R0; R1/

It’s not difficult to see that prune.T / is a tree as well. Of course, in the process of pruning our tree to remove
these isolated branches, we might invariably introduce isolated branches because we accidentally removed their
neighbors. Hence, we merely keep pruning: for T a tree on ! � �, define recursively

T0 D T

T˛C1 D prune.T˛/

T D
\
˛<

T˛ , for limit  .

We stop the process if T˛C1 D T˛ and then define T � to be T˛ . Since jT j � �, we can’t remove �C elements of
T and so this process must eventually stop by some ˛ < �C. With all of this, let X D pŒT � for T �-suslin. It’s
not immediately clear whether this process eventually removes everything from T , i.e. whether T � D ;.

• Suppose T � ¤ ;. Since prune.T �/ D T � ¤ ;, every h�; ri 2 T � has two branches, meaning distinct
x0; x1 2 N and R0; R1 2 !� where � C x0; x1 and r C R0; R1. But by ignoring everything else, this
means we can find a perfect tree T 0 over ! where then ŒT 0� � pŒT �� � X . Explicitly, define by recursion
a correspondence between elements of <!2 and elements of T �:

– ; corresponds to h�;; r;i D h;;;i 2 T
�;

– For � 2 <!! corresponding to h�� ; r� i 2 T �, set h��_h0i; r�_h0ii and h��_h1i; r�_h0ii to be two
incompatible extensions of h�� ; r� i in T �.

If we consider the tree T 0 D ¹� W 9� 2 <!2 .� 6| �� /º, we get that ŒT 0� � pŒT �� since any branch of T 0

is of the form
S
�Cx �� for some (any) x 2 N which then has h

S
�Cx �� ;

S
�Cx r� i 2 ŒT

��. Since T 0 is
perfect by construction, ŒT 0� is a perfect subset of X .

• Suppose T � D ;. This will contradict that jX j > �. To see this, for each hx;Ri 2 ŒT �, there must then
be a maximal � < ˛ where hx;Ri 2 ŒT� � but hx;Ri … ŒT�C1�. Each where then we removed some initial
segment: there is an n < ! where hx � n;R � ni 2 T�C1 but hx � .nC 1/; R � .nC 1/i … T�C1. But
then, looking back at the definition of prune.T�/, there is only one branch extending hx � n;R � ni in T� .
As a result, each branch in ŒT� � n ŒT�C1� can be identified with a single element of T� n T�C1. Since each
T� has size � �, it follows that

ˇ̌
ŒT� � n ŒT�C1�

ˇ̌
� � and therefore X D

S
�<˛ p.ŒT� � n ŒT�C1�/ has size at

most j˛j � � D �, contradicting that jX j > �. a

This provides a proof ofTheorem 23A • 11, that
�
†1
1 has the perfect set property, and therefore gives an alternative proof

that the borel sets have the perfect set property.
23A • 21. Corollary

All ℵ0-suslin sets have the perfect set property, i.e. �
†1
1-sets have the perfect set property.

§23B. Lebesgue measure

Usually the first experience students have with borel sets and σ-algebras occurs in an analysis course with the goal of
defining the lebesgue integral—named after Henri Lebesgue—and generally studying measure spaces. This leads to a
number of other (sub)fields of mathematics like ergodic theory. For our purposes, we are interested in the connection
between the projective hierarchy and lebesgue measure, wondering which projective pointclassesvi consist of lebesgue
measurable sets.

Unfortunately, presenting lebesgue measure onN is tedious and opaque, to say the least, compared to the usual presen-
tation on R. So A few words should be said on why it ultimately makes no difference. Firstly, we have the following
very important theorem that unfortunately has a very long proof (if we include the relevant lemmas) of little interest to
us. Curious readers can read the details in classic books like [18] (Theorem 15.6) or [23] (Theorem 1G.4). The basic

viAll the borel sets are lebesgue measurable almost immediately and so all that remains are the projective pointclasses.
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idea is a more topological version of Cantor–Bernstein (5 C • 4) using injections from N and from the other given
polish space.

23B • 1. Theorem (Borel Isomorphism Theorem)
Let

�
M be an uncountable polish space. Therefore there is a bijection f W N !M such that f "X �M is borel iff

X � N is borel.

Although f might not be continuous, meaning f �1"X might not be in
�
†0
˛ for X 2

�
†
0;M
˛ , we still have a way of

associating the borel sets of
�
M with the borel sets of

�
N . In this way, the borel sets of any two polish spaces “behave”

in the same sort of way, and subsequently their projective hierarchies do too. And defining something like lebesgue
measure on Œ0; 1� � Rwith the standard topology defines a similar notion on

�
N . More precisely, we have the following

non-trivial theorem in [18] (Theorem 17.41).
23B • 2. Theorem (Measure Isomorphism Theorem)

Let
�
M be an uncountable polish space. Suppose �M is a non-trivial probability measure on

�
M over the borel sets

of
�
M. Therefore there is a bijection f W Œ0; 1�!M such that, writing � for lebesgue measure (restricted to subsets

of Œ0; 1�);
• f "X �M is borel iff X � Œ0; 1� is borel; and
• �M.f "X/ D �.X/ for all borel X � Œ0; 1�.
• In particular, X � Œ0; 1� is �-null (i.e. contained in a borel set of �-measure 0) iff f "X is �M-null.

In short, the above theorem tells us that all borel probability spaces on uncountable polish spaces are borel isomorphic.vii
Questions about which projective sets are lebesgue measurable will have the same answer across all (uncountable)
polish spaces because the projective pointclasses are all closed under images and preimages of borel functions.viii

Note that we will be using some common properties about R without reference. Most of these can be found in any
basic analysis book, and indeed most calculus books. Write RC for Œ0;1/ D ¹x 2 R W 0 � xº. We frequently think
of1 as an object where x 2 R$ x <1 so that sup R D sup N D1, for example.

• If x W ! ! RC, then the sum
P1

nD0 x.n/ doesn’t depend on the order:
P
n<! x.n/ makes sense. Moreover,P

n<! x.n/ D supN<!
P
n<N x.n/.

• Similarly if x; y W ! ! RC, then
P
n<! x.n/C y.n/ D

P
n<! x.n/C

P
n<! y.n/.

• If for every " > 0, r � x C " then r � x.
• If supX < 1 for X � R, then for every " > 0 there is some x 2 X with supX � x C ", and similarly for

infX .
Let us first define what measures and outer-measures are before talking about lebesgue measure on R.

23B • 3. Definition
An outer-measure on a set M is a function �� W P .M/! RC [ ¹1º such that

• 0 D ��.;/ � ��.X/ � ��.Y / for all X � Y �M; and
• (sub-additivity) ��.

S
n<! Xn/ �

P
n<! �

�.Xn/ where eachXn �M.
A measure on M over a σ-algebra † � P .M/ is a function � W †! RC [ ¹1º such that

• 0 D �.;/ � �.X/ � �.Y / for all X � Y �M; and
• (ℵ0-additivity) �.

S
n<! Xn/ D

P
n<! �.Xn/ where the Xns are disjoint subsets of M.

We call � a probability measure iff �.M/ D 1. Call a subset X �M ��-null iff ��.X/ D 0.

Some simple examples of measures are the following:
• (Trivial) For any set X , const0 � P .X/—the constant 0 function—is a measure on X over P .X/.

viiIt's also possible to transform any given measure on a polish space into a probability measure in a way that preserves which sets are null and so
which sets are measurable.
viiiNote that it's consistent relative to large cardinals (in particular, the existence of a “real-valued measurable cardinal” < 2ℵ0 ) that there's a

measure defined on all of P .R/. Such a measure won't be translation invariant of course by the proof that there exist non-lebesgue measurable sets.
But moreover this measure isn't an issue for Measure Isomorphism Theorem (23B • 2): the measures will disagree on weird, non-borel, non-null
sets.
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• (Trivial) For any X ¤ ; and x 2 X , �.Y / D 1 iff x 2 Y defines a probability measure on X over P .X/. This
corresponds to a principal ultrafilter.

• (Non-trivial) More generally, ifU is a countably complete ultrafilter overX , then there is a measure onX defined
by �.Y / D 1 iff Y 2 U and otherwise �.Y / D 0. In particular, a measurable cardinal gives such a measure
over P .�/.

• (Trivial) The counting measure defined by �.Y / D jY j (writing �.Y / D 1 for jY j D ℵ0) is a measure on
¹Y � X W jY j � ℵ0º for any X .

All of the measures labelled “trivial” have something in common.
23B • 4. Definition

We call a measure on a set X over a σ-algebra † non-trivial iff �.X/ ¤ 0 and �.¹xº/ D 0 for every x 2 X .

This then allows us to interpret Measure IsomorphismTheorem (23B • 2) so long as we define lebesgue measure. To do
this, we really need to define the σ-algebra of sets we will be working with, which comes just as the largest σ-algebra
that works.

The important point is that outer-measures allow us to consider more subsets than measures do. On the other hand,
measures have more nice properties than outer-measures. For example, for � a measure, �.A n B/ D �.A/ � �.B/

whenever B � A. Similarly, �.A [ B/ D �.A/ C �.B/ � �.A \ B/, as expected from basic probability. Outer-
measures, on the other hand, might not have this property and can have sets A and X where ��.A/ ¤ ��.A \ X/C

��.A n X/. Luckily, the collection of X where this doesn’t happen does form σ-algebra that the outer-measure is
actually a measure on.

23B • 5. Definition
Let �� be an outer measure on M. Define X �M to be ��-measurable iff for all A �M, ��.A/ D ��.A\X/C

��.A nX/.

23B • 6. Result
Let �� be an outer measure on M. Therefore the collection of ��-measurable sets is a σ-algebra † � P .R/ such
that �� � † is a measure on M.

Proof .:.

There are two parts to this:
1. that the collection † of ��-measurable sets is indeed a σ-algebra; and
2. �� � † is a measure on M.

The first of these is relatively straightforward although quite tedious.
1. Clearly † is closed under complements. Thus it suffices to that † is closed under countable unions. To do

this, we first show closure under finite unions. Suppose X; Y 2 †. For any A �M, firstly note that
• .A \ .X [ Y // \ Y D .A \X \ Y / [ ..A \ Y / nX/ D .A \X \ Y / [ ..A nX/ \ Y /; and
• .A \ .X [ Y // n Y D .A \X/ n Y .

Therefore, when we break apart ��.A/, we get
��.A/ D ��.A \X/C ��.A nX/

D
�
��.A \X \ Y /C ��..A nX/ \ Y /

�
C ��..A \X/ n Y /C ��.A n .X [ Y //

D
�
��..A \ .X [ Y // \ Y /C ��..A \ .X [ Y // n Y /

�
C ��.A n .X [ Y //

D ��.A \ .X [ Y //C ��.A n .X [ Y //.
This shows closure under finite unions which implies ��.A \ .X [ Y // D ��.A \ X/C ��.A \ Y / for
disjoint X; Y 2 † and any A �M. This also generalizes to finite unions of disjoint sets.

For infinite unions, let Xn 2 † for n < !. Note that instead considering Xn n
S
m<nXm 2 † yields the

same union but now all the sets are disjoint, so we assume this. Write X<N for
S
n<N Xn for N � ! and

similarly for X>N . By the finite union case, ��.A \ X<N / D
P
n<N �

�.A \ Xn/ for any N < ! and
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A �M. It’s also not hard to see that A nX<! � A nX<N . Therefore for each N < ! and A �M,
��.A/ D ��.A \X<N /C �

�.A nX<N / �
X

n�N
��.A \Xn/C �

�.A nX<!/

) ��.A/ �
X

n<!
��.A \Xn/C �

�.A nX<!/ � �
�.A \X<!/C �

�.A nX<!/ � �
�.A/.

This tells us that X<! 2 † and therefore † is a σ-algebra.

2. That ��.;/ D 0 and ��.X/ � ��.Y / holds by �� being an outer-measure. So it suffices to show
��.

S
n<! Xn/ D

P
n<! �

�.Xn/ whenever Xn 2 † has Xn \ Xm D ; for n;m < !. One inequal-
ity holds by sub-additivity, and for the other, note that

��
�[

n<!
Xn

�
� sup
N<!

��
�[

n<N
Xn

�
D sup
N<!

X
n<N

��.Xn/ D
X

n<!
��.Xn/. a

We also get a kind of converse: every measure defines an outer measure.
23B • 7. Result

Let � be a measure on a set M over a σ-algebra †. Define ��.X/ D inf¹�.Y / W X � Y 2 †º. Therefore �� is an
outer-measure on M with �� � † D �. Moreover, all null sets are ��-measurable.

Proof .:.

That �� � † D � is immediate, since �.X/ � �.Y / for X; Y 2 † with X � Y 2 †, meaning �.X/ � ��.X/,
and obviously X 2 † yields ��.X/ � �.X/.

That ��.X/ � ��.Y / for X � Y is immediate: if X � Y then ¹Z 2 † W Y � Zº � ¹Z 2 † W X � Zº and
therefore taking the infimum yields ��.X/ � ��.Y /. It’s also clear that ��.;/ D 0 since � is a measure. Thus
it suffices to check sub-additivity. Let Xn �M for n < !. For each " > 0, let Yn;" 2 † be such that �.Yn;"/ is
within "=2nC1 of ��.Xn/, i.e. �.Yn;"/ � ��.Xn/C "=2

nC1. So using the ℵ0-additivity and hence sub-additivity
of �, for each " > 0,

��
�[

n<!
Xn

�
� �

�[
n<!

Yn;"

�
�
X
n<!

�.Yn;"/ �
X
n<!

��.Xn/C
X
n<!

"

2nC1
D
X
n<!

��.Xn/C ".

Taking the infimum over such " > 0 gives the desired inequality.

To see that ��.X/ D 0 implies X is ��-measurable, for any A � M, ��.A/ � ��.A \ X/ C ��.A n X/.
Since ��.A \X/ � ��.X/ D 0, it follows that ��.A/ � ��.A nX/ � ��.A/ and therefore we have equality:
��.A/ D ��.A \X/C ��.A nX/ and therefore X is ��-measurable. a

This outer-measure has some nice properties that allows us to expand any given measure to one that’s “complete” in the
sense that if�.X/ D 0 and Y � X then�.Y / D 0. It also gives an alternative and conceptually better characterization
of a set being measurable.

23B • 8. Theorem
Let � be a measure on a set M over a σ-algebra †. Let �� be the outer-measure derived from �, i.e. ��.X/ D

inf¹�.Y / W X � Y 2 †º. Let ƒ be the σ-algebra of ��-measurable sets. Therefore ƒ � † is the largest σ-algebra
where �� � ƒ is a measure on M.

Proof .:.

Result 23B • 7 tells us that �� is indeed an outer-measure, and Result 23B • 6 tells us thatƒ is indeed a σ-algebra
where �� � ƒ is a measure with † � ƒ. So it suffices to show ƒ is the largest such: let ƒ � � be a σ-algebra
where �� � � is a measure. Let X 2 �.

Since † � ƒ � �, for any U 2 †, U n X;U \ X 2 � and therefore ��.U / D ��.U \ X/C ��.U n X/. In
particular, for each " > 0, letU" 2 † such thatX � U" and��.U"/ is within " of��.X/, implying��.U"nX/ <

". As a result, ��
�T

n<! U1=n nX
�
D inf¹��.U1=n nX/ W n < !º D 0 and therefore

T
n<! U1=n nX 2 ƒ. As

a σ-algebra,
T
n<! U1=n 2 † � ƒ and therefore the relative complement X 2 ƒ, implying � � ƒ. a
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In particular, if we can ensure that we have an outer-measure defined on the borel sets of a polish space
�
M (with M

having measure 1), then by Measure IsomorphismTheorem (23B • 2), there is a unique σ-algebra of so-called lebesgue
measurable sets on

�
M. But doing this is fairly easy if we just define the outer-measure over the basic open sets, and

then expand to an outer-measure. For R, lebesgue outer-measure is typically defined as follows.
23B • 9. Definition

For a < b 2 R, define ��.Œa; b�/ D b � a. For general X � R, define lebesgue outer-measure �� by

��.X/ D inf
°X

I2	
sup.I / � inf.I / W 	 is a countable collection of closed intervals ^X �

[
	
±
.

Call a subsetX � R lebesgue measurable iff it is��-measurable. We often call 	 a cover forX wheneverX �
S

	 .

It’s not difficult to see that the two definitions for �� on intervals coincide. This gives an outer-measure where all basic
open sets are pretty easily seen to be ��-measurable. Hence all borel sets are ��-measurable and so �� is a measure
called lebesgue measure over the lebesgue measurable sets. In showing this, we must actually confirm that the name
“lebesgue outer-measure” isn’t stupid.

23B • 10. Result
Lebesgue outer-measure on R is a non-trivial outer-measure. Moreover, for each X � R and r 2 R, ��.X/ D

��.¹x C r W x 2 Xº/. Furthermore, every interval (i.e. every basic open set) is lebesgue measurable, and therefore
all borel sets are lebesgue measurable.

Proof .:.

Let �� denote lebesgue outer-measure. That ��.X/ � ��.Y / for X � Y is clear. Similarly �.;/ � ��.¹rº/ �

inf¹��.Œr � 1=n; r C 1=n�/ W 0 < n 2 !º D inf¹2=n W 0 < n < !º D 0 yields that �� is non-trivial. So we must
check sub-additivity and translation invariance (that ��.X/ D ��.X C r/ where X C r D ¹x C r W x 2 Xº).

• Clearly if
P
n<! �

�.Xn/ is infinite, then the desired inequality holds. So assume it’s finite and therefore
we can find covers for each Xn within " of the outer-measure of Xn for each n < !. More precisely, for
" > 0 and n < ! let Xn be covered by intervals Xn �

S
m<! In;m that are close to ��.Xn/ in the sense

that
P
m<! �

�.In;m/ � �
�.Xn/C

"
2n . Therefore ¹In;m W n;m < !º is a covering of

S
n<! Xn whereX

n;m<!

��.In;m/ D
X
n<!

X
m<!

��.In;m/ �
X
n<!

�
��.Xn/C

"

2n

�
�
X
n<!

��.Xn/C 2".

The infimum over such " yields ��.
S
n<! Xn/ �

P
n<! �

�.Xn/.
• For translation invariance, we get the desired inqualities just by shifting over the relevant covers: X �S

n<N�! In iff X C r �
S
n<N .In C r/ with ��.In C r/ D sup.In C r/ � inf.In C r/ D sup.In/ C

r � .inf.In/C r/ D sup.In/ � inf.In/ D ��.In/. Therefore all of the relevant sums are the same and so
��.X/ D ��.X C r/.

• Note that ��.Œa; b// D ��..a; b// D ��.Œa; b�/ D a� b so it makes no difference whether we use closed,
open, or half-open intervals. Moreover, if I and J are intervals, ��.J \ I / C ��.J n I / D ��.J /. So
let I be an interval and A � R. Let 	" be a countable collection of closed intervals with

P
J2	"

��.J /

within " of ��.A/ and A �
S

	". Note that ¹J \ I W J 2 	"º covers A \ I and ¹J n I W J 2 	"º covers
A n I and moreover

��.A/ � ��.A \ I /C ��.A n I / �
X
J2	"

��.J \ I /C ��.J n I / D
X
J2	"

��.J / � ��.A/C ". a

23B • 11. Lemma
If X � R is lebesgue measurable, then

1. �.X/ D inf¹�.C/ W X � C ^ C is openº.
2. �.X/ D sup¹�.C/ <1 W C � X ^ C is closedº.

Proof .:.

Write I.X/ for inf¹��.C / W X � C ^ C is openº and S.X/ for sup¹��.C / <1 W C � X ^ C is closedº.
1. We clearly have ��.X/ � I.X/ since X � C implies ��.X/ � ��.C /. For the other inequality, for each
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" > 0, let ¹I";n W n < !º be a set of intervals covering X with measure within " of ��.X/. Without loss of
generality, we can ensure the I";ns are all open intervals: if they’re all closed, consider J";n to be the open
interval from inf.I";n/� "

2nC2 to sup.I";n/C "
2nC2 so that ��.J";n/ D �

�.I";n/C
"

2nC1 . Therefore taking
the infimum over all " > 0 gives the result:

��.X/ � I.X/ �
X
n<!

��.J";n/ D
X
n<!

��.I";n/C
X
n<!

"

2nC1
D
X
n<!

��.I";n/C " � �
�.X/C 2".

2. Clearly ��.X/ � S.X/ since any C � X has ��.X/ � ��.C /. For the other inequality, note that
Œ�n; n� nX is lebesgue measurable for each n 2 !, and so by (1),
2n � ��.X \ Œ�n; n�/ D ��.Œ�n; n� nX/ D I.Œ�n; n� nX/

D inf¹��.Œ�n; n� n .Œ�n; n� n C// W Œ�n; n� n C � X ^ Œ�n; n� n C is openº
D inf¹2n � ��.C / W C � X \ Œ�n; n� ^ C is closedº
D 2n � sup¹��.C / <1 W C � X \ Œ�n; n� ^ C is closedº
D 2n � S.X \ Œ�n; n�/.

Therefore ��.X/ D supn<! �
�.X \ Œ�n; n�/ D supn<! S.X \ Œ�n; n�/ D S.X/. a

23B • 12. Lemma
A set X � R lebesgue measurable iff there is a borel (in particular

�
†0
2) B � X where X n B is null.

Proof .:.
( ) Suppose there is a borel B where �.X nB/ D 0. Let A � R be arbitrary. Since all borel sets are lebesgue

measurable,
��.A \X/ D ��.A \X \ B/C ��..A \X/ n B/ D ��.A \ B/,

and also ��.A nX/ � ��.A n B/. It follows that
��.A/ � ��.A \X/C ��.A nX/ � ��.A \ B/C ��.A n B/ D ��.A/.

(!) Suppose X is lebesgue measurable. By Lemma 23B • 11, X D sup¹�.C/ <1 W C � X ^ C is closedº.
In particular, for n < !, taking a closed Cn � X where �.Cn/ � �.X \ Œ�n; n�/ C 1=n yields that
B D

S
n<! Cn � X is borel with �.B/ D limn!1 �.Cn/ D �.X/ and therefore �.X n B/ D 0. a

The next result is slightly subtle. The point is that we can always find a kind of “minimal” (modulo null sets) measurable
superset of any given non-measurable set X : A is measurable and ��.A/ D ��.X/. This does not, however, imply
��.AnX/ is null, sinceX may not be measurable. Instead the best we can do is show that any measurable set between
the two X � A0 � A has ��.A n A0/ D 0.

23B • 13. Lemma
For everyX � R there is a measurable A � X where every measurable A0 withX � A0 � A has that AnA0 is null.

Proof .:.

By Lemma 23B • 11, for each " > 0 let U" be open such that X � U" and ��.U"/ is within " of ��.X/. It
follows that A D

T
n<! U1=n is borel and hence measurable with ��.A/ D ��.X/. For any X � A0 � A with

A0 measurable, it follows that ��.A0/ D ��.A/ and therefore ��.A/ D ��.A \ A0/ C ��.A n A0/ D ��.A/

implies ��.A n A0/ D 0. a

As a result, usingMeasure IsomorphismTheorem (23B • 2)—noting that the preimage of a borel set by a borel function
is still borel—we can identify the lebesgue measurable sets as just those with measure 0 difference between a borel
set. Now to use Measure IsomorphismTheorem (23B • 2), we need to actually have an outer-measure on N where the
basic open sets are all measurable. But doing this isn’t so difficult. Indeed, for any borel bijection f W N ! Œ0; 1�

we can just define the measure �f .X/ D �.f "X/. But even explicitly, this isn’t too bad. Furthermore, once we have
fixed this notion, we are free to identify the resulting (probability) measure as “lebesgue measure”, even if it technically
differs from the measure on R or Œ0; 1�.
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23B • 14. Definition
We define lebesgue outer-measure �� on N as follows.

• For � 2 <!!, define ��.N� / D
Q
n<lh.�/

1

2�.n/C1 .
• For B � <!! such that ¹N� W � 2 Bº is a collection of disjoint sets, define ��.

S
�2B N� / D

P
�2B �

�.N� /.
• For arbitrary X � N , define ��.X/ D inf¹��.A/ W X � A ^ A is openº.

It’s not difficult to see that the different definitions are compatible for open and basic open subsets.
23B • 15. Corollary

Lebesgue outer-measure on N is a non-trivial outer-measure where all borel sets are measurable, N has measure 1,
and the family of lebesgue measurable sets is ¹B [N W B is borel ^N is nullº.

Proof .:.

That �� is an outer-measure is easy from Result 23B • 10: 0 D ��.;/ � ��.X/ � ��.Y / for X � Y is clear.
Sub-additivity uses the same proof as Result 23B • 10: let Xn � M for n < !. For " > 0, let 	";n be an open
cover for Xn within "=2nC1 in measure:

P
I2	";n

��.I / � ��.Xn/ C
"

2nC1 . It follows that
S
n<! 	";n is a

covering of
S
n<! Xn with

��

 [
n<!

Xn

!
�

X
n<!;I2	";n

��.I / D
X
n<!

X
I2	";n

��.I / �
X
n<!

�
��.Xn/C

"

2nC1

�
�
X
n<!

��.Xn/C ".

The infimum over " > 0 then yields sub-additivity. In particular, �� is an outer-measure.

To see that all borel sets are measurable, it suffices to show that all basic open sets are measurable. Let � 2 <!!
and A � N be arbitrary. For " > 0, let U � N be open such that ��.U"/ � �

�.A/ C ". Note that N� \ U"
and U" nN� are disjoint open sets (since N� is clopen). It’s easy to confirm that any disjoint open sets U; V have
��.U [ V / D ��.U /C ��.V /, so it follows that

��.A/ � ��.A \N� /C �
�.A nN� / � �

�.N� \ U"/C �
�.U" nN� / D �

�.U"/ � �
�.A/C ".

Taking the infimum over all " > 0 yields ��.A/ D ��.A\N� /C�
�.AnN� / and so all basic open and therefore

borel sets are lebesgue measurable.

Moreover byMeasure IsomorphismTheorem (23B • 2), there is a borel bijection f W N ! Œ0; 1�where��.X/ D

�.f "X/ for all borel X � N where � denotes lebesgue measure on Œ0; 1� � R. In particular, f "X D B [ N

for some borel B and �.N/ D 0. We know N is contained in a borel set N 0 of �-measure 0, and therefore
X D f �1"B [ f �1"N with the preimages f �1"B and f �1"N 0 are both borel, and f �1"N � f �1N 0 has
��-measure 0 so f �1"N is ��-null. a

With the concept of the lebesgue measurable sets more-or-less nailed down for
�
N , we can more easily investigate two

major questions:
• What (projective) pointlcasses consist of lebesgue measurable sets? And
• What properties do lebesgue measurable sets have?

As should be expected, the answers to these questions are undecidable from ZFC alone. In particular, all
�
†1
1-sets are

lebesgue measurable. With stronger large cardinal hypotheses we get that more and more sets are lebesgue measurable:
it’s consistent for all

�
†1
2-sets to be lebesgue measurable, the existence of an inaccessible cardinal yields the consistency

of all
�
†1
3-sets being lebesgue measurable, and generally the existence of n < ! woodin cardinals implies all

�
†1
nC2-sets

are lebesgue measurable. In particular, with infinitely many woodin cardinals an axiom PD (projective determinacy)
holds and all projective sets are lebesgue measurable.

Nevertheless, proving that
�
†1
1-sets are lebesgue measurable is the best we can do, because it’s consistent that there is

a
�
�1
2-set which is not lebesgue measurable. In particular, this holds in L. There’s a subtlety to this statement, since L

may not contain all real numbers nor sets of intervals and thus might get the outer-measure of a set wrong and hence
whether it’s lebesgue measurable.

Regardless of what happens with the projective hierarchy, under AC there is always a non-lebesgue measurable set.
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The issue is that because this relies on a well-ordering of N or R, there’s ostensibly no way to place such a set in our
hierarchy.ix It is consistent relative to the existence of an inaccessible cardinal that all sets of reals (even the projective
ones) are lebesgue measurable, but AC is false in any model of this.

23B • 16. Result
There is a set X � N that is not lebesgue measurable.

Proof .:.

It suffices to show a subset of R that isn’t lebesgue measurable as we just translate the result to N . Consider the
equivalence relation x � y iff x � y 2 Q. Let Vit � Œ0; 1� be a set of representatives of the �-equivalence
classes, i.e. 8x 2 R 9y 2 Vit .x � y/ and 8x; y 2 Vit .x ¤ y ! x 6� y/. Suppose Vit (a Vitali set, named
after Giuseppe Vitali) were lebesgue measurable. Note that Œ0; 1� �

S
q2Q\Œ0;1� Vit C q � Œ0; 2� and therefore

by ℵ0-additivity
1 D ��.Œ0; 1�/ �

X
q2Q\Œ0;1�

��.VitC q/ � ��.Œ0; 2�/ D 2,

where �� is lebesgue outer-measure. By translational invariance, ��.Vit C q/ D ��.Vit/ and therefore 1 �P
q2Q\Œ0;1� �

�.Vit/ � 2. But if��.Vit/ ¤ 0 then
P
q2Q\Œ0;1� �

�.Vit/ D1, a contradiction; and if��.Vit/ D 0
then

P
q2Q\Œ0;1� �

�.Vit/ D 0, another contradiction. Hence Vit can’t be lebesgue measurable. a

To show that all
�
†1
1-sets are lebesgue measurable, we need another way at arriving at

�
†1
1-sets. We do this through

the so-called suslin operation Ax. It turns out that the
�
†1
1-sets are applications of operation A to collections of closed

sets and that the collection of lebesgue measurable sets is closed under operation A, meaning
�
†1
1-sets are all lebesgue

measurable since closed sets are.
23B • 17. Definition

Consider a set X D ¹X� � M W � 2 <!!º of subsets of a set M indexed by <!!. Define the suslin operation
applied to X as AX D

S
x2N

T
n2! Xx�n.

23B • 18. Lemma
A set is

�
†1
1 iff it is AX for some X D ¹X� W � 2 <!!º � �

…0
1.

Proof .:.
( ) Let X D ¹X� W � 2 <!!º be a collection of closed sets. There are then trees ¹T� � <!! W � 2 <!!º

where X� D ŒT� �. Note that x 2 AX iff there is some y 2 N where x 2
T
n<! Xy�n iff x 2 n<! ŒTy�n�.

In particular, the following is a tree over ! � !

T D
°
h�; �i 2 <!! � <!! W lh.�/ D lh.�/ ^ � 2

\
n<lh.�/

T��n
±
.

It follows that for x; y 2 N , hx; yi 2 ŒT � iff x 2 ŒTy�n� for every n < !. In particular, AX D pŒT � is
�
†1
1 .

(!) Let A 2
�
†1
1 as witnessed by A D pŒT � for some tree T over ! � !. We therefore have x 2 A iff

9y 2 N 8n < ! .hx � n; y � ni 2 T /. For each � 2 <!! consider the tree over !
T� D

®
� 2 <!! W 9� 0

�
.� 6| � 0

_ � 0 6| �/ ^ h�; � 0
i 2 T

�¯
.

It follows that each ŒT� � is closed. Moreover if A D A¹ŒT� � W � 2
<!!º. To see this, if x 2 A then there

is some y 2 N where hx; yi 2 ŒT � so that for every n < !, x � n 2 Ty�n (and therefore x � n 2 Ty�m for
all n;m < !). This implies x 2 ŒTy�n� for all n < ! and therefore x 2 A¹ŒT� � W � 2

<!!º. The converse
holds in the same way. a

Thus we only need to show that the lebesgue measurable sets are closed under the suslin operation A. The reader may
ixThere's no explicit way to well-order N under ZFC. The best explanation that can be given at this point is that if we could get a projective

well-ordering, we'd get one over just ZF, but ZF C :AC is consistent, and the usual model for demonstrating this has no well-ordering for N in
particular. For another argument, the skeptical reader is dared to just try. See what happens. I dare you.

xAs far as I know, Mikhail Suslin (Михаил Суслин) proposed the notation ‘A’, which is written in honor of Pavel Aleksandrov (Павел
Александров) who eventually took to calling the sets given by this—i.e. the

�
†1

1 -sets—A-sets and from here the name “analytic” seems to be
derived and used in part due to Nikolai Luzin (Николай Лузин). I am not a fan of the term “analytic” because it can be confused with “the analytical
hierarchy”, which is a related, but totally distinct concept.
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note that in fact
�
†1
1 is closed under the suslin operation A as well, though this is unnecessary for showing the lebesgue

measurability for
�
†1
1-sets.

23B • 19. Lemma
Let X D ¹X� W � 2 <!!º be a set of lebesgue measurable sets. Therefore AX is lebesgue measurable.

Proof .:.

Without loss of generality, we can assume X� � X� whenever � 6| � just by replacing X� with
T
n<lh.�/X��n,

because doing yields the same result when applying the suslin operation A. Write �� for lebesgue outer-measure
on N . For each � 2 <!!, define

A�� D
[
x2N�

\
n2!

Xx�n.

In particular, A�; D AX . By our adjustment at the start of the proof, A�� � X� . By Lemma 23B • 13, for each
� 2 <!! there are measurable sets B�� where (just by intersecting with X� ) A�� � B�� � X� and such that
B�� n B is null for any measurable B with A�� � B � B�� . As a result, for � 6| � and n < !, we have all the
following containments:
X� � X� A�� � A�� B�� � B�� � X� and 8Y measurable .A�� � Y � B�� ! ��.B�� nY / D 0/.
Since A�� D

S
n<! A��_hni, by analogyN� D B�� n

S
n<! B��_hni is null. By countable additivity the unionS

�2<!! N� is null. Define
B D B�; n

[
�2<!!

N�

so that B is measurable. We will see that B � AX , implying AX n B �
S
�2<!! N� is null and therefore

AX is measurable. To see that B � AX , let x 2 B so that x 2 B�; n N;, i.e. x 2 B�hni for some n 2 !.
So we construct a y 2 N recursively: take y.0/ to be such an n, and define y.n C 1/ D m to be such that
x 2 B�y�n_hmi. Such an m exists because x 2 B�y�n nNy�n. In particular, such a y witnesses that

x 2
\
n<!

B�y�n �
\
n<!

Xy�n � AX . a

23B • 20. Corollary
All

�
†1
1-sets are lebesgue measurable.

Proof .:.

All
�
…0
1-sets are lebesgue measurable so by Lemma 23B • 19, for any X D ¹X� W � 2 <!!º �

�
…0
1, AX is

lebesgue measurable. By Lemma 23B • 18, every
�
†1
1-set has this form and therefore is lebesgue measurable. a

§23C. The baire property

The last idea we will consider for now is the baire property, named after René-Louis Baire just as with baire space.
Unlike lebesgue measure, the baire property involves topology more than any analysis of R, and the ideas can be stated
generally for topological spaces. The idea involves the topological notion of “category”, distinct from the algebraic
sense as in category theory. Category talks about how a set is built up from “small” sets. What sets are small isn’t
determined by a sense of measure, where we look at how the set can be covered, but instead by how “dense” the set is.
The motivating result is the following result on R.

23C • 1. Theorem (The Baire Category Theorem)
For n < !, let Dn 2 �

†0
1 be a dense subset of N . Therefore

T
n<! Dn ¤ ;. In particular, N is not the countable

union of the complements of open, dense sets.
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Proof .:.

It’s easy to see that a dense subset of N is any set D � N such that for any � 2 <!!, there is an x 2 N where
� C x 2 D. Firstly, note that the intersection of any two dense open sets D;D0 of N is dense and open: that
D \ D0 is open is clear. For density, suppose � 2 <!!. There is then an element x 2 N� \ D. As an open
set, there is then a � 0 with � 6| � 0 and N� 0 � D so that there is then an element x0 2 N� 0 \D0. It follows that
� C x0 2 D \D0 and thereforeD \D0 is dense as � was arbitrary.

So define by recursion the sequence �n 6| �nC1 for n 2 ! in the same way. Set �0 C x for any x 2 D0. For �n
already defined, let x 2

T
i<nC1Di \DiC1 which is open and dense by the argument above. In particular, there

is some � such that �n 6| � and N� �
T
i�nC1Di , and we set �nC1 to be such a � . It follows that

S
n<! �n 2 N

is an element of
T
n<! Dn. a

One might think the only open dense subsets of N would be N itself. Ostensibly, (rephrasing things in terms of R)
one could take an open interval around each point and seemingly cover everything because the set is dense. But this
isn’t the case: consider N n ¹xº for any x 2 N , or .�1; x/ [ .x;1/ for any x 2 R. The only way for an open set
dense to necessarily be the whole space is for every element to be isolated, meaning the space must be discrete.

Let us introduce some very common concepts in topology that we will use throughout this subsection.
23C • 2. Definition

Let
�
M be a topological space. For any X �M, define the following:
• The closure of X is cl.X/ D

T
¹C W X � C is closedº.

• The interior of X is int.X/ D
S
¹U � X W U is openº DM n cl.M nX/.

• The boundary of X is @X D cl.X/ n int.X/ D cl.X/ \ cl.M nX/.

We have some very easy properties about these new concepts. In particular,
• int.X/ is always open, and cl.X/ DM n int.M nX/ is always closed.
• int.X/ � X � cl.X/ D int.X/ [ @X .
• If X is open, int.X/ D X ; and if X is closed, cl.X/ D X so that @X � X in this case.
• Similarly, X is open iff @X \X D ;.
• @X � X implies cl.X/ � X and therefore X is closed.

In general, there’s no connection between @X and X , and we might have @X \X range anywhere from ; to X itself.
23C • 3. Definition

Let
�
M be a topological space.
• A set N �M is nowhere dense iff M nN contains a dense and open set.
• A setM �M is meagre iffM is the countable union of nowhere dense sets.
• A set X � M has the baire property iff there is some U 2

�
†
0;M
1 where X 4 U D .X n U/ [ .U n X/ is

meagre.

Thus The Baire Category Theorem (23C • 1) is saying that N is not meagre. It should be clear that N has the baire
property since N itself is open and N 4 N D ; is clearly meagre. Similarly, any set of isolated points is nowhere
dense and therefore meagre. Every open set and every meagre set has the baire property. In fact, the sets with the baire
property form a σ-algebra which then contains all borel sets. Before establishing this, however, let’s prove some basic
facts about meagre and nowhere dense sets.

23C • 4. Lemma
Let

�
M be a topological space. Therefore, for X; Y �M;
1. If X is nowhere dense and Y � X then Y is nowhere dense.
2. In particular, if X is meagre and Y � X , then Y is meagre.
3. The finite intersection of open dense sets is open dense. In particular, the union of two nowhere dense sets is

nowhere dense.
4. The countable union of meagre sets is meagre.
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5. For any open set U , cl.U / n U is nowhere dense.

Proof .:.

1. Suppose X is nowhere dense so that M n X contains a dense and open set D � M n X . It’s clear that
D �M nX �M n Y so that Y is also nowhere dense.

2. If X is meagre, then write X D
S
n<! Xn where each Xn is nowhere dense. Hence Y � X has Y DS

n<! Xn \ Y where Xn \ Y � Xn is also nowhere dense by (1).

3. Let DX and DY be open dense sets. Therefore DX \ DY is open. For density, let U � M be open
so that DX \ U is also open (since DX is) and non-empty (since DX is dense). By the density of DY ,
DY \DX \ U ¤ ;. Since U was arbitrary, DY \DX is dense. In particular, if X , and Y are nowhere
dense with DX \ X D DY \ Y D ;, then .DX \DY / \ .X [ Y / D ; with DX \DY open and dense.
In other words, X [ Y is nowhere dense.

4. Suppose Xn D
S
m<! Xn;m is meagre for all n < ! where each Xn;m is nowhere dense. ThereforeS

n<! Xn D
S
n;m<! Xn;m is the countable union of nowhere dense sets and is therefore meagre.

5. The complement of cl.U / n U is just U [ .M n cl.U //. It’s clear that cl.U /, as the intersection of closed
sets, is closed and therefore U [ .M n cl.U // is open. It’s also dense because any counterexample is a
non-empty open V � M with V \ U D ; and V \ .M n cl.U // D ;, i.e. V � cl.U / n U . But then
cl.U / n V is a closed set with U � cl.U / n V . But V ¤ ; then contradicts the definition of cl.U /. So no
such V can exist and therefore U [ .M n cl.U // is open and dense, i.e. cl.U / n U is nowhere dense. a

23C • 5. Result
Let

�
M be a topological space. Therefore ¹X � M W X has the baire propertyº is a σ-algebra containing all open

sets, and hence every borel set has the baire property.

Proof .:.

All open sets have the baire property. Now suppose Xn for n < ! has the baire property as witnessed by an open
Un with meagre Xn 4 Un. Note that

S
n<! Un is open with�[

n<!
Xn

�
4

�[
n<!

Un

�
�
[

n<!
.Xn 4 Un/,

which is the countable union of meagre sets. By Lemma 23C • 4 (4) and (2), .
S
n<! Xn/ 4 .

S
n<! Un/ is

meagre and therefore
S
n<! Xn has the baire property. Therefore it suffices to show the set of subsets with the

baire property is closed under complements.

Suppose X has the baire property. To show that M n X does too, let U be open with X 4 U meagre. Note that
the closure of cl.U / n U is nowhere dense by Lemma 23C • 4 (5). In particular,

.M nX/4 .M n cl.U // D X 4 cl.U / D ..X 4 U/ n .X \ cl.U /// [ .cl.U / n U/.
Since X 4 U is meagre, the subset .X 4 U/ n .X \ cl.U // is too. Since cl.U / n U is meagre, and the union of
two meagre sets is also meagre, it follows that M nX is meagre. a

To explain our terminology a little, a nowhere dense setN is clearly not dense since otherwise the complement M nN

would contain an open dense setD �M nN whose complement M nD � N is a closed set that is still dense because
it contains a dense set N . But the only closed dense set is the whole space itself, meaning M nD DM requiresD to
be empty and therefore not dense, a contradiction.

More than just not being dense, however, a nowhere dense set isn’t dense in any (open) subset’s inherited topology.
This then motivates the name.
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23C • 6. Result
Let

�
M be a topological space. Therefore X � M is nowhere dense iff for every open set U � M, X \ U is not

dense in the inherited topology on U .

Proof .:.
(!) Suppose X is nowhere dense but X \ U is dense in an open set U , meaning X \ V ¤ ; for every open

V � U . Let D � M n X be an open dense subset of M so that D \ U is also open and dense in U .
Since the complement U nD is closed (in the inherited topology) and contains a dense set, it follows that
U nD D U contradicting the density ofD in U .

( ) Suppose X \ U is not dense for every open set U � M. Consider D as the interior of M n X , i.e.
D D

S
¹U � M n X W U is openº. It follows that D � M n X is open. Suppose D is not dense. This

means for some U �M, U \D D ; so that D [ U �M n X is a larger open set than D, contradicting
the definition ofD. a

The name “meagre” invokes a sense a smallness. In a space where there are no isolated points, every set can be written
as the union of some collection of nowhere dense sets (considering unions of singletons). Since nowhere dense sets
are closed under finite unions, meagre sets mark the first new stage, being the result of countable unions. As a result,
meagre sets are sometimes referred to as of the “first category”. One can similarly define second cateogry just as
the sets which aren’t of the first category. The analysis of meagre sets and nowhere dense sets in general is what is
sometimes meant by the study of “category” in topology and is why it appears in the name of The Baire Category
Theorem (23C • 1).

borel

meagre

baire property

lebesgue
measurable

measure 0

nowhere
dense

α β γ

δεζ
η

θ
ι

κ
λ μ ν

ξ
ο

π

ρ

23C • 7. Figure: Containments between the categorical and measure-theoretic properties

Now despite meagre sets and lebesguemeasure 0 sets both being a sense of “smallness”, the two notions do not coincide
at all. In particular, we can partition N itself into the union of a meagre setM 2

�
†0
2 and a lebesgue null set N 2 �

…0
2.

Since N isn’t meagre, N can’t be meagre; and since N has measure one,M isn’t lebesgue null. Indeed, it’s possible
to have a nowhere dense set with positive measure. Figure 23C • 7 gives the containments provable in ZFC between
these notions. In particular, we give short descriptions for non-empty sets in each region above, demonstrating all strict
containments in a non-trivial way. A reader interested in these sets can look at [6] and elsewhere for their definitions
and properties:

• let B be any bernstein set (cf. Result 23A • 8);
• let Non be the set of non-normal numbers in Œ0; 1�;
• let C be the cantor set and FC the fat cantor set; and
• let NBC be any non-borel subset of C (there are 22ℵ0 subsets of C and only 2ℵ0 -many borel ones).
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α. .B \ Non/ [ Œ1; 2�;
β. NBC [ Œ1; 2�;
γ. B [ Non;
δ. Œ0; 1� \ B n Non
ε. FC \ B;
ζ. FC n NBC;
η. NBC [Q [ Œ1; 2�;
θ. FC;
ι. FC [Q;

κ. R;
λ. An N 2

�
…0
2 where R D M [ N

withM meagre and N null;
μ. Q;
ν. C;
ξ. NBC [Q;
ο. NBC;
π. Non;
ρ. B \ Non.

Nevertheless, the two notions act similarly at a low level and often arguments regarding one can be easily translated
into the other just by replacing “measure 0” with “meagre” or vice versa. In particular, with an analog of Lemma
23B • 13, we can follow the proof of Lemma 23B • 19 to get that all

�
†1
1-sets have the baire property.

23C • 8. Lemma
For every X � N there is a B � X with the baire property such that for any B 0 with the baire property and
X � B 0 � B , B n B 0 is meagre.

Proof .:.

Define Y D
T
¹N nN� W � 2

<!! ^N� \X is meagreº. Perhaps a confusing definition, Y is sort-of the closure
of X modulo meagre sets: whenever N� \X is meagre, we remove N� , constantly chipping away until we arive
at Y . Note that Y is closed as the intersection of closed sets. We don’t necessarily have that X � Y , but we at
least have that X n Y is meagre, since X n Y D

S
¹X \ N� W � 2

<!! ^ N� \ X is meagreº is the countable
union of meagre sets.

Consider B D X [ Y D .X n Y /4 Y . Note that B has the baire property: X n Y is meagre and Y is closed so
that N n B D .N n Y /4 .X n Y / which has the baire property so by Result 23C • 5, B does too.

To show the “minimality” of B , let X � B 0 � B where B 0 has the baire property. We want to show that B n B 0

is meagre. We know B n B 0 has the baire property so there B n B 0 D U 4M for some open U and meagreM
so that U D .B n B 0/4M � .B nX/ [M . In particular, U \X �M is meagre.

To see that U n X � M , proceed as follows. Since ; n X � M trivially, suppose U is non-empty. As an open
set there is some � 2 <!! where N� � U � .B n X/ [M . Since N� \ X � U \ X is meagre, it follows that
Y � N nN� and hence N� � N n Y . As the union of � with N� � U , it follows that U � N n Y . As a result,
.U nX/ \ .B nX/ D .U nX/ \ Y � .N n .Y [X// \ Y D ;. Since U � .B nX/ [M , U �M is meagre
and therefore B n B 0 � U [M is meagre. a

The above proof was not particularly similar to Lemma 23B • 13, but nevertheless, we may practically copy and paste
the proof of Lemma 23B • 19 to get that the subsets with the baire property are closed under the suslin operation A,
merely replacing “measurable” with “has the baire property” and “null” with “meagre”.

23C • 9. Lemma
Let X D ¹X� W � 2 <!!º be such that each X� has the baire property. Therefore AX has the baire property.

Proof .:.

Write BP.Z/ for “Z has the baire property”. Without loss of generality, we can assume X� � X� whenever
� 6| � just by replacing X� with

T
n<lh.�/X��n, because doing yields the same result when applying the suslin

operation A. For each � 2 <!!, define
A�� D

[
x2N�

\
n2!

Xx�n.

In particular, A�; D AX . By our adjustment at the start of the proof, A�� � X� . By Lemma 23C • 8, for each
� 2 <!! there are sets B�� such that
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• BP.B�� /;
• B�� n B is meagre for any B with BP.B/; and
• (just by intersecting with X� ) A�� � B�� � X� .

As a result, for � 6| � and n < !, we have all the following:
1. X� � X� ;
2. A�� � A�� ;
3. B�� � B�� � X� ; and
4. 8Y .BP.Y / ^ A�� � Y � B�� ! B�� n Y is meagre/.

Since A�� D
S
n<! A��_hni, one can easily check that N� D B�� n

S
n<! B��_hni is meagre. By countable

additivity the union
S
�2<!! N� is meagre. Define

B D B�; n
[

�2<!!
N�

so that BP.B/. We will see that B � AX , implying AX n B �
S
�2<!! N� is meagre and therefore BP.AX/.

To see that B � AX , let x 2 B so that x 2 B�; nN;, i.e. x 2 B�hni for some n 2 !. So we construct a y 2 N

recursively: take y.0/ to be such an n, and define y.n C 1/ D m to be such that x 2 B�y�n_hmi. Such an m
exists because x 2 B�y�n nNy�n. In particular, such a y witnesses that

x 2
\

n<!
B�y�n �

\
n<!

Xy�n � AX . a

23C • 10. Corollary
Every

�
†1
1-set has the baire property.

Proof .:.

All open sets have the baire property, and by Result 23C • 5, all closed sets do too. The closure of
�
…0
1 under the

suslin operation A yields all
�
†1
1-sets, and since the collection of subsets with the baire property is closed under

this, all
�
†1
1-sets have the baire property. a

Of course, not every set has the baire property as the same non-lebesgue measurable set from Result 23B • 16 shows.
23C • 11. Result

There’s a set without the Baire property.

Proof .:.

Let Vit be the set of equivalence classes under the equivalence relation x � y iff x � y 2 Q. For A � R and
x 2 R, write AC x for ¹aC x W a 2 Aº. Again, R D

S
q2Q VitC q is the disjoint union of countably many sets

which can’t all be meagre by The Baire Category Theorem (23C • 1). But any VitC q is meagre iff Vit is, and so
Vit isn’t meagre.

If Vit has the baire property, then there’s an open set U � R and a meagre setM where U 4 M D Vit. Take
.a; b/ � U for a < b 2 R. When translating things around, note that .a; b/ C r \ .a; b/ is an open interval
whenever the intersection is non-empty (i.e. for r < jb�aj), and similarly,M [M C r will be meagre. We have
that VitC r \ Vit D ; and yet for sufficiently small r , as an open interval subtracting a meager set,

; ¤ ..a; b/C r \ .a; b// n .M C r [M/ � VitC r \ Vit,
a contradiction. Hence Vit can’t have the baire property. a

Again, it’s not clear that such a set can be placed in our hierarchy. So the question becomes can we do better than
�
†1
1 sets? As is usual, we cannot: L believes there’s a

�
�1
2-set without the baire property (and that is not measurable).

We can still prove from ZFC that there are sets without the baire property. This is partly because the baire property is
related to the determinacy of certain games, and the axiom of determinacy is incompatible with AC. But assuming the
weaker PD—which is comptible with AC assuming the consistency of some large cardinal axioms—it follows that all
projective sets have the baire property.

217



THE LIGHTFACE HIERARCHIES CH IV §24A

Section 24. The Lightface Hierarchies

Wewill define lightface variants of the borel and projective hierarchies. In general, we say a pointclass is boldface iff it’s
closed under continuous preimages. And so clearly by Result 22A • 7 and Result 22C • 11, all the borel and projective
pointclasses are boldface. Moreover, for any � � P .N /, we can associate a boldface variant

�
� � P .N / just by

taking the closure under continuous preimages. We really have no need for this added generality, but an equivalent
characterization does provide motivation. In particular, we usually think of � as being some notion of definability and
�
� � P .N / as being the corresponding notion where we allow parameters:

�
� can be thought of as

S
x2N �.x/, where

�.x/ allows x as a parameter; each X 2 �.x/ being the preimage of some Y 2 � under the map y 7! hx; yi or
perhaps y 7! code.x; y/ D x � y.

Much of this section relies on familiarity with computability theory. An overiew can be found in Appendix A. More-
over, these ideas on computability and the effective theory of these spaces are further explored in Appendix B.

What exactly is the connection between the borel hierarchy and computability? The traditional understanding tells us
that being computable, computably enumerable, or more generally �N

n, †N
n, or…N

n for n < ! is a property of subsets
of !—i.e. of real numbers—not of sets of real numbers like being

�
�0
n, �

†0
n, or �

…0
n. Nevertheless, there is still a notion

of computability that generalizes to N and other polish spaces, giving a computable analogue of their topologies.

Let us state first the corresponding concepts with the boldface hierarchies.

x 2
�
†0
n corresponds to x 2 †0n

x 2
�
†1
n corresponds to x 2 †1n

continuity corresponds to computability
borel corresponds to hyperarithmeticalS
n<! �

†0
n corresponds to arithmetical, i.e.

S
n<! †

0
n

projective corresponds to analytical
24 • 1. Figure: Analogy between the boldface and lightface pointclasses

We will only explore the beginning of the hyperarithmetical hierarchy, which is just to say †0˛ for ˛ < !, also called
the arithmetical hierarchy. This is partly because the definitions are easier to work with, but also because we have no
need for the rest of the hierarchy. Indeed, we rarely have the need to go beyond †02. The curious reader can further
explore the hierarchy in Appendix B.

§24A. Generalizing computability

Rather than generalize computability immediately, we instead generalize computably enumerable sets: †01 sets in the
standard notation from computability theory. Recall that such sets have a semi-decidable procedure for membership.
In particular, for X � ! with X 2 †01, there is some (computable) relation R � !2 that satisfies

x 2 X iff 9y 2 ! R.x; y/.
When generalizing this, note that every X � ! is open, since any countable polish space is discrete. So we should be
looking to find simple open sets as our †01-sets. First consider N and its basic open sets, which take the form N� for
some � 2 <!!, which may be regarded essentially as an element of ! just by coding. There is clearly an effective test
for membership in N� because for x 2 N , we just check that x.n/ D �.n/ for each n < lh.�/ < !; and if this holds
then x 2 N� and otherwise x … N� . So membership in these basic open sets should be considered “computable”.
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Going beyond this, note that open sets are unions of these basic open sets, and so
x 2

[
n<!

N�n iff 9n < ! .x 2 N�n/.

If membership in N�n is seen as “computable”, and n 7! �n is computable, then it’s natural to consider the above as
defining a †01-set as with subsets of !. And the above idea clearly is the same as with ! if we consider the basic open
sets to just be singletons, hinting that this is the correct idea to have.

24A • 1. Result
For m 2 !, let Nm � ! be the basic open set ¹mº (as the canonical topology on ! is discrete). Let ; ¤ X � !.
Therefore X is †01 in the computability sense iff X D

S
n<! Nf .n/ for some computable function f W ! ! !.

Proof .:.

A non-empty subset of ! is †01 iff it’s the image of some computable function f so that imf D
S
n<! Nf .n/.a

We basically are assuming that the basic open sets are simple in some sense. As countable polish spaces are discrete,
we let singletons be the basic open sets, which are certainly simple.

24A • 2. Definition
Let

�
M be a polish space with basic open sets ¹Mn W n < !º. Define X � M to be †0;M1 iff X D ; or else

X D
S
n<! Mf .n/ for some f W ! ! ! that is computable. We write just †01 for †

0;N
1 .

For product spaces
�
M �

�
W where

�
W has basic open sets ¹Wn W n < !º, the basic open sets of the product space

will be rectangles: ¹Mn0
�Wn1

W n0; n1 < !º.

Naturally, †0;M1 sets depends on the presentation and basic sets we’ve chosen.xi That said, we will mostly be focused
on N , !, and their products, whose basic open sets are somewhat canonical: cones and singletons respectively. Result
24A • 1 then shows this is the same as the traditional definition for computability: there’s no confusion between†01 in
the computability sense and †0;!1 in the polish space sense. By standard facts about computation over !, we also get
seom equivalent characterizations of †01-sets.

24A • 3. Corollary
Let

�
M be polish with basis ¹Mn W n < !º. Let X �M. Therefore the following are equivalent.

1. X is †0;M1 .
2. X D

S
n2B Mn for some †0;!1 -set B � !.

3. X D
S
n<! Mf .n/ for some computable partial function f W ! * !.

Proof .:.

(1)$ (2) If X is empty, we’re done: B D ;. Otherwise for f W ! ! ! witnessing X 2 †0;M1 , im.f / is †0;!1
and satisfies X D

S
n2im.f / Nn. Similarly, if X D

S
n2B Mn for some B 2 †0;!1 , then B D im.f /

for some computable f W ! ! ! where then X D
S
n<! Mf .n/.

(2)$ (3) Since the images of partial functions are †0;!1 , we clearly get (3)! (2). So suppose (2) holds: let B
be †0;!1 , i.e. x 2 B iff 9k 2 ! R.x; k/ where R � !2 is computable. We can then consider the partial
function defined by f .n/ D k0 for the least k D code.k0; k1/ where R.k0; k1/ and 8m < n .f .m/ <

k0/. This has f as computable with imf D B and therefore (3) holds. a

xiSince there are only countably many computable functions f W ! ! !, this yields only countably many †0;M
1 -sets for any choice of

(countably many) basic open sets. Since there are uncountably many open sets, if we then add any other setM 2
�
†

0;M
1 n †

0;M
1 to our list of

basic open sets, we get a new notion of †0;M
1 differing from the previous one: M is †0;M

1 in the new sense, but not the old. This issue can be
partially avoided through the use of the open balls as neighborhoods and a fixed countable dense subset of M. This added terminology, however,
will serve us little, since we may simply deal with N and its products with itself and ! where such things are dealt with by proxy with initial
segments. The only point where this comes up is just in the very rarely referenced properties of the basis. In particular, using this open ball approach,
¹Mn W n < !º [ ¹;º is closed under finite intersections. This will be useful in showing †0;M

1 is closed under finite intersections, for example.
But as this holds for the usual spaces (N and its products with itself and !), we don't take this approach in general until necessary later.
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24A • 4. Corollary
For X � N , X 2 †01 iff there is a computable set B such that

8x 2 N
�
x 2 X $ 9n < ! .x � n 2 B/

�
.

This also easily generalizes to products: for X � !N , X 2 †0;
!N

1 iff there is a computable B such that
hxi W i < !i 2 X $ 9m < ! 9n < ! .hxi � n W i < mi 2 B/.

Proof .:.

X 2 †01 iff X D
S
�2R N� for some R 2 †0;!1 by Corollary 24A • 3. Thus

x 2 X $ 9� 2 R .x 2 N� /$ 9� 2 R .� C x/

$ 9n < ! 9� 2 R .x � n D �/$ 9n < ! .x � n 2 R/.
As †0;!1 -relations have the form Ex 2 Y iff 9m < ! P.m; Ex/ for some computable P , we have

x 2 X $ 9n < ! 9m < ! .hx � n;mi 2 P /.
Clearly we can absorb this extra information into n by coding it onto the length: say h�;mi 2 P 0 iff 9n <

lh.�/ .n D code.n0; n1/ ^ h� � n0; n1i 2 P /. Then we have
x 2 X $ 9n < ! .x � n 2 P 0/.

To see that the two are equivalent, if x 2 X , then for some n0 < ! and some n1 < !, hx � n0; n1i 2 P . In
particular, for n D code.n0; n1/, x � n 2 P 0. Similarly, if x � n 2 P 0 then there is some n0 D code.n0; n1/ < n
where then h.x � n/ � n0; n1i D hx � n0; n1i 2 P and thus x 2 X . This proves the (!) direction. For the
converse, if x � n 2 B then x 2 Nx�n �

S
�2B N� D X . a

We can also relativize †01 just as in computability with oracles and in definability with parameters. Recall that for
A 2 N , a subset X � ! is †01.A/ iff we have some computable R � !3 where

x 2 X iff 9y 2 ! 9n 2 ! R.x; y; A � n/.
To generalize this in the same way as †0;!1 was generalized to †0;N1 , we can just consider such As as parameters.

24A • 5. Definition
Let

�
M be polish with basis ¹Mn W n < !º. Let A � M and X � M. Define X to be †0;M1 .A/ iff there is some

R 2 †
0;M�M
1 and some Ea 2 A<! such that X D ¹x 2M W R.x; Ea/º.

Commonly, for A D ¹aº, we just write †0;M1 .a/ rather than †0;M1 .¹aº/. But a result of this new definition is another
way of referring to all the open sets of baire space (and its products).

24A • 6. Corollary

�
†0
1 D

S
A2N †01.A/. In other words, �

†0
1 D †

0
1.N /.

Proof .:.

If X is open, then X D
S
�2B N� for some B � <!! where then X 2 †01.B/, regarding B 2 N after coding.

And clearly, for every A � N , since every element of †01.A/ is a union of basic open sets, †01.A/ � �
†0
1 . a

It’s natural to think of this †01 as generating a kind of computable topology on N . This especially makes sense given
that the standard topology on ! is just the discrete topology where all sets are open. The arithmetical hierarchy on !,
however, is very rich compared to the standard topology. We get similar closure properties for †01 as with �

†0
1 , as we

will see, strengthening this connection. It is ultimately this idea that leads to an entire lightface version of the borel
hierarchy, called the hyperarithmetical hierarchy, so-called because it extends the arithmetical hierarchy of †0n, …0

n,
�0n for n < ! to †0˛ , …0

˛ , �0˛ for ˛ < !CK
1 , where !CK

1 is some particular countable ordinal (larger than !). The
precise definition isn’t important for us now.

The point for us is that Definition 24A • 2 determines what it means for a subset X � N to be †01, and this gives a
notion of a subset of N being computable as well as a notion of a function f W N ! N being computable. This
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generalization is motivated from the result on ! that a (partial) function f W ! * ! is computable iff f � ! �! as a
relation is †0;!�!

1 .

The obvious generalization, saying that f W M ! M is computable iff it’s a †0;M�M
1 -relation, isn’t the proper one,

because there are no such functions if M has no isolated points: f 2 †0;M�M
1 implies f is open. In particular, for

hx; yi 2 f , there is some open rectangle Mn �Mm � f with hx; yi 2 Mn �Mm. Since Mm ¤ ¹yº, then there is
some y0 ¤ y with hx; y0i 2Mn �Mm � f , meaning f isn’t a function.

So instead we consider f as computable when dealing with the basic open sets: where x 2 M is mapped in terms of
the basic open sets of the target space, which we deal with in terms of !. In particular, f is computable iff whether
f .x/ 2Mn or not is †0;M�!

1 for x 2M and n 2 !.
24A • 7. Definition

Let
�
M and

�
W be polish with bases ¹Mn W n < !º and ¹Wm W m < !º. Let A �M. Let f WM! W be a function.

Define f to be A-computable iff the neighborhood relation f .x/ 2 W� is †0;M�!
1 .hA; 0i/:

NGf D ¹hx; �i 2M � ! W f .x/ 2 W�º 2 †
0;M�!
1 .hA; 0i/.

For M D W D !, the basic open sets are singletons and so NGf D f . Thus f is computable iff f as a relation is
†
0;!�!
1 , in line with what we know from computability on !. But in what sense is does this make f “computable” in

an intuitive sense? The idea is that we can approximate f .x/ from below—from basic open sets around f .x/—in an
effective way, as the result of a genuinely computable function. In particular, a more algorithmic characterization for
N (and its products with itself and !) is the following. The basic idea being that on N , the neighborhood graph simply
represents the relation � C f .x/ for hx; �i 2 N � !. Hence if this is †0;N �!

1 , we should be able to find f .x/.n/,
n < !, just by searching along the computable union for a suitably large � .

There are a lot of different ways to state computability for N as with !. The two most popular revolve around this
idea stated in slightly different, equivalent ways. First, we give a little bit of background on computability theory: a
program can be coded just by a single number e 2 ! which can then be decoded into the function ŒŒe�� W ! ! !.
Programs can also involve more functions assumed to be given. The roles of these given functions are oracles in that
the program asks for their value and it is given with no further computation involved. In the program e 2 !, these are
merely syntactic and must be interpretted to give meaning to ŒŒe��. For Ex 2 <!N , the function computed by e using Ex
as its oracles will be ŒŒe��Ex . In this way, x 7! ŒŒe��x 2 N is “computable” in that it is computable uniformly or by the
same algorithm: given x 2 N we can then calculate every value of ŒŒe��x 2 N with e and x.

24A • 8. Theorem
A function f W N ! N is computable iff there is some e 2 ! where f D x 7! ŒŒe��x;A. Informally, f is computable
iff there is an x-computable algorithm that computes f .x/ and moreover, this algorithm is uniform across all x 2 N .
This also easily generalizes to A-computability for A � N and also products of N with itself and !.

This is an easy consequence of the following, equivalent form where we merely compute initial segments of f in a
uniform way, i.e. by a computable Of with two arguments: one for the oracle, and the other for the place to evaluate
the computed real.

24A • 9. Result
ForA � N , a function f W N ! N isA-computable iff there is some Ea 2 A<! and˚Ea-computable Of W <!!�! !
! such that for every x 2 N and n 2 !,

9m < !
�
Of .x � m; n/ D f .x/.n/

�
.

And this easily generalizes to products of N with itself and !.

Proof .:.

We take A D ;, as the proof easily generalizes. We may reduce to a finite Ea 2 A<!—taking the computable join
˚Ea of them—because the parameters that make f A-computable use only finitely many parameters from A. The
basic open subsets of N � <!! are of the form N� � ¹�º for �; � 2 <!!.

221



THE LIGHTFACE HIERARCHIES CH IV §24A

(!) If NGf is †0;N �!
1 , then there is some computable g W ! ! <!! � <!! (where we write g.n/ D

hg0.n/; g1.n/i) such that NGf D
S
n<! Ng0.n/ � ¹g1.n/º. For x 2 N and � 2 <!!, recall that NGf .x; �/ iff

� C f .x/. So given x 2 N , to calculate f .x/.n/, we just search for some sufficiently long � C f .x/, i.e. some
sufficiently long � with hx; �i 2 NGf : define Of .�; n/ as follows: find the least m such that

1. lh.g1.m// > n;
2. g0.m/ C � , meaning 8k < lh.g0.m// .g0.m/.k/ D �.k//;

and then output g1.m/.n/. Of is then clearly computable with Of .x � m; n/ D f .x/.n/.

( ) Let Of W <!!�! ! ! be as in the statement. By Corollary 24A • 3, it suffices to show there is a†0;!1 -relation
B � <!! � <!! with NGf D

S
h�;�i2B N� � ¹�º. But this is obvious: just write

h�; �i 2 B iff 9� 0
8k < lh.�/ .�.k/ D Of .�_� 0; k//

So that B is of the form 9� 0R.�; � 0; �/ for some computable relation R, meaning B is †0;!1 . It should be clear
that this B works. To see this, if hx; �i 2 NGf , then � C f .x/, in which case, there is some m < ! with
Of .x � m; n/ D f .x/.n/ D �.n/ for all n < lh.�/ so that x � m D � with � 0 D ; witnesses h�; �i 2 B .
This shows NGf �

S
h�;�i2B N� � ¹�º. The converse is clear: h�; �i 2 B as witnessed by � 0 2 <!! has any

x 2 N�_� 0 satisfy f .x/ � lh.�/ D � where then hx; �i 2 NGf . a

This algorithmic approach can sometimes be a little easier to intuitively see than confirming a neighborhood graph is
†01. It also further motivates why such functions are worthy of the description “computable”.

Computability will be very important for two reasons: its absoluteness between transitive models of sufficiently large
fragments of set theory, and the role it plays here analogous to continuity in topology. The following result should raise
eyebrows relating the two.

24A • 10. Lemma
Let f W N ! N be a function. Therefore, f is continuous iff there is some A 2 N such that f is A-computable.

Proof .:.
(!) Suppose f is continuous. This means if f .x/ D y, for every initial segment � C y, there is an initial

segment � C x with f �1"N� � N� . So if we considerA D ¹h�; �i 2 <!!�<!! W f �1"N� � N�º, then
f is A-computable. In particular, given any x, to define f .x/.n/, we consider the least m D code.�; �; k/
such that

• � is the code of x � n;
• � is the code of a sequence of length > k; and
• h�; �i 2 A.

Then we can notice f .x/.n/ D �.n/ for appropriate n, and the above procedure is computable from A

using an initial segment of x.
( ) Suppose f is A-computable by Of W <!! � ! ! !: for each n < !, Of .x � m; n/ D f .x/.n/ for

sufficiently large m. For x 2 N arbitrary, suppose f .x/ D y 2 N . If n < !, we can compute every
value of y � n using just some sufficiently large value of m, meaning Nx�m � f

�1"Ny�n, implying f is
continuous. a

As a result, we should expect closure properties of†01.A/ under not all continuous functions, but only theA-computable
functions.

24A • 11. Lemma
Let

�
M and

�
W be polish with bases ¹Mn W n < !º and ¹Wn W n < !º. Let f WM ! W be computable. Therefore

if X 2 †0;W1 then f �1"X 2 †0;M1 .
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Proof .:.

Recall that NGf D ¹hx;mi 2 M � ! W f .x/ 2 Wmº. Firstly, we need a way of translating between the basic
open sets in a computable way. We don’t need to worry about empty preimages, since trivially ; 2 †0;Mn .

Claim 1
For m where f �1"Wm ¤ ;, there is a computable h W ! � ! ! ! such that f �1"Wm D

S
k<! Mh.m;k/.

Proof .:.

Since f is computable, NGf 2 †0;M�! , meaning for some computable p0; p1 W ! ! !, NGf DS
k<! Mp0.k/�¹p1.k/º. Hence f .x/ 2 Wm iff there is some k < ! such that x 2Mp0.k/ andm D p1.k/.

So set

h.m; k/ D

´
p0.k/ if p1.k/ D m
p0.k

0/ for some fixed k0 with p1.k0/ D m otherwise.
Then f .x/ 2 Wm iff x 2

S
k<! Mh.m;k/. a

This provides a basis to define a function transforming arithmetical sets according to how they’re built up. In
particular, proceed by induction on n to show the result. For n D 1, let X 2 †0;W1 have f �1"X ¤ ;. Therefore
X D

S
m<! Wg.m/ for some computable g W ! ! ! where then

f �1"X D
[
m<!

f �1"Wg.m/ D
[

m;k<!

Mh.g.m/;k/ 2 †
0;M
1 . a

We also get some expected properties of the class of computable functions.
24A • 12. Result

The class of computable functions between polish spaces is closed under composition, substitutions (i.e. f defined
by f .Ex/ D hf0.Ex/; � � � ; fn.Ex/i for f0; � � � ; fn computable) and contains

• all projections: pi .Ex/ D xi ; and
• all (in the usual computability sense) computable f W ! ! !.

Proof .:.

That all computable f W ! ! ! are computable in the sense of Definition 24A • 7 follows just from facts about
these functions as in Appendix A. Let

�
Mi for i < N < ! be polish spaces with bases ¹.Mi /n W n < !º for

i < N . Let pi W
Q
n<N Mn ! Mi be the projection map for i < N : pi .Ex/ D xi . Therefore pi is computable

since the neighborhood graph has pi .Ex/ 2 .Mi /n iff xi 2 .Mi /n:

NGpi
D

[
n;code. Ek/<!

0@0@Y
j<i

.Mj /kj

1A � .Mi /n �

0@ Y
i<j<N

.Mj /kj

1A � ¹nº1A .

Claim 1
Let

�
M,

�
W , and

�
U be polish with bases ¹Mn W n < !º, ¹Wn W n < !º, ¹Un W n < !º respectively. Suppose

f W M ! W and g W U ! U is computable. Therefore F W M �U ! W �U is computable defined by
F.x; n/ D hf .x/; g.n/i.

Proof .:.

For m; k < !, let the basic open set of
�
W �

�
U indexed by code.m; k/ just be the rectangle Wm �Uk . If

NGf D
S
n<! Mf0.n/ � ¹f1.n/º for computable f0; f1 W ! ! ! and similarly NGg D

S
n<! Ug0.n/ �

¹g1.n/º, then we have
NGF D

[
n<!

.Mf0.n/ �Ug0.n// � ¹code.f1.n/; g1.n//º. a

We get closure under substitutions just by repeating applications of Claim 1 and composition. So it suffices to
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show closure under compositions. Suppose f W M ! W and g W W ! U is computable where
�
M,

�
W , and

�
U

are polish with bases ¹Mn W n < !º, ¹Wn W n < !º, and ¹Un W n < !º respectively as expected. Therefore,
g ı f .x/ 2 Un iff hf .x/; ni 2 NGg 2 †

0;W�!
1 iff hx; ni 2 F �1"NGg ,

where F W M � ! ! W � ! is defined by F.x; n/ D hf .x/; ni, which is computable by Claim 1. By Lemma
24A • 11, NGgıf D F

�1"NGg 2 †
0;M�!
1 so that the g ı f composition is computable. a

As in Theorem 21B • 5 andTheorem 21B • 7, we can find computable injections and surjections with N , so long as the
basic open sets we’re working with look sufficiently nice. We will develop a term for such bases later.

24A • 13. Theorem
Let

�
M be polish with metric d . Let ¹�i W i < !º be a dense subset of M yielding basic open sets as open balls:

Mn0;n1;n2
D

²
x 2M W d.x; �n0

/ <
n1

n2 C 1

³
.

Suppose the relations D< � !4, defined by by d.�i ; �j / < n1

n2C1
, and similarly D� � !4 are computable.

Therefore, there is a computable f W N !M that is surjective.

Proof .:.

Regard Mn0;n1;n2
as instead Mq.�/ DM.�/ for some � 2 <!! and computable q W <!! ! !. And we will then

define f .x/ to be the unique element of
T
n<! M.x � n/. So now we must define this q W <!! ! !3 (writing

q.�/ D hq0.�/; q1.�/; q2.�/i). We will always have q1.�/ D 1 and q2.�/ D 2lh.�/C1 for � ¤ ;.

Without loss of generality, assume the metric d has d.x; y/ < 1 for all x; y 2 M (e.g. take instead d 0 D
d
1Cd

).
Let q.;/ D h0; 1; 0i so that M.q.;// DM0;1;0 DM. For n < !, define q0.hni/ D n. For q.�/ already defined
for � ¤ ;, define q0.�_hni/ be the nth least i such thatD<.i; q0.�/; 1; 2lh.�/C2/ if there is one, otherwise leave
q0.�

_hni/ D q0.�/. It should be clear that q is computable in the usual sense. Now define M.�/ to be the basic
open set Mq.�/, and therefore

• For any x 2 N , h�q.x�n/ W n < !i is cauchy and therefore converges in �
M.

• For any y 2M, there is an x 2 N with h�q.x�n/ W n < !i converging to y.
The first of these is immediate by definition: for all � , d.�q0.�/; �q0.�_hni// <

1

2lh.�/C2C1
. For the second, we

just choose any cauchy h�yi
W i < !i converging to y, and then construct such an x D hx.n/ W n < !i: set

x.0/ D y0, and for x.nC 1/, we enumerate the i < ! such that �i such that d.�i ; q.x � nC 1// < 1
2nC2C1

and
set x.nC 1/ to be the least i that is one of the �yn

s. The resulting x 2 N works.

In particular, for M.�/ DMq.�/, for x 2 N , taking f .x/ as the unique element of
T
n<! M.x � n/ yields that

f W N !M is well-defined and surjective. Moreover,
hx; hn0; n1; n2ii 2 NGf iff f .x/ 2Mn0;n1;n2

iff 9m < ! D<.q.x � m/; n0; n1; n2/,

which is †0;N �!3

1 , meaning NGf 2 †
0;N �!3

1 and so f is computable. a

Computable functions also give way to computable relations by way of whether their characteristic functions are com-
putable.

24A • 14. Definition
Let

�
M be polish with basis ¹Mn W n < !º. Let X � M. The characteristic function of X is �X W M ! 2 defined

by �X .x/ D 1 iff x 2 X , and otherwise �X .x/ D 0. For A �M, we call X A-computable iff �X is A-computable.

An alternative characterization is the following, analogous to that for !.
24A • 15. Theorem

Let
�
M be polish with basis ¹Mn W n < !º. Let X � M. Therefore X is A-computable iff X 2 †0;M1 .A/ and

:X 2 †
0;M
1 .A/.
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Proof .:.

We consider only the case where A D ;, as the general case follows from this just by introducing parameters.
Suppose X;:X 2 †0;M1 . Write X D

S
n<! Mf .n/ and :X D

S
n<! Mg.n/ for f; g W ! ! !. Therefore �X is

computable, and so X is, since
NG�X

D �X D
[
n<!

Mf .n/ � ¹1º [
[
n<!

Mg.n/ � ¹0º D
[
n<!

Mf �g.n/ � ¹�even.n/º 2 †
0;M�!
1 .

Now supposeX is computable by �X with NG�X
2 †

0;M�!
1 . ThereforeX 2 †0;M1 .A/ as the preimage of NG�X

under the map x 7! hx; 1i, and similarly :X 2 †0;M1 .A/ as the preimage under the map x 7! hx; 0i. a

We can also generalize†01 and its closure under computable preimages to further along other levels in another hierarchy,
being the lightface variant of the borel hierarchy. We will have almost no need of †0˛ for large ˛, and so only the first
!-levels of the hierarchy are presented here, called the arithmetical hierarchy, analogous to that on ! defined for
computability. But in principle, we may go beyond to explore†0˛ for ˛ < !1 (and in fact just for ˛ < !CK

1 < !1), the
hyperarithmetical hierarchy, and this is covered further in Appendix B.

§24B. The arithmetical hierarchy for polish spaces

We will now be concerned with two kinds of projections: projections over !, corresponding to countable unions in
the borel hierarchy; and projections over M, just as in the projective hierarchy. As such, we introduce the notation
9! to denote projection where we eliminate a copy of ! from the product space: for X � M � !, x 2 9!X iff
9n 2 ! .hx; ni 2 X/ so that 9!X � M. Another way of writing this is just that 9!X D pX , but 9! makes it more
clear what exactly is being projected, or really removed: a copy of !. And we can do similarly for the operations 9N

or 9M, and even the 8 versions of these: 8! is the operation :9!:, for example.
24B • 1. Definition

Let
�
M be polish with basis ¹Mn W n < !º. Let A �M. We define the (relativized or A-) arithmetical hierarchy by

recursion on n < ! as follows: for X �M,
• X is †0;M1 .A/ iff X is as before in Definition 24A • 2 and Definition 24A • 5;
• X is…0;M

n .A/ iff M nX is †0;Mn .A/;
• X is †0;MnC1.A/ iff X D 9!Y for some…0;M�!

n .A/-set Y �M � !; and
• X is �0;Mn .A/ iff X is †0;Mn .A/ and…0;M

n .A/.

Continuing the fact that this is really the computable analog of the borel hierarchy, we have that …0
1 consists of the

branches of computable trees on !.
24B • 2. Theorem

Let X � N . Therefore X 2 …0
1 iff there is some computable tree T � <!! where X D ŒT �.

Proof .:.

Suppose membership in T is computable. Therefore x 2 ŒT � iff 8n < ! .x � n 2 T /, which is…0
1 by Corollary

24A • 4. Similarly, if X 2 …0
1, then there is some computable R � <!! where x 2 X iff 8n 2 ! R.x � n/. So

take T D ¹� 2 R W 8� 6| � R.�/º and get that T is still computable with ŒT � D X . a

Looking back to Definition 24B • 1, it follows that A-computable sets are �0;M1 .A/. Moreover,

†
0;M
nC1.A/ D 9

!…0;M�!
n .A/ D 9!:†0;M�!

n .A/.
And we can continue this on: any †03-set has the form

x 2 X iff 9m2 2 ! :P2.x;m2/ for P2 2 †0;N �!
2

iff 9m2 2 ! :9m1 2 ! :P1.x;m1; m2/ for P1 2 †0;N �!2

1

iff 9m2 2 ! 8m1 2 ! P1.x;m1; m2/ for P1 2 †0;N �!2

1 .
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The analogy between the arithmetical hierarchy and the lévy hierarchy of formulas (with quantification only over !)
should then be clear, although we won’t discuss this analogy formally until the end of the section. More than stopping
at just †01-relations, for �

N , we can actually continue down to computable relations over <!! by Corollary 24A • 4:
for X 2 †01,

x 2 X iff 9m 2 ! R.x � m/ for R � <!! computable.
So really, the basis for the arithmetical hierarchy is the computable relations over !. This also gives an alternative
way of generating the arithmetical hierarchy, as negations of computable relations are still computable: we start with
computable relations, and alternatively add 9 and 8 quantifiers over !.

As usual, we should establish the expected closure and inclusion properties.

�01

†01

…0
1

�02

†02

…0
2

� � �
¨
¨

¨

¨

¨
¨ ¨

¨

24B • 3. Figure: The arithmetical hierarchy

First we have the following useful result expanding Lemma 24A • 11. In particular, coding over products of ! or N

makes no difference.
24B • 4. Result

Let
�
M and

�
W be polish with bases ¹Mn W n < !º and ¹Wn W n < !º. Let 0 < n < ! and let f W M ! W be

computable. Therefore if X 2 †0;Wn then f �1"X 2 †0;Mn , and similarly for the other arithmetical pointclasses.

Proof .:.

Lemma 24A • 11 establishes the result for n D 1. Note that complements work nicely with preimages, yielding
the result for …0;W

1 , …0;M
1 as well. For n C 1, let X D 9!Y where Y 2 …0;W�!

n . Rather than f , consider
Of WM�! ! W �! defined by Of .x;m/ D hf .x/;mi, which is computable by Result 24A • 12. So inductively,
Of �1"Y 2 …0;M�!

n and it should be clear that f �1"X D 9!. Of �1"Y / 2 †0;MnC1. a

We now aim to establish the basic inclusion properties giving the usual argyle picture of Figure 24B • 3. This un-
fortunately requires some restrictions on what the basic open sets of our polish space are, however, as in Theorem
24A • 13.

24B • 5. Definition
Let

�
M be polish with metric d . A computable presentation of

�
M is a dense set ¹�i W i < !º � M such that the

relationsD� � !
4 andD< � !4 are computable, defined by

D�.i; j; p; q/ iff d.�i ; �j / � p=.q C 1/, and
D<.i; j; p; q/ iff d.�i ; �i / < p=.q C 1/.

A basis ¹Mn W n < !º is presented iff there is some computable presentation ¹�i W i < !º of �
M such that each Mn

is the open ball around �n0
of radius n1=.n2 C 1/, where n D code.hn0; n1; n2i/.

The basic idea here is that our choice of basis isn’t too outlandish: it’s coming from open balls on dense sets rather
than a mix of simple sets and horribly complicated open sets. For example, any polish space

�
M without isolated points

has uncountably many open sets while only countably many †0;M1 -sets (for whatever basis ¹Mn W n < !º we have).
Hence some open set U 2

�
†
0;M
1 n†

0;M
1 yields that U is “complicated”. But we could have just as easily considered

¹Mn W n < !º [ ¹U º as our basis, yielding that U is trivially †0;M1 , against our intuition. This has the negative effect
that U might not be at all computably related to to the other basic open sets in terms of codes—especially if we added
infinitely many such U—and so things like intersections of basic open sets suddenly difficult to deal with. But so long
as our basis is presented, we have the natural properties one would expect, because the basic open sets work well with
each other.
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It should be clear that the canonical bases of the baire space and its products with itself and ! can be presented in this
sense. This is obvious for ! if we take the computable presentation ! with the basis ¹¹nº W n < !º[¹!º, and similarly
forN . For products, for example withN n, we just take�i to be h�N

i0
; � � � ; �N

in
i for n < ! with i D code.hi0; � � � ; ini/.

The fine details ofD� andD< are left to the reader in this example, but it should be clear from the exposition back in
Section 21 and Example 21A • 13 that the maps are computable. This whole topic is brought up only for the following
lemma (and its consequences).

24B • 6. Result
Let

�
M be polish with presented basis ¹Mn W n < !º, A 2 M, and 0 < n < !. Therefore �0;Mn .A/ � †

0;M
n .A/ �

�
0;M
nC1.A/, and similarly for…0;M

n .A/.

Proof .:.

We prove this for A D ; for the sake of notation. By definition, �0;Mn � †
0;M
n so we must show

1. †0;Mn � …
0;M
nC1; and

2. †0;Mn � †
0;M
nC1.

(1) is easy: for X 2 †0;Mn , X � ! 2 †0;M�!
n by Result 24B • 4 so that :X � ! is …0;M

n and thus :X D
9!.:X � !/ 2 †

0;M
nC1. So X 2 …

0;M
nC1.

Showing (2) is more difficult, and uses the next claim to show the base case of †0;M1 � †
0;M
2 .

Claim 1
There is a computable h W !2 ! ! where M nMn D

S
k<! Mh.n;k/ if M nMn ¤ ;.

Proof .:.

Let ¹�i W i < !º be a computable presentation and assume MnMn ¤ ;. Note that x …Mn iff d.x; �n0
/ �

n1

n2C1
. Since the �i s are dense, by the triangle inequality, this is equivalent to the existence of i; c1; c2 < !

where
a. d.x; �i / < c1

c2C1
, i.e. x 2Mcode.i;c1;c2/;

b. d.�i ; �n0
/ � n1

n2C1
C

2c1

c2C1
, i.e. :D�.i; n0; n1 � .c2 C 1/C 2 � c1 � .n2 C 1/; .n2 C 1/.c2 C 1/� 1/.

SoMnMn is the union ofMcode.i;c1;c2/ where (b) holds. Note that (b) holding of i; c1; c2 < ! is computable.
Hence we can enumerate them: h.n; 0/ is the least (code of a) triple where (b) holds, and h.n; kC 1/ is the
least (code of a) triple � < k with � > h.n; k/ (setting h.n; k C 1/ D h.n; k/ if there is no such triple).
Then h is computable with M nMn D

S
k<! Mh.n;k/. a

Now we show (2) by induction on n. For n D 1, let X D
S
n<! Mf .n/ for f W ! ! ! computable. If X DM,

then X is easily †0;M2 : ; 2 †0;M�!
1 implies M � ! 2 …

0;M�!
1 with then M D 9!.M � !/ 2 †

0;M
2 .

So without loss of generality, assume X ¤M and therefore M nMf .n/ ¤ ; for each n < !. Note that

X D 9!
�[

n<!
Mf .n/ � ¹nº

�
D p

�
M � ! n

�
M � ! n

[
n<!

Mf .n/ � ¹nº
��

D 9
!
�
M � ! n

[
n<!

.M nMf .n// � ¹nº
�
.

Applying Claim 1, we have that
S
n<!.M nMf .n//� ¹nº D

S
n;k<! Mh.f .n/;k/ � ¹nº 2 †

0;M�!
1 and therefore

X D 9!
�

M � ! n
[

n;k<!
Mh.f .n/;k/ � ¹nº„ ƒ‚ …

…
0;M�!
1

�
2 †

0;M
2 .

This shows the base case of †0;M1 � †
0;M
2 . For the inductive case n > 1, let X 2 †0;Mn so that X D 9!Y for

some Y 2 …0;M�!
n�1 . Inductively,†0;Mn�1 � †

0;M
n and therefore:†0;Mn�1 � :†

0;M
n , in other words…0;M

n�1 � …
0;M
n .

In particular, Y 2 …0;M�!
n and therefore X D 9!Y 2 †0;MnC1. a
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In particular, through a computable coding and a computable decoding, we can in essence identify the arithmetical
hierarchy on products of baire space with itself and ! as the one just on baire space.

Now some basic closure properties can be established. Mostly these just come the fact that the constructions for the
usual borel pointclasses can be done in a computable manner, or absorbed into defining formulas through a simple
coding.

24B • 7. Lemma
Let

�
M be polish with presented basis ¹Mn W n < !º. Let 0 < n < !1 and A 2M. Therefore

1. †0;Mn .A/ is closed under [, \, 9! , and A-computable preimages;
2. …0;M

n .A/ is closed under [, \, 8! , and A-computable preimages; and
3. �0;Mn .A/ is closed under [, \, :, and A-computable preimages.

Proof .:.

We only prove the result for A D ; for the sake of notation. The computable preimages were proven in Result
24B • 4. Let ¹�i W i < !º �M be a computable presentation.

1. • For n D 1, this is immediate: for X D ;, this is trivial. For X ¤ ;, if X 2 †0;M�!
1 , then for some

computable f0; f1 W ! ! !, we haveX D
S
n<! Mf0.n/�¹f1.n/º so that 9!X D

S
n<! Mg.n/ for

g defined as follows: g.0/ is the leastm with 9n 2 ! .Mm � ¹nº � X/; and recursively g.nC 1/ D
f0.m0/ for the leastm D code.m0; m1/ < n such that f1.m0/ D m1 and8k < m0 .f1.m0/ > g.k//
(set g.nC 1/ D g.0/ if there is no such m). Thus g is computable and witnesses that 9!X 2 †0;M1 .

For n > 1, let X be †0;M�!
n so that X D 9!Y for some Y 2 …0;M�!�!

n�1 so by (de)coding with
Result 24B • 4, Y 0 D ¹hx; code.�/i W hx; �i 2 Y º is…0;M�!

n�1 with 9!X D 9!Y 0 2 †
0;M
n .

• For finite unions, proceed by induction. This is immediate for †0;M1 , as X D
S
n<! Mf .n/ and Y DS

n<! Mg.n/ haveX[Y D
S
n<! Mh.n/ where h D f �g. Now supposeX D 9!X 0 and Y D 9!Y 0

where X 0; Y 0 2 …
0;M�!
n . Inductively, X 0 [ Y 0 2 …

0;M�!
n so that X [ Y D 9!.X 0 [ Y 0/ 2 †

0;M
n .

• For finite intersections, we again proceed by induction. Suppose X D
S
n<! Mf .n/ 2 †01 and

Y D
S
n<! Mg.n/ 2 †

0
1 for computable f; g W ! ! <!!.

Claim 1
There is a computable h W !3 ! ! where h.n;m; k/ D 0 iff Mn \Mm D ;, and otherwise
Mn \Mm D

S
k<! Mh.n;m;k/�1.
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Proof .:.

Given an h0 that satisfies Mn \Mm D
S
k<! Mh0.n;m;k/, we merely define h.n;m; k/ by

h.n;m; k/ D

´
h0.n;m; k/C 1 if Mn \Mm ¤ ;

0 otherwise.
Note that Mn \Mm D ; is computable from n and m: Mn \Mm D ; iff d.�n0

; �m0
/ <

n1

n2C1
C

m1

m2C1
, i.e.D<.n0; m0; n1 � .m2 C 1/Cm1 � .n2 C 1/; .n2 C 1/ � .m2 C 1//.

So now we work towards defining such an h0: assume Mn \Mm ¤ ;. Note that each Mk is
the open ball of radius k1=.k2 C 1/ around �k0

where k D code.hk0; k1; k2i/. In particular,
x 2 Mn \Mm iff d.x; �n0

/ < n1

n2C1
^ d.x; �m1

/ < m1

m2C1
. By the density of the �i s, this

happens iff there is some �i within c1

c2C1
of x and within n1

n2C1
�

c1

c2C1
of �n0

, and similarly for
�m0

. So x 2Mn \Mm iff there are some i; c1; c2 2 ! where
a. x 2Mcode.i;c1;c2/;
b. c1 � .n2 C 1/ < n1 � .c2 C 1/ and c1 � .m2 C 1/ < m1 � .c2 C 1/;
c. D<.i; n0; n1 � .c2 C 1/ � c1 � .n2 C 1/; .n2 C 1/ � .c2 C 1/ � 1/; and
d. D<.i; m0; m1 � .c2 C 1/ � c1 � .m2 C 1/; .m2 C 1/ � .c2 C 1/ � 1/.

Hence Mn \Mm is the union of Mcode.i;c1;c2/ for the i; c1; c2 where (b)–(d) hold. So define by
recursion h0.n;m; 0/ to be the least (code of a) triple where (b)–(d) hold; and h0.n;m; k C 1/

to be the least such (code of a) triple � < k with � > h0.n;m; k/ (set h0.n;m; k C 1/ D

h0.n;m; k/ if there are no such triples). This h0 is clearly computable (and total) with Mn \

Mm D
S
k<! Mh0.n;m;k/. a

Thus X \ Y D
S

hn;m;ki2P Mh.f .n/;g.m/;k/ where P D ¹hn;m; ki W h.f .n/; g.m/; k/ ¤ 0º which
is computable and clearly gives X \ Y as †0;M1 .

For n > 1, suppose X D 9!X 0 and Y D 9!Y 0 for X 0; Y 0 2 …
0;M�!
n�1 . By Result 24B • 4, consider

X 00
D ¹hx; h�0; �1ii 2M � !2 W hx; �0i 2 X

0
º 2 …

0;M�!2

n�1

Y 00
D ¹hx; h�0; �1ii 2M � !2 W hx; �1i 2 Y

0
º 2 …

0;M�!2

n�1 .

Inductively, Z D X 00 \ Y 00 2 …
0;M�!2

n�1 and it’s not difficult to see that 9!Z D X \ Y , as desired.

2. As complements of†0;Mn -sets, this is clear: closure under finite unions follows from†0;Mn ’s closure under
finite intersections; and closure under 8! follows from †0n’s closure under 9! .

3. Closure under finite unions and intersections follows just from the fact that both†0;M˛ and…0;M
˛ are closed

under these. For complements, X 2 �0;M˛ implies X 2 †0;M˛ so that M n X 2 …
0;M
˛ . But we also have

from X 2 �
0;M
˛ that X 2 …0;M

˛ , which tells us N nX 2 †
0;M
˛ and hence N nX 2 �

0;M
˛ .. a

As a result of Theorem 24A • 15 and †0;M1 ’s closure under 9! , we have an alternative characterization of the arith-
metical hierarchy: we start with �01-relations and then add 9! and 8! quantifiers to get the †0n and…0

n pointclasses.
24B • 8. Corollary

Let
�
M be polish with presented basis ¹Mn W n < !º. Let A �M and X �M. Let 0 < n < !. Therefore,

• X is †0;Mn .A/ iff there is some R � �
0;M�!n

1 .A/ where X D 9!8!9! � � �Q!R, alternating n quantifiers
whereQ is ‘9’ if n is odd and ‘8’ if n is even.

• X is …0;M
n .A/ iff there is some R � �

0;M�!n

1 .A/ where X D 8!9!8! � � �Q!R, alternating n quantifiers
whereQ is ‘8’ if n is odd and ‘9’ if n is even.

229



THE LIGHTFACE HIERARCHIES CH IV §24B

Proof .:.

Proceed by induction on n with A D ; for the sake of notation. For n D 1, if X has the form 9!R for R 2
�
0;M�!
1 � †

0;M�!
1 , then X is†0;M1 by Lemma 24B • 7. If X is†0;M1 , we must show that there is a computable

R �M�! where x 2 X iff 9n 2 ! R.x; n/. SinceX D
S
n<! Mf .n/ for some computable f W ! ! !, define

R D
S
n<! Mf .n/ � ¹nº. So clearly 9!R D X , and therefore it suffices to show the following claim.

Claim 1
R is computable.

Proof .:.

By Theorem 24A • 15, it suffices to show R;:R 2 †
0;M
1 . Clearly R 2 †0;M1 and :R is †0;M1 since

�
M’s basis is presented: let ¹�i W i < !º be a computable presentation of

�
M. Therefore, for any n D

code.n0; n1; n2/ < !, x … Mn iff the distance between x and n0 is at least n1

n2C1
. By the density of the

presentation, this happens iff there is some i < ! and c1; c2 < ! where x is within c1

c2C1
of �i , and �i is

not within c1

c2C1
C

n1

n2C1
, i.e. for

B D ¹hi; c1; c2i 2 !
3
W :D<.i; n0; c1 � .n2 C 1/C n1 � .c2C/; .c2 C 1/ � .n2 C 1/ � 1/º,

we get M nMn D
S

hi;c1;c2i2B Mcode.i;c1;c2/. So there is some h W !2 ! ! where:Mn D
S
k<! Mh.n;k/.

In particular,
:R DM � ! n

[
n<!

Mf .n/ � ¹nº D
[
n<!

.M nMf .n// � ¹nº D
[
n;k<!

Mh.f .n/;k/ � ¹nº 2 †
0;M�!
1 . a

For n C 1, any X 2 †0;MnC1 has X D 9!Y for some Y 2 …0;M�!
n where inductively Y D 8!9! � � �R for

some R 2 �0;M�!�!n

1 D �
0;M�!nC1

1 and therefore X D 9!8!9! � � �R as in the problem statement. Through
negations, it’s easy to show the result for…0;M

n from the result on †0;Mn . a

We now aim to show that all of the levels of these hierarchies are distinct in the same sort of way as with the borel
hierarchy in Theorem 22A • 13, and with the arithmetical hierarchy on ! regarding computability. Recall the notion
of a universal set from Definition 22A • 12. The fact that the pointclass in question there is presented as “boldface”
and a subset of P .N / (rather than the powerset of an arbitrary polish space) is irrelevant: the idea is just that we
have parametrized every element of the pointclass � by a real number. In the case of †0ns, we actually are doing this
relative to a natural number. Rather than modify the definition and show that the two work out equivalently, we will
just identify the open set ¹eº � ! with the cone Nhei � N .

24B • 9. Theorem
For each n < !, there is a †0n-universal set and a…0

n-universal set.

Proof .:.

Mostly this just mimics the proof of Theorem 22A • 13 in a computable way. Again, it suffices to give just †0n-
universal sets, since if U is such a set, :U is…0

n-universal.

For n D 1, we just consider the computable map f .e; n/ D ŒŒe��.n/ where ŒŒe�� is the computable function
computed by the program (coded by) e 2 !. Take U D

S
e;n<! Nhei �Nf .e;n/ so that U 2 †0;N �!

1 . Hence for
r D hrn W n < !i 2 N , the section Ur D ¹x 2 N W hr; xi 2 U º D

S
n<! Nf .r0;n/ D

S
n<! NŒŒr0��.n/. Any

X 2 †01 is
S
n<! NŒŒe��.n/ for some e and therefore X D Uhei_r for any r 2 N .

For nC 1, let U be…0
n-universal. Using a computable coding and decoding with Result 24B • 4, we can instead

regard U � N 2 � ! as…0;N �!
n -universal, in which case pN �NU is †0nC1-universal. a
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24B • 10. Corollary
For 0 < n < !, �0n ¨ †0n ¨ �0nC1, and similarly for…0

n.

Proof .:.

Let U � N �N be †0n-universal as per Theorem 24B • 9. By coding, consider instead U 0 D ¹x � y W hx; yi 2

U º 2 †0n. Therefore U 0 2 †0n n …
0
n D †0n n �

0
n. To see this, otherwise we’d have :U 0 2 †0n as well as

D D ¹x 2 N W x � x 2 :U 0º as the computable preimage of :U 0 under the map x 7! x � x. ThereforeD D Ur
for some r 2 N where then r 2 Ur iff r 2 D iff r � r 2 :U 0 iff r … Ur , a contradiction. So there can be no such
r , meaning :U 0 … †0n i.e. U 0 … …0

n. This shows �0n ¨ †0n.

To see that †0n ¨ �0nC1, just note that :U 0 2 …0
n � �0nC1 but :U 0 … †0n for the reasons as above. Hence

:U 0 2 �0nC1 n†
0
n. a

These can also be easily relativized to A � N just by using parameters over the slightly larger spaces N �N (or via
coding).

§24C. The analytical hierarchy

The analytical hierarchy is incredibly important, as much as the projective hierarchy is, given that it is a refinement of it.
So we give a definition analogous to that of the projective hierarchy. Given that the arithmetical hierarchy corresponds
to adding quantifiers over !, the analytical hierarchy corresponds to adding quantifiers over the (potentially) larger
polish space. In particular, we will use 9M defined by

9
MX D ¹x W 9y 2M .hx; yi 2 X/º,

and similarly 8M is just :9M:. We could also do this just with coding rather than actual order pairs, as we will later
show.

24C • 1. Definition
Let

�
M be polish with basis ¹Mn W n < !º. We form the relativized analytical hierarchy as follows: for X � M,

A �M, and n < !,
• X is †1;M0 .A/ iff X is †0;M1 .A/;
• X is…1;M

n .A/ iff N nX is †1;Mn .A/;
• X is †1;MnC1.A/ iff X D 9MY for some Y 2 …1;M�M

n .A/; and
• X is �1;Mn .A/ iff X is both †1;Mn .A/ and…1;M

n .A/.
These †1;Mn .A/,…1;M

n .A/, �1;Mn .A/ are the A-analytical pointclasses, and the sets in them A-analytical. We write
just †1;Mn for A D ; and just †1n for �

M D
�
N .

One gets the expected properties from the notation and definition, similar to Definition 22C • 3 and Figure 22C • 4.

†01

…0
1

†0
!CK

1

†10

…1
0

D

D

D

�11

†11

…1
1

�12

†12

…1
2

� � �

¨

¨

¨
¨

¨

¨

¨
¨ ¨

¨

24C • 2. Figure: The analytical hierarchy

Here†0
!CK

1

marks the end of the hyperarithmetical hierarchy, an extenion of the arithmetical hierarchy. The details aren’t
important (especially because they haven’t been introduced) and its inclusion here is just to strengthen the analogy with
the borel hierarchy. Just as the (hyper)arithmetical hierarchy relativizes to the borel hierarchy.

We can do the same analysis as with Corollary 24B • 8 to get that any †1;M1 -relation is just of the form 9M8!R for
R 2 �

0;M�M�!
1 , and so on.
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24C • 3. Corollary
Let

�
M be polish with presented basis ¹Mn W n < !º. Let A �M and X �M. Let 0 < n < !. Therefore,

• X is†1;Mn .A/ iff there is some A-computable R �MnC1 �! where X D 9M8M9M � � �Q!R, alternating n
quantifiers whereQ is ‘9’ if n is odd and ‘8’ if n is even.

• X is…1;M
n .A/ iff there is some A-computable R �MnC1 � ! where X D 8M9M8M � � �Q!R, alternating

n quantifiers whereQ is ‘8’ if n is odd and ‘9’ if n is even.

Proof .:.

Proceed by induction on n with A D ; for the sake of notation. For n D 1, if X has the form 9M8!R for
R 2 �

0;M2�!
1 � …

0;M2�!
1 , then X is †1;M1 by Lemma 24B • 7 (2). This shows one direction. Furthermore, if

X is †0;M1 , then X D 9MY for some Y 2 …0;M�M
1 which, by Corollary 24C • 3, takes the form 8!R for some

computable R �M2 � ! where then X D 9M8!R, as desired.

For nC 1, any X 2 †1;MnC1 has X D 9MY for some Y 2 …1;M�!
n where inductively Y D 8M9M � � �R for some

computable R and therefore X D 9M8M9M � � �R as in the problem statement. Through negations, it’s easy to
show the result for…1;M

n from the result on †1;Mn . a

Other polish spaces will be practically irrelevant when working with
�
N , as we will see later. As a result, we will

focus just on
�
N and ! for the remainder of the section, allowing ourselves to code products freely. We now show the

following expected closure properties of the analytical pointclasses.
24C • 4. Result

Let A � N and 0 < n < !. Therefore,
• †1n.A/ is closed under \, [, 9! , 8! , and 9N ;
• …1

n.A/ is closed under \, [, 9! , 8! , and 8N ; and
• �1n.A/ is closed under \, [, 9! , 8! , and :.

Proof .:.

Note that computable relations—being �0;!1 —are closed under _, ^, and :. Proceed by induction on n for all
of these pointclasses simultaneously, assuming for simplicity that A D ;.

• For n D 1, an X � N is †11.A/ iff X D 9N Y for some Y 2 …0
1, meaning

x 2 X iff 9y 2M 8n 2 ! R.x � n; y � n/
for some computable relation R. So if X0; X1 2 †11, are given by computable relations R0 and R1 respec-
tively as above, then
x 2 X0 ^X1 iff 9y0 2M 9y1 2M 8n 2 ! .R0.x � n; y0 � n/ ^R1.x � n; y1 � n//

iff 9y 2M 8n 2 ! .y D y0 � y1 ^R0.x � n; y0 � n/ ^R1.x � n; y1 � n//
x 2 X0 _X1 iff 9y 2M 8n 2 ! .R0.x � n; y � n/ _R1.x � n; y � n//
x 2 9!X0 iff 9m 2 ! 9y 2M8n 2 ! R0.x � n; y � n;m/

iff 9y 2M 8n 2 ! .y D hy0i
_y0
^R0.x � n; y0; y0//

x 2 8!X0 iff 8m 2 ! 9y 2M 8n 2 ! R0.x � n; y � n;m/
iff 9y 2M 8n 2 ! .y D hyi 2M W i < !i ^ n D code.n0; n1/ ^R0.x � n0; yn1

� n0; n1//.
Here, the formulas after the quantifiers are all computable. In some sense, we should be a bit careful, since
y D hyi W i < !i isn’t computable over !. But it’s not difficult to see that we’re just leaving out the
relevant restrictions: the computable map hn0; n1i 7! m where y � m contains the info of yn1

� n0.

For n C 1, the inductive results for …1
n yields the same results for †1nC1 D 9

N…1
n by similar ideas as

above: †1nC1 _ †
1
nC1 � †1nC1, 9!†1nC1 � †1nC1, and 9N†1nC1 � †1nC1 are easy by any computable
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coding of pairs. Conjunctions and disjunctions follow nicely by coding as well: R;R0 2 …1
n yields

9y R.x; y/ ^ 9y R0.x; y/ iff 9y0 9y1.R.x; y0/ ^R.x; y1//,
which is †1nC1. 8!†1nC1 � †

1
nC1 by the same reasoning above: for R 2 …1

n,
x 2 8!9NR iff 8m 2 ! 9y 2 N R.x; y;m/

iff 9y 2 N 8m 2 ! .y D hyi 2 N W i < !i ^R.x; ym; m//.

• These follow from the results on †1n.

• All but negation follows from the results on†1n and…1
n. For negation,X 2 †1n iff:X 2 …1

n, and similarly
X 2 …1

n iff :X 2 †1n. Hence X 2 �1n implies X;:X 2 †1n \…1
n D �

1
n. a

We also have the expected containments.
24C • 5. Result

Let n < !. Therefore �1n � †1n � �1nC1, and similarly for…1
n.

Proof .:.

Proceed by induction on n. We always have �1n � †1n just by definition. So we need to show
1. †1n � …1

nC1; and
2. †1n � †1nC1.

For (1), we easily have that if X 2 †1n, then X �M 2 †
1;M�M
n and so 8MX �M D X 2 …1

nC1. For (2), we
just add a dummy quantifier at the beginning and rely on coding: any X 2 †1n has X D 9N8N � � �PNQ!R for
some computable R, where ¹P;Qº D ¹‘9’; ‘8’º and they continue the alternating pattern. As a result,

x 2 X iff 9y0 2 N 8y1 2 N � � �Pyn 2 N Qm 2 ! R.x; Ey;m/

iff 9y0 2 N 8y1 2 N � � �Pyn 2 N Qz 2 N Pk 2 ! R.x; Ey; z0/,
since computable relations are closed under computable substitution (by Result 24B • 4), it follows that R0 D

¹hx; Ey; z; ki 2 N �N n �N � ! W R.x; Ey; z0/º is also computable with clearly X D 9N8N � � �PNQNP !R0,
and thus X 2 †1nC1. a

Firstly, note that, just as with
�
†1
1 , there are many different equivalent definitions for †11 that we will end up proving.

This suggests †11 is quite canonical, or at least a natural idea to consider.
24C • 6. Result

Let X � N . Therefore the following are equivalent.
1. X D ¹x W 9y 2 N .x � y 2 Y /º for some Y 2 …0

1:.
2. X D 9N Y for some Y 2 …0;N �N

1 .
3. X D 9MY for some polish

�
M with presented basis ¹Mn W n < !º and some Y 2 …0;N �M

1 .
4. X D 9N Y for some arithmetical Y � N �N .
5. X D imf for some computable f W N ! N .

Proof .:.

(1)$ (2) Suppose (1) holds with Y 2 …0
1. Consider Y 0 D ¹hx; yi W x � y 2 Y º, the computable preimage of

hx; yi 7! x � y so that Y 0 is also…0
1 by Result 24B • 4, and clearly X D pY 0. Similarly, if (2) holds,

Y 0 D ¹x �y W hx; yi 2 Y º is the continuous preimage of x �y 7! hx; yi so that A D ¹x W 9y .x �y 2
Y 0/º. For the remainder of the proof, we therefore identify …0;N �N

1 and …0
1, and similarly for the

other arithmetical pointclasses (partially just for the sake of notation).

(2)$ (3) One direction is easy as
�
N D

�
M shows (2)! (3). So suppose (3) holds, working towards (2). By
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Theorem 24A • 13, there is a computable surjection f W N ! M. So define F W N �N ! N �M

by F.x; y/ D hx; f .y/i and set Y 0 D F �1"Y 2 …0;N �N
1 . We then have X D 9MY D 9N Y 0 2 †01,

i.e. (2) holds.

(2)$ (4) One direction is easy as every …0;N �N
1 -set is arithmetical. So assume (4). Since 9N†11 (using 9N

in the sense of (1)) is contained in †11, it suffices to show
S
n<! †

0
n � †11 as then 9N

S
n<! †

0
n �

9N†11 D †
1
1. To do this, it suffices to show all computable relations are†11, and†11 is closed under 9!

and 8! . By Corollary 24C • 3, this generates the arithmetical hierarchy, showing that all arithmetical
sets are†11. Clearly all computable relations are†11 as they are all…0

1 and anyY 2 …0
1 hasY �N 2 …0

1

where then 9N .Y �N / D Y 2 †11. Result 24C • 4 implies †11 is closed under 8! and 9! , and so the
arithmetical hierarchy is contained in †11 which is closed under 9N . Hence (2) holds.

(2)! (5) LetX D 9N Y for some Y 2 …0
1. Knowing a bit about metric spaces, since…0;N 2

1 �
�
…0
1 implies Y is

a closed subset of N �N , Y (with the restricted topology) is complete and hence also a polish space.
So by Theorem 24A • 13, there is a computable surjection f W N ! Y where then the projection map
p1.x; y/ D x has p1 ı f W N ! N as computable with im.p1 ı f / D 9N Y D X .

(5)! (4) If f is computable then the neighborhood graph of f as a relation is †0;N �!
1 . Hence f as a relation

is…0
2: f .x/ D y iff 8m < ! .y � m C f .x//. Since y � m C f .x/ is †01, it follows that f .x/ D y

is…0
2 so that Y D f implies X D imf D 9N Y for Y 2 …0

2. a

We also get that the above are equivalent with X D 9N Y for some hyperarithmetical Y � N �N , but this will not
be proven here.

24C • 7. Result
For n < !, †1n,…1

n, and�1n are all closed under computable preimages, meaning that if
�
M is polish with presented

basis ¹Mn W n < !º and f W N ! M is computable with X 2 †1;Mn , then f �1"X 2 †1n, and similarly for the
other pointclasses.

Proof .:.

Proceed by induction on n. The case of n D 0 was shown in Lemma 24B • 7. For n C 1, suppose X D 9MY

for Y 2 …1;M�M
n . Therefore f .x/ 2 X iff 9y 2 M .hf .x/; yi 2 Y /. Inductively, hf .x/; yi 2 Y defines a

…
1;N �M
n -relation Y 0 and therefore f �1"X D 9MY 0 2 †1nC1 by Result 24C • 6 (3). The result for…1

nC1 follows
easily by taking negations, and the result for �1nC1 follows from the results on †1nC1 and…1

nC1. a

This shows that computable coding and decoding does no harm, as expected, and so as indicated above, we will work
merely with

�
N and freely consider, e.g. †1n instead of more technically proper †1;N �N

n .

We also get a connection between the analytical and projective hierarchies, just as with the borel hierarchy and the
(hyper)arithmetical hierarchy.

24C • 8. Result
For n < !,

�
†1
n D

S
A2N †1n.A/; and similarly for

�
…1
n and…1

n. Equivalently, �
†1
n D †

1
n.N /.

Proof .:.

Proceed by induction on n. For n D 0, this follows from the result on the borel hierarchy, Corollary 24A • 6.
For n C 1, if X 2

�
…1
n then inductively X 2 …1

n.A/ for some A 2 N so that 9NX 2 †1nC1.A/ and thus
�
†1
nC1 D

S
A2N †1nC1.A/.

Given that the result holds for
�
†1
n, it’s clear that it holds for �

…1
n, since

�
…1
n D :�

†1
n D :

[
A2N

†1n.A/ D
[

A2N
:†1n.A/ D

[
A2N

…1
n.A/. a
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We now aim to show that all of the levels of the analytical hierarchy are distinct in the same sort of way as with
arithmetical, borel, and projective hierarchies in Theorem 24B • 9, Theorem 22A • 13, and Theorem 22C • 13.

24C • 9. Theorem
For each n < !, there is a †1n-universal set and a…1

n-universal set.

Proof .:.

Mostly this just mimics the proof of Theorem 22C • 13 in a computable way. Again, it suffices to give just †1n-
universal sets, since if U is such a set, :U is…1

n-universal.

For n D 1, there is a †10 D †01-universal set by Theorem 24B • 9. For n C 1, let inductively W � N 3 be
…1
n-universal, i.e. for every B 2 …1

n with B � N �N , there is some r 2 N where B D Wr D ¹hx; yi 2 N 2 W

hr; x; yi 2 W º. Consider then
U D 9NW D ¹hr; xi 2 N 2

W 9y 2 N .hr; x; yi 2 W /º.
It’s not difficult to see that U 2 †1nC1 and is †1nC1-universal. To see the latter, any X D 9N Y for Y 2 …1

n has
an r 2 N where

X D 9NWr D ¹x 2 N W 9y 2 N .hr; x; yi 2 W /º D ¹x 2 N W hr; xi 2 U º D Ur . a

24C • 10. Corollary
For n < !, �1n ¨ †1n ¨ �1nC1, and similarly for…1

n.

Proof .:.

Let U � N � N be †1n-universal as per Theorem 24C • 9. Therefore U 2 †1n n…1
n D †1n n �

1
n. To see this,

otherwise we’d have :U 2 †1n as well as D D ¹x 2 N W hx; xi 2 :U º as the computable preimage of :U
under the map x 7! hx; xi. Therefore D D Ur for some r 2 N where then r 2 Ur iff r 2 D iff hr; ri 2 :U iff
r … Ur , a contradiction. So there can be no such r , meaning :U … †1n i.e. U … …1

n. This shows �1n ¨ †1n.

To see that †1n ¨ �1nC1, just note that :U 2 …1
n � �1nC1 but :U … †1n for the reasons as above. Hence

:U 2 �1nC1 n†
1
n. a

§24D. The lightface hierarchies and definability

Thus far our discussions have been a mix of topology and computability, neither of which is particularly reminiscent
of the “descriptive” part of descriptive set theory. One may recall, however, that the arithmetical hierarchy on ! from
computability theory lines up with the definable relations on ! under the levy hierarchy: †0;!n D †N

n. In generalizing
this, we need either to introduce a second-order extension of the first-order model N D h!; 0; 1;C; �i—and thus
introduce second-order logic as well—or a more complicated first-order structure. We will go with the former.

Second-order logic just allows additional quantifiers over the powerset of themodel’s universe. The syntax is practically
identical to first-order logic, except that there are now two types of variables: ones ranging over the universe of the
model, and ones ranging over the powerset of the universe of the model.

24D • 1. Definition
Let � be a signature. The variables of SOL.�/ are ¹vn W n < !º [ ¹P in W n < !º. We call the vn individual variables
and the P in predicate variableswith arity i . Terms are built up in the same way as before just on individual variables.
Define recursively ' to be a SOL.�/-formula iff

• ' is atomic, i.e.
– “x D y” for individual variables x; y;
– ' is “R.Ex/” for R 2 � a relation symbol and Ex terms (that match the arity of R);
– ' is “P in.Ex/” where Ex is a sequence of i terms;
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• ' is “: ”,  ! � ,  ^ � , etc. for  , � SOL.�/-formulas; or
• ' is “8X  ” or “9X  ” for  a SOL.�/-formula and X any variable.

We don’t care about the proof theory of second-order logic, since it isn’t complete in the way first-order logic is.xii So
we can jump right into the semantics of second-order logic. Mostly the only difference from first-order logic is how
the new variables are interpreted. Note that this requires knowledge of the powerset of the model’s universe.

24D • 2. Definition
Let � be a signature. A SOL.�/-model is defined in the same way as with FOL.�/-models.
Let M be a SOL.�/-model, ' a SOL.�/-sentence. Let Em 2M<! and P0 2

S
n<! P .M n/. We define the interpreta-

tion of ' in the same way as with first-order logic with the following additions:
M � “P0. Em/” if and only if Em 2 P0,
M � “8P in '.P in/” if and only if M � '.P / for every P �M i

M � “8P in '.P in/” if and only if M � '.P / for some P �M i .
To distinguish the two, for M a FOL.�/-model, the SOL.�/-extension is denoted M1.

Formally, there’s no difference between the FOL-model M and the SOL-model M1. Really the notation marks the
distinction between the use of “�” rather than the structures.

Note that with this added language, the definable sets are no longer just subsets ofM<! but of the more complicated
P .M<!/<! �M<! , since predicate variables range over P .M<!/ while individual variables range overM .

In the case of N, we write
�
N for N1. Moreover, instead of P 2 P .!/, we usually regard them as elements of !!,

which can be done as follows.
24D • 3. Example

Write
�
N for N1 D h!; 0; 1;C; �i1. N and ! are SOL-definable over

�
N .

Proof .:.

! is definable by the formula v0 D v0: ¹v0 2 ! W �
N � “v0 D v0”º D !. For N , we just rely on the fact that

being a function is definable: N D ¹P � !2 W
�
N � “8v0 9Šv1 P.v0; v1/”º. a

There is then an ambiguity between the use of
�
N as a model and as the baire space. The reader will need to use context

clues to determine the meaning, but for the rest of the section we will focus on the model.

In practice, we will often just use “xi” to range over N and “mi” to range over ! in
�
N . In fact, we will often

mark them in that we write “8x 2 N ” or “9m 2 !”. In other words, we use “xi” for binary predicate variables that
are functions, and “mi” for individual variables. One can then think of their use as shorthand for the definitions in
Example 24D • 3. So for the most part, rather than P 2n .t0; t1/ for P 2n a variable ranging over N , we write xn.t0/ D t1.
In other words, we identify xn ranging over N with P 2n as the relation P 2n .a; b/$ xn.a/ D b. But this association is
merely meta-theoretic.

With this new language, we also can consider another hierarchy! This time an extension of the lévy hierarchy with the
addition of our new variable types.

24D • 4. Definition
Let � be a signature. For M a model and '.Ev; EP / a SOL.�/-formula, write

'.M/ D ¹h Em; EP i 2M<!
� P .M<!/<! W M1 � “'. Em; EP /”º.

For the language SOL.¹0; 1;C; �º/, we call a quantifier bounded iff its of the (shorthand) form “9x < y” or “8x < y”
where “x < y” itself is also shorthand for “9z .x C z D y/”, and x; y; z are individual variables. For n < ! and a

xiiThis holds just from some knowledge of computability theory and Gödel's theorems. In particular, full induction is SOL-definable with a single
formula. As a result, N is uniquely described by the second-order analog of PA. If completeness held for second-order logic's proof system, then the
consequences of PA would be exactly the SOL-theory of N. But no proof system for arithmetic can be intelligible (i.e. computable), complete, and
sound. Hence second-order logic's proof system couldn't computable (i.e. one can't tell whether a sequence of formulas is a proof or not). But any
reasonable definition of a proof system for second-order logic will be computable, a contradiction.
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SOL.¹0; 1;C; �º/-formula ', define recursively
• ' is †00 D …0

0 iff all quantifiers in ' are bounded;
• ' is †0nC1 iff ' is of the form “9m 2 !  ” for m an individual variable and  a…0

n-formula;
• ' is…0

n iff ' is of the form “: ” for  a †0n-formula;
For A � N , define

SOL†0
n
.A/ D ¹'.

�
N / W ' is †0n with parameters in Aº

and similarly for SOL…0
n
.A/, where we then define SOL�0

n
.A/ D SOL†0

n
.A/ \ SOL…0

n
.A/.

We also can define †1n variants, and we will do so later. For now, let’s focus on this hierarchy, which just corresponds
to the formulas that quantify only over !. It should be obvious just by adding unnecessary quantifiers (although we
will prove this) that FOL†0

n
.A/ � FOL�0

nC1
.A/ � FOL†0

nC1
.A/ for n < ! and A � N , and similarly for …0

n. Hence
we get the usual argyle picture. Note that, of course, not every formula is equivalent to a formula in the hierarchy

SOL�0
1

SOL†0
1

SOL…0
1

SOL�0
2

SOL†0
2

SOL…0
2

� � �
¨
¨

¨

¨

¨
¨ ¨

¨

24D • 5. Figure: Definable relations with quantifiers only over !

above: 9P 10 '.x; P 10 /, a priori, cannot be placed in this hierarchy. But of the formulas using only quantification over
!, through coding, each is equivalent over Th.

�
N / to a formula in this hierarchy, and so every relation of

�
N SOL-

definable with only quantification over ! is somewhere in the hierarchy of SOL†0
n
, SOL…0

n
, and SOL�0

n
for n < !.

For example, equality between real numbers is…0
1-definable: x0 D x1 iff 8n 2 ! .x0.n/ D x1.n//, itself shorthand

for the cumbersome formula
“8v0 .9v1 8v2 .P 20 .v0; v2/$ v2 D v1/ ^ 9v1 8v2 .P

2
1 .v0; v2/$ v2 D v1//

^8v0 8v1 8v2 .P
2
0 .v0; v1/ ^ P

2
1 .v0; v2/! v1 D v2/”.

And now the reader should be convinced (if not already) that fully writing out formulas in the language should be
avoided. That said, we will still often identify P .!/ with N for the sake of simplicity. Alternatively, one may just
consider the subsets of N <! � !<! when interpreting SOL-formulas. Whatever is more understandable to the reader
is recommended.

We get many expected closure properties of these classes by coding, showing some of the above facts.
24D • 6. Lemma

Let 0 < n < ! and A � N . Write
9
!X D ¹hEx; Emi 2 N <!

� !<! W 9n 2 ! .hEx; Em; ni 2 X/º

for X � N <! � !<! � !, and similarly for the other quantifiers we write. Therefore,
1. SOL†0

n
.A/ is closed under 9! ,^,_, bounded quantification, andA-computable substitution (i.e.A-computable

preimages).
2. SOL…0

n
.A/ is closed under 8! , ^, _, bounded quantification, and A-computable substitution.

3. SOL�0
n
.A/ is closed under :, ^, _, bounded quantification, and A-computable substitution.

Moreover, SOL�0
n
.A/ � SOL†0

n
.A/ � SOL�0

nC1
.A/, and similarly for SOL…0

n
.A/.

Proof .:.

We consider only the case where A D ; as this trivially implies the result for A ¤ ;. Note that †00-formulas are
trivially closed under bounded quantification, conjunction, disjunction, and negations. First we show the relevant
containments.
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That SOL�0
n
� SOL†0

n
is immediate just by definition. That SOL†0

n
� SOL…0

nC1
follows just by adding an

unnecessary quantifier after all the others: for x 2 X defined by the †0n-formula '.x/, then “8y 2 ! '.x/” is
…0
nC1 and still defines X . To show SOL†0

n
� SOL†0

nC1
, we add these unnecessary quantifiers before the first

one. It’s not difficult to see that any †0n-formula is of the form
“9m1 2 ! 8m1 2 ! � � �Qnmn 2 ! '.Ex; Em/”

where ' is †00, and ‘Qn’ is ‘8’ if n is even and ‘9’ if n is odd. So adding an unnecessary quantifier to ' yields
the †0nC1-formula

“9m1 2 ! 8m1 2 ! � � �Qnmn 2 ! QnC1k 2 ! '.Ex; Em/”
equivalent to the one above, where k doesn’t appear in '. Thus SOL†0

n
� SOL�0

nC1
, and similarly for…0

n.

1. We can deal with 9! with coding pairs: proceed by induction on n < !. Let X � N a � !b for a; b <
! with hEx; Emi 2 X defined by the †0n-formula “9k 2 ! '.Ex; k; Em/” where ' is …0

n�1. Note that then
hEx;m1; � � � ; mbi 2 9

!X is then defined by the formula
hEx;m1; � � � ; mbi 2 9

!X iff
�
N � “9m0 2 ! 9k 2 ! '.Ex; k;m0; � � � ; mb/”

iff
�
N � “9y 2 ! 9m0 < y 9k < y '.Ex; k;m0; � � � ; mb/„ ƒ‚ …

…0
n�1„ ƒ‚ …

…0
n�1„ ƒ‚ …

†0
n

”

Closure under intersections and unions can also be done easily by the same idea: for …0
n�1-formulas

'.Ex;m0; � � � ; mb/ and  .Ex;m0; � � � ; mb/,

�
N � “9m0 2 ! '.Ex;m0; � � � ; mb/ ^ 9m0 2 !  .Ex;m0; � � � ; mb/”

iff
�
N � “9y 2 ! 9m0 < y 9m0

0 < y .'.Ex;m0; � � � ; mb/ ^  .Ex;m
0
0; m1; � � � ; mb//”, and

�
N � “9m0 2 ! '.Ex; Em/ _ 9m0 2 !  .Ex; Em/”

iff
�
N � “9m0 2 ! .'.Ex; Em/ _  .Ex; Em//”.

For bounded quantification, let X � N a � !b for a; b < ! be defined by the †0n-formula
“9k 2 ! '.Ex; k; Em/”, where ' is …0

n�1. For existential bounded quantification, we can freely switch the
quantifiers; and for universal quantification, we can use a †00-definable coding of pairs:

�
N � “9m0

0 < m0 9k 2 ! '.Ex; k;m
0
0; m1; � � � ; mb/”

iff
�
N � “9k 2 ! 9m0

0 < m0 '.Ex; k;m
0
0; m1; � � � ; mb/”

�
N � “8m0

0 < m0 9k 2 ! '.Ex; k;m
0
0; m1; � � � ; mb/”

iff
�
N � “9k0

2 ! .k0 codes sequences of pairs hi; ki i for i < m0„ ƒ‚ …
†0

0
D…0

0

^8i < m0 '.Ex; ki ; i; m1; � � � ; mb/„ ƒ‚ …
inductively…0

n�1

/

„ ƒ‚ …
†0

n

”

Computable substitutions holds by some facts from computability theory: every such function is �1-
definable over N so that translating the †1 and …1-formulas over to

�
N by relativizing quantifiers to !

yields †01 and…0
1-definitions over �

N :

�
N � “9k 2 ! 9k0 < k 9k1 < k .f .k0/ D k1„ ƒ‚ …

�0
1

^'.Ex; k1; Em/„ ƒ‚ …
…0

n�1„ ƒ‚ …
…0

max.1;n�1/

/

„ ƒ‚ …
†0

n

”.

2. These facts follow easily from the facts on SOL†0
n
just by pushing the ‘:’ symbol through the quantifiers

in the definitions.
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3. These facts follow easily from the facts on SOL†0
n
and SOL…0

n
as usual. a

The strict inequalities, as usual, are quite difficult to show. But we are more-or-less unconcerned about them. The main
purpose for this added hierarchy of formulas is that we will show that the arithmetical hierarchy on the baire space is
(with some slight modifications) this hierarchy of definable relations over

�
N ; connecting topology, computability, and

description.

We are now prepared to show that the arithmetical hierarchy on the baire space lines up with elementary relations
of

�
N that use quantifiers only over !. In particular, we have

S
n<! †

0
n D P .N / \

S
n<! SOL†0

n
, and in fact

SOL†0
n
\ P .N / D †0n, and similarly for the other pointclasses.

24D • 7. Lemma
Let A � N and a; b < !. Write M D N a � !b . Therefore SOL†0

0
\ P .M/ � �

0;M
1 .A/.

Proof .:.

As we’re considering only elements of N , we modify our language slightly by considering x 2 N as functions
rather than as relations.

Without loss of generality, assume A D ;, as the general case follows immediately from this. The xi then range
overN and themi range over!. LetX 2 SOL†0

0
as witnessed by the formula '.Ex; Em/. Without loss of generality,

X ¤ ;. Proceed by induction on ' to show thatX 2 †0;M1 . The†00-formulas are the least collection of formulas
containing the atomic formulas, and closed under conjunctions, negations, and bounded quantification. Since
�
0;M
1 -sets are closed under intersections, complements, and bounded quantification, it suffices to show that the

atomic formulas define �0;M1 -sets.

To show this, what matters are the terms that can be built up in this language SOL.¹0; 1;C; �º/. But the only atomic
formulas are equality, and evaluation of reals: for equality, t0. Em/ D t1. Em/ is a statement involving only natural
numbers and computable functions. So X 0 D ¹ Em 2 !b W t0. Em/ D t1. Em/º 2 �

0;!b

1 and it’s easy to see that then
X D N a �X 0 2 �

0;M
1 .

The other atomic formulas are “P in.Et . Em//” for n; i < !. Consider for simplicity (and as we’re focused on
N � P .!2/) binary relations: “Pn.t0. Em/; t1. Em/” taken as evaluation xn.t0. Em// D t1. Em/. This us just one
evaluation the real xn: as t0 and t1 are computable, the defined set is just

X D
[

h�; Emi2A

N� �N a�1
� ¹ Emº 2 †

0;M
1

where A is the set of all h�; Emi 2 .<!!/2 where � is of appropriate length such that �.t0. Em/ D t1. Em/, which is
computable. It’s not difficult to see that :Pn.t0. Em/; t1. Em// also defines a �01-set, since we just consider

:X D
[

h�; Emi2B

N� �N a�1
� ¹ Emº 2 †

0;M
1

where B is the set of all h�; Emi 2 .<!!/2 where � is of appropriate length such that �.t0. Em// ¤ t1. Em/, which is
again computable. a

Corollary 24C • 3 tells us that �01 is the starting point for the arithmetical hierarchy, so it’s good that all †00-definable
relations are �01, as then †01 D 9!�01 � 9!SOL†0

0
D SOL†0

1
, and so on. So the result holds for the rest of the

hierarchy easily.
24D • 8. Theorem

Let a; b < ! and set M D N a�!b . Therefore, for each 0 < n < !,†0;Mn .A/ D SOL†0
n
.A/\P .M/, and similarly

for…0;M
n and �0;Mn .

239



THE LIGHTFACE HIERARCHIES CH IV §24D

Proof .:.

Proceed by induction on n > 0, starting with A D ;, as the result for A ¤ ; follows immediately from this
case. Note that the basic closure properties for the SOL†0

n
s as in Lemma 24D • 6 also hold for SOL†0

n
by the

same reasoning: when eliminating “xi D xj ”, the †00-definable relations still trivially have the relevant closure
properties. We begin with the base case of n D 1. Write M for N a � !b for the sake of notation.
(�) Suppose X D ;. Clearly this is SOL†0

1
by the formula m0 ¤ m0. So suppose X D

S
n<! Nf .n/ for

some computable f W ! ! <!!. Since f is computable, the relation f .x/ D y is †1-definable over
N D h!; 0; 1;C; �i. In particular, using the same definition (modified to mark all variables as in !), we get
that f is SOL†0

1
. So by Lemma 24D • 6, the following witnesses that X is SOL†0

1
:

x 2 X iff
�
N � “9n 2 ! 8k < lh.f .n// .x.k/ D f .n/.k//”.

A similar idea applies to M.

(�) By Lemma 24D • 7, SOL†0
0
\ P .M � !/ � �0;M1 , and therefore

SOL†0
1
\ P .M/ D 9!SOL†0

0
\ P .M/ � 9!�

0;M�!
1 � †

0;M
1 .

This establishes the base case of n D 1, and the result for …0;M
n is, as always, immediate as well the inductive

case nC 1:
SOL…0

n
\ P .M/ D :SOL†0

n
\ P .M/ D :†

0;M
n D …

0;M
n

SOL†0
nC1
\ P .M/ D 9!SOL…0

n
\ P .M/ D 9!…

0;M�!
n D †

0;M
nC1,

and therefore �0;Mn D SOL†0
n
\ SOL…0

n
. a

This has a number of nice consequences, the easiest of which is the following.
24D • 9. Corollary

For A � N ,
S
n<! †

0
n.A/ D P .N / \

S
n<! SOL†0

n
.A/.

This also allows a slightly more easy to confirm characterization of the arithmetical and analytical pointclasses. As
stated above, wemay start from the computable relations over! and then generalize this toN by taking initial segments
as before in Corollary 24A • 4: …0

1 relations take the form x 2 X $ 8n < ! .x � n 2 R/. Similarly †03-relations
take the form x 2 X $ 9m3 8m2 9m1 .hx � m1; m2; m3i 2 R/ for some computable R, and so on throughout the
arithmetical hierarchy.

It also allows us to more easily see some of the closure properties of †0n and SOL†0
n
. And thus

S
n<! �

†0
n are just the

FOLp-definable subsets of N (with quantifiers only over !). Moreover, we can generalize this to the analytical and
projective hierarchies by allowing quantifiers over N .

24D • 10. Definition
For n < ! and a SOL.¹0; 1;C; �º/-formula ', define recursively

• ' is †10 iff ' is †01;
• ' is †1nC1 iff ' is of the form “9x 2 N  ” for x a predicate variable and  a…1

n-formula;
• ' is…1

n iff ' is of the form “: ” for  a †1n-formula.
For A � N , define SOL†1

n
.A/, SOL…1

n
.A/, and SOL�1

n
.A/ as with SOL†0

n
.A/ and so on.

Again, not every formula is equivalent to a formula in this extended hierarchy. For example, if ' involves quantification
over variables that are not binary, then it’s not equivalent to any formula in the hierarchy. But this is the only obstruction:
for any definable subset of N , there is a†1n-definition for some n. The proof of this actually follows just from equating
SOL†1

n
with †1n.
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24D • 11. Theorem
For A � N , 0 < n < !, and a; b < !, write M D N a � !b . Therefore SOL†1

n
.A/ \ P .M/ D †

1;M
n .A/, and

similarly for…1
n and �1n.

Proof .:.

Proceed by induction on n. For n D 1, Theorem 24D • 8 implies
†1n.A/ D 9

N…0
1.A/ D 9

N SOL…0
1
.A/ D SOL†1

n
.A/.

For nC 1, the result holding on…1
n.A/ implies the result for †1nC1.A/ as, by the same idea as above,

†1nC1.A/ D 9
N…1

n.A/ D 9
N SOL…1

n
.A/ D SOL†1

nC1
.A/.

The result for the other pointclasses follows easily by taking negations for…1
n and intersections for �1n. a

By the closure properties of the analytical pointclasses under 9! and 8! , we then get that the analytical hierarchy
encompasses more than just the relations definable using a bunch of quantifiers over N and then one quantifier over
!: it encompasses all definable relations of N over

�
N .

24D • 12. Corollary
For A � N , X � N is SOL-definable over

�
N iff X 2

S
n<! †

1
n. And so X � N is SOLp-definable over

�
N iff

X 2
S
n<! �

†1
n.N /.

Proof .:.

The direction was proven in Theorem 24D • 11. So let X D '.
�
N / for ' a SOL.¹0; 1;C; �º/-formula. Without

loss of generality, we can put ' is prenex normal form so that ' has a bunch of quantifiers out in front of a †00-
formula  . Clearly  .

�
N / 2 †11, and so it suffices to show inductively that

S
n<! †

1
n is closed under 9! , 9N ,

8! , and 8N . And this was proven in Result 24C • 4. The boldface result holds since †1n.N / D
�
†1
n. a

Hence the arithmetical and analytical hierarchies combined form a natural way of categorizing the definable relations of
�
N . Unfortunately, SOL-truth is not absolute because it relies on information about the powerset, which isn’t absolute.
But for (transitive) models (of enough set theory) that agree on the powerset of a model’s universe, SOL-truth is absolute
and can be witnessed in the same way as with FOL-truth: bounding all quantifiers over the the powerset of the model’s
universe to arrive at a †00-formula with parameters in both models. Hence to know what’s true about N , we merely
need to know what reals exist, and vice versa. This is the basis for many absoluteness results: merely showing that L
has the reals to demonstrate the result.

More than just truth about N, we can instead consider truth about V, and really merely V! D Hℵ0
D HF, the hereditarily

finite sets: sets that are finite, and all of their elements are finite, and so on. The reader is encouraged to read Subsection
7C for some of the basic facts about these sets. Nevertheless, in this way, the study of

�
N will inevitably require facts

about the larger set theoretic universe.
24D • 13. Definition

Write HF D hHF;2i for Hℵ0
, the hereditarily finite sets.

We also occasionally write HC D hHC;2i for Hℵ1
, the hereditarily countable sets.

This is ultimately just a result of the fact that HF and membership in HF are definable (in a coded way) over N. In
particular, since jHFj D ℵ0, we can consider the coded relation ¹code.n;m/ W n D code.x/^m D code.y/^x 2 y 2
HFº. So it suffices to show that this is definable over N as then we may decode this relation.

24D • 14. Lemma
There is a coding of HF into ! such that code "HF D ! and the coded relation

O2 D ¹hn;mi 2 !2 W 9x; y 2 HF .n D code.x/ ^m D code.y/ ^ x 2 y/º � !
is †0-definable over N D h!; 0; 1;C; �i.
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Proof .:.

There are several ways to do this. The easiest way conceptually is just to note that any element of HF can be
written down in our set builder notation: ; D ¹º and ¹;; 2º D ¹¹º; ¹¹º; ¹¹ºººº, for example. Then we identify
HF with coded finite strings of this sort and identify elements easily by how many unpaired parantheses exist to
the left and right. This conceptual approach isn’t exactly the easiest to formalize however. Another approach is
through well-ordering V! D

S
n<! Vn. In particular, we view n 2 ! as a string of 0s and 1 (i.e. in binary), and

then the position of the 1s lists out the (coded) elements of lower rank:

n O2 m iff 1 D
jm
2n

k
mod 2

iff 9q0 < m 9r < m .m D q0 � 2
n
C r ^ r < 2 ^ 9q1 < m .q0 D 2 � q1 C 1//.

The above shows that n O2 m is †0-definable over N. From this, we recursively define
decode.m/ D ¹decode.n/ W n O2 mº.

This makes sense since n O2 m implies n < m. Now we have the crucial claim that this decoding is truly a means
of coding HF in N.

Claim 1
decode W ! ! HF is an isomorphism between HF and h!; O2i.

Proof .:.

It’s obvious that decode respects membership:
n O2 m$ decode.n/ 2 ¹decode.n/ W n O2 mº D decode.m/.

So it suffices to show injectivity and surjectivity. For injectivity, we need to show m 7! pred O2.m/ is
injective. Note that n O2 m iff the nth digit of m (written in binary) is 1. Hence the O2-predecessors of m tell
us where the 1s are in the binary expansion with the other digits being 0s, which then uniquely determinem.
This shows decode is injective by a simple induction onm: the leastmwith 9m0 .decode.m/ D decode.m0//

yields that
decode"pred O2.m/ D decode.m/ D decode.m0/ D decode"pred O2.m

0/,
which means some n O2 m (and thus n < m) has decode.n/ D decode.n0/ for some n0 O2 m0, contradicting
minimality of m.

To show decode is surjective, proceed by induction on rank. For x D ;, one may see that decode.0/ D x.
For x 2 VnC1, inductivelyVn � im.decode/ and therefore wemay consider x0 D ¹n 2 ! W decode.n/ 2 xº
and then m D

P
n2x0 2n. It’s not difficult to check decode.m/ D x. a

As a result, code D decode�1 works as in the statement of the result. a

We also get the reverse: that membership in !, the operations C, �, and constants 0, 1 are definable in a simple way
over HF.

24D • 15. Lemma
The following relations are †1 and…1-definable over HF:

1. x 2 !;
2. x; y 2 ! ^ x C y D z, and x; y 2 ! ^ x � y D z;
3. x D 0, and x D 1;

Proof .:.
1. As a transitive set, OrdHF D Ord \ HF. As the set of all hereditarily finite sets, ! � HF, and clearly
! … HF as it’s infinite. Therefore Ord \ HF D ! so x 2 ! iff HF � “x 2 Ord”. Since being an ordinal is
†0-definable, this gives the result.

2. x C y D z (or x � y D z) iff there is some or any function f obeying the usual definition of C (or �) with
x; y in the domain with f .x; y/ D z. Obeying the usual definition with x; y 2 dom.f / is †0-definable,
which means x C y D z is both †1 (when talking about the existence of such a function) and …1 (when
talking about all such functions with x; y 2 dom.f /) definable.
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3. x D 0 iff 8y 2 x .y ¤ y/, which is †0-definable, and x D 1 iff 8y 2 x .y D ;/ ^ 9y 2 x .y D y/,
which is †0-definable. a

As a result, we can give an alternative characterization of the arithmetical hierarchy on ! through first-order logic, and
on N through second-order logic. This gives another connection between the lévy hierarchy and the topology of N .

24D • 16. Result
Let 0 < n < ! and X;A � !. Therefore X 2 †0;!n .A/ iff there is a †n FOL.¹2; Aº/-formula ' such that

x 2 X iff HF � '.x/.

Proof .:.

Work with A D ; for the sake of notation. Really we prove the result on all product spaces !m for m < !.
( ) We have this result for N in place of HF, so it suffices to show X is †n-definable over N. Since (the coded

version of) 2HF is †0-definable, we just replace 2 with its computable definition. Therefore the resulting
formula 'HF is still †n. More explicitly, for a FOL.2/-formula ', we define the FOL.¹0; 1;C; �º/-formula
'HF such that

HF � '.Ex/ iff N � 'HF.code.Ex// iff N � “9Ez .Ez D code.Ex/„ ƒ‚ …
†1

^'HF.Ez/„ƒ‚…
†n

/

„ ƒ‚ …
†n

”.

Assuming 'HF is †n whenever ' is, it follows that “9Ez .Ez D code.Ex/ ^ 'HF.Ez//” is a †n-definition for X
over N, as the above indicates. It’s not difficult to show that the map n 7! code.n/—i.e. regarding n 2 !
as an element of HF and finding an m 2 ! such that decode.m/ D n—is computable and therefore †1-
definable. In particular, one may define code.0/ D 0 and code.nC 1/ D 2code.n/ C code.n/. By closure
of †1-definable sets under conjunctions and existential quantification, we get that it’s †n. We now define
'HF recursively:

• “x D y”HF is “x D y”.
• “x 2 y”HF is “x < y ^ x O2 y”. (This ensures bounded quantifers “9x 2 y”.� � � / are transformed into
bounded quantifiers “9x < y .x O2 y ^ � � � /”. And because x O2 y implies x < y, this causes no
problems in terms of the logical equivalence.)

• Unsurprisingly “ ^ �”HF is “ HF ^ �HF”, and “: ”HF is “: HF”, and “9x  ”HF is “9z  HF”.
It’s easy to then see that if ' is †n then 'HF is also †n and the above reasoning yields a †n-definition for
X from this. Computability theory proves †n-definable relations are †0;!n .

(!) If X is †0;!n then by some knowledge of computability theory, there is a †n-formula defining X over
N D h!; 0; 1;C; �i. So we replace C, �, 0, and 1 with their defining †1 or…1-formulas over HF and then
relativize all quantifiers to the class! � HF. More explicitly, proceed by induction on n. If ' is†0 already,
then (using the complexity results of Lemma 24D • 15) we
1. replace every bounded quantifier “9x < y .� � � /” with “9x 2 y .� � � /”;
2. replace every occurrence of 0 and 1 with their †0-definitions as in Lemma 24D • 15;
3. for every free variable x, append “^ x 2 !” to the end of the formula; and
4. replace every occurrence of C and � with their †1 or …1-definition. (We do this just by putting ' is

prenex normal form and writing the quantifier free portion in disjunctive normal form, then using the
…1-definition if there is a : in front of the original relation and otherwise using the †1-definition.)

The resulting formula '! is then †1 and HF � '.x/ iff N � '!.x/. This then tells us X is †0;!1 , and
establishes the base case.

So suppose ' is†nC1. Therefore ' is of the form “9y : ” for a†n-formula . So inductively we consider
'! as “9y .y 2 ! ^ : !/”, and we get that this †nC1-formula defines X over HF. a
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24D • 17. Theorem
Let 0 < n < ! and X;A � N . Therefore X 2 †0n.A/ iff there is a †0n SOL.¹2º [ A/-formula ' such that

x 2 X iff HF1 � '.x/.

Proof Sketch .:.

Here we use the same idea as with Result 24D • 16, but now using Theorem 24D • 8 to identify †0n-definable
subsets of

�
N with†0n instead of identifying†n-definable subsets of N with†0;!n . To give a sketch, we relativize

quantifiers to either ! or the code of HF in a computable way, and exchange 2, C, �, 0, and 1 in a computable
way. The result changes ' without increasing complexity and defines X over the other space. a

And we get a similar result when generalizing to the analytical hierarchy.
24D • 18. Theorem

Let n < ! and X;A � N . Therefore X 2 †1n.A/ iff there is a †1n SOL.¹2º [ A/-formula ' such that
x 2 X iff HF1 � '.x/.

Proof Sketch .:.

We again use the same idea as with Result 24D • 16 and Theorem 24D • 18, but now using Theorem 24D • 11 to
identify†1n-definable subsets of �

N with†1n instead of identifying†n-definable subsets of N with†0;!n . To give
a sketch, we relativize quantifiers to either ! or the code of HF in a computable way, and exchange 2,C, �, 0, and
1 in a computable way. The result changes ' without increasing complexity and definesX over the other space.a

The main takeaway from this is that we don’t lose or add anything by considering concepts more easily definable
with set theory. We also get a related result for HC D Hℵ1

, the hereditarily countable sets, not needing the extra
mechanisms of second-order logic. We are not yet prepared to prove this theorem yet, however, as we need some
results on absoluteness properties of these analytical sets and relations. We will return to this idea in a later section.

24D • 19. Theorem
Let n < ! and X;A � N . Therefore X 2 †1nC1.A/ iff there is a †n FOL.¹2º [ A/-formula ' such that

x 2 X iff HC � '.x/.

Given that any countable structure has an isomorphic copy in HC, what we can express about arbitrary countable
structures is reflected in the complexity of the analytical hierarchy. Moreover, since large cardinal properties often
entail the existence of certain countable structures, we get interesting absoluteness properties about things as concrete
as R conditional on the abstract and unknowable existence of certain large cardinals.
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Section 25. Properties of the Lightface Hierarchies

As the lightface pointclasses are contained in their boldface counterparts, many properties of the arithmetical and
analytical pointclasses are inherited from the borel and projective pointclasses. In particular, all †11-sets have the
perfect set property, the baire property, and are lebesgue measurable, as established in Section 23. Our goal here will
be to establish†11 as the limit of these as a result of some properties of L, and mostly the result of its�12-definable well-
ordering of N L. Moreover, we will look at properties that are useful for dealing with the limitations of computability.
This involves new concepts and new techniques that become the subject of study in their own right.

§25A. Complexity and absoluteness

When studying absoluteness and complexity, we first looked at the levy hierarchy for FOL.2/-formulas, concluding
that concepts defined by †0-formulas were absolute and getting partial absoluteness results for †1 and…1-formulas.
We cannot generally go further than this, however, as “V D L” is …2-definable (by “8x 9˛ .˛ 2 Ord ^ x 2 L˛/”
where “x 2 L˛” is †0-definable) but certainly isn’t absolute since L � “V D L” but it’s consistent that V ¤ L, i.e.
V � “V ¤ L”. That said, the results at the end of Section 24—and in particular at the end of Subsection 24D—suggest
a natural albeit more limited direction to head. Rather than deal with how things are defined over the entire universe,
we may ask questions just of HF or HC and see what absoluteness results we can get there. The result combines the
potential of coding countable structures in N with the absoluteness of computability to easily get a large number of
results simply by examining how simple the formulas are.

We already have the absoluteness (between transitive models of ZF�P) of all arithmetical formulas because of Result
24D • 16 noting that the satisfaction relation for first-order logic is absolute and HF � L.

25A • 1. Result
All arithmetical relations are absolute between transitive models of ZF � P.
Proof .:.

Note that HF is in all transitive models of ZF � P. In particular, FOL-satisfaction for HF is absolute. Since all
arithmetical relations are FOL-definable over HF, they are absolute. a

We do not, however, have the absoluteness of the satisfaction relation for second-order logic because given any model
A, to determine satisfaction we require knowledge about P .A/, which is merely…1-definable and hence not generally
absolute. Hence we cannot get the absoluteness of†11-sentences so easily. Instead, we use the results from the boldface
pointclasses.

Note that since a lightface pointclass is contained in the boldface variant, the analytical hierarchy inherits the properties
of the boldface pointclasses from Section 23. In particular, all†11-sets (and so all arithmetical sets too) have the perfect
set property, have the baire property, and are lebesgue measurable. Moreover, all †11-sets are ℵ0-suslin while…1

1-sets
are ℵ1-suslin. We can say a little more than this, however. The idea is that

�
…0
1-sets are the branches of arbitrary trees

while …0
1-sets are the branches of computable trees. Hence �

†1
1 consists precisely of ℵ0-suslin sets while †11 consists

of those given by computable trees, and a similar result holds for…1
1.

First we modify the characterization of†11-sets as pŒT � for a computable tree T over ! �!. Instead, we do away with
T and instead work directly with the subtrees we defined in all the relevant proofs (mostly in Subsection 23A). Mostly
this means we decompose T into its sections: for x 2 N defining

Tx D ¹� 2
n! W n < ! ^ hx � n; �i 2 T º.

We can then reform T just by considering ¹h�; �i 2 n! � n! W n < ! ^ 9x 2 N .� C x ^ � 2 Tx/º.
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25A • 2. Lemma (†1
1
Normal Form)

A set X � N is †11 iff there is a computable map x 7! Tx where Tx is a computable tree over ! and
X D ¹x 2 N W ŒTx � ¤ ;º.

Moreover, if ' is a †11-formula, the definition of x 7! Tx (for X D ¹x 2 N W '.x/º) definable from '.

Proof .:.

Let X be defined by the †11-formula ', meaning ' has the form
x 2 X iff '.x/ iff 9y 2 N 8n 2 ! R.x � n; y � n/,

where R is some computable relation. So for each x 2 N , define Tx D ¹� 2 <!! W R.x � lh.�/; �/º.
(!) It’s clear that x 2 X iff ŒTx � ¤ ;: x 2 X iff there’s a y 2 N with 8n < ! R.x � n; y � n/ iff hx; yi 2 ŒT �

iff y 2 ŒTx �.

To see that the map f defined by f .x/ D Tx is computable, one can easily use Theorem 24A • 8: the
(characteristic function of the) relation R.x � lh.�/; �/ uses x as an oracle in the same algorithm across
all x that computes (the characteristic function of) Tx .

( ) If x 7! Tx is computable, then the characteristic function of Tx is uniformly x-computable, meaning there
is a computable R � <!! � <!! where � 2 Tx iff some sufficiently large initial segment of x is used in
a certain computable computation: 9N < ! 8n � N R.x � n; �/. We then set

T D ¹h�; �i W 9� 0
2
<!! ..� 6| � 0

_ � 0 6| �/ ^R.� 0; �/ ^ lh.�/ D lh.�/º.
By hypothesis, x 2 X iff ŒTx � ¤ ; iff there is a y 2 N with 8n < ! R.x � n; y � n/ iff hx; yi 2 ŒT � iff
x 2 pŒT �. As T is a computable tree, X is †11.

The definition of x 7! Tx is pretty easily definable from '. More precisely, '.x/ is just
“9y 2 N 8n 2 !  .x � n; y � n/” for some †0 FOL.¹0; 1;C; �º/-formula  . The formula defining x 7! Tx
just depends on this fixed  . a

25A • 3. Corollary
A set X � N is …1

1 iff there is a computable map x 7! Tx where Tx is a computable tree over ! and ¹X D ¹x 2
N W ŒTx � D ;º.

This gives us †11-absoluteness as follows, first noting some easy results about computability.
25A • 4. Lemma

Every transitive model of ZF contains every computable tree over !. Moreover, every computable map f W N !
P .<!!/ such that f .x/ is always a computable tree over ! has a unique f 0 2 M where f 0 D f � .N \M/.

Proof .:.

Every computable relation is given by a program e 2 ! following simple rules of computation. ZF is far more
than enough to ensure M can do this. Similarly, if f W N ! P .<!!/ as in the statement is computable, then
there is a program e where f D .x 7! ŒŒe��x/. But as an x-computable function, the absoluteness of computtation
yields ŒŒe��Vx D ŒŒe��Mx so long as x 2 M. In particular, f 0 D .x 7! ŒŒe��x/

M � f and f 0 is defined on all of
N M D N \M . a

25A • 5. Result (Mostowski Absoluteness)
Every †11-relation (and hence every…1

1-relation) is absolute between transitive models of ZF.

Proof .:.

Let M � ZF be an arbitrary transitive model and ' a †11-formula. By †11 Normal Form (25A • 2), there is a
computable map x 7! Tx (definable from ') such that ZF ` “'.x/$ ŒTx � ¤ ;”. Lemma 25A • 4 tells us that
T M
x D T V

x for each x 2 N \ M. Therefore, it suffices to show V � “ŒTx � ¤ ;” iff M � “ŒTx � ¤ ;” for each
x 2 N \M.
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Note that any tree S (ordered by C) has ŒS� D ; iff the upside down version hS;Bi is ill-founded. Since well-
foundedness is absolute between transitive models of ZF, if S 2 M, V � “ŒS� ¤ ;” iff M � “ŒS� ¤ ;”. By
Lemma 25A • 4, so each Tx 2 M for x 2 N \M and so, as desired,

'.x/ iff ŒTx � ¤ ; iff M � “ŒTx � ¤ ;” iff M � “'.x/” a

25A • 6. Corollary
Every �12-relation is absolute between transitive models of ZF.

Proof .:.

By Mostowski Absoluteness (25A • 5), †12 D 9N…1
1-relations are upward absolute and…1

2 D 8
N†11-relations

are downward absolute. So any �12-relation is both. a

We can also relativize these results to allow for parameters. This unsurprisingly restricts our attention to models that
actually contain these parameters, but nevertheless allows us to talk about boldface absoluteness. This has a proof
identical to Mostowski Absoluteness (25A • 5) with the added requirement that the transitive M � ZF has X � M to
ensure that the model M can talk about the parameters in the defining †11-formula.

25A • 7. Corollary
For X � N , every †11.X/-relation (and hence every �12.X/-relation) is absolute between transitive models of ZF
containing X .

Our next goal will be to examine the next level up: †12-relations. This represents the best absoluteness we can get, since
the statement “N 6� L” can be written in a †13 way, and it’s consistent that N 6� L although certainly L � “N � L”.
So the downward absoluteness of †13-relations (and so the upward absoluteness of the…1

3-relation “N � L”) doesn’t
hold in general.xiii

The basic idea behind the proof of Shoenfield involves more trees, but now indexed by countable ordinals, similar
to the fact that …1

1-sets are ℵ1-suslin. We will also worry about the shoenfield tree ST for a tree T , as defined in
Definition 23A • 16. For the reader uninterested in returning to that definition, the idea is just that for T � .<!!/3,
ST is composed of approximations to rank functions: hx; y;Ri 2 ST iff R is a rank function on (the upside down
version of) T � ! � ! restricted to triples of the form hx � lh.�/; y � lh.�/; �i for some � . The key point about the
shoenfield tree ST is that its infinite branches are then triples hx; y;Ri where x; y 2 N and R is a rank function on
hTx;y ;Bi. In this way x 2 pŒST � iff 9y 2 N .ŒTx;y � D ;/.

25A • 8. Theorem (Shoenfield Absoluteness)
Every †12-relation is absolute between transitive models of ZF containing !1.

Proof .:.

Let ' be a †12-formula with X D ¹x 2 N W '.x/º. Note that ' has the form
'.x/ iff 9y 2 N 8z 2 N 9n < ! R.x � n; y � n; z � n/

for some computable R. We can then consider the tree that essentially builds initial segments of x; y; z 2 N

until we find an n < ! where R.x � n; y � n; z � n/. Then we can focus on z and then work with the shoenfield
tree’s slices S˛ , which is basically the shoenfield tree of approximating rank function but where there’s a height
limit of ˛: for x; y 2 N and ˛, define

T D
®
h�; �; &i 2 .n!/3 W n < ! ^ 8m � n :R.� � m; � � m; & � m/

¯
Tx;y D ¹& 2

<!! W hx � lh.&/; y � lh.&/; &i 2 T º

xiiiNot all is lost in our investigation into absoluteness, however. There are a great number of generic absoluteness (also called forcing absoluteness)
results investigating the agreement betweenV and all of its generic extensions used in the technique of forcing. Assuming sufficiently large cardinals,
we can get generic absoluteness for all analytical relations. For example,†1

3-generic absoluteness is equivalent to closure under “sharps” [3], which
we will investigate later. Moreover, assuming CH and the existence of a proper class of measurable cardinals that are also woodin,†2

1-absoluteness
holds between V and any generic extension that also satisfies CH. Given that CH is also†2

1 �
S

n<! †
1
n, this is essentially the best we could hope

for [8].
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D ¹& 2 <!! W 8m � lh.&/ :R.x � m; y � m; & � m/º
S˛ D ¹h�; �; �i 2 ST W im.�/ ¨ ˛º

D
®
h�; �; �i 2 .n!/2 � n˛ W n < ! ^ 8& 8& 0 C &

�
h�; �; &i 2 T ! � .code .&// < �

�
code

�
& 0
���¯

S˛;x D ¹h�; �i 2
<!! � <!˛ W hx � lh.�/; �; �i 2 S˛º.

Note that, using the above definitions (which rely only on R),
ZF ` “'.x/$ 9y 2 N .ŒTx;y � D ;/$ 9˛ .ŒS˛;x � ¤ ;/”.

Note also the following absoluteness results between transitive models of ZF. In particular, ifM � ZF is transitive
with !1 � M (e.g. any inner model), then

• T is computable and hence being T is absolute between such models and T 2 M.
• The map hx; yi 7! Tx;y is computable and hence the property of being Tx;y is absolute between such
models containing x; y. Thus each Tx;y 2 M for x; y 2 M.

• Being equal to S˛ (S˛;x) is absolute between such models containing ˛ < !1 (˛; x) since being in T is
computable. Thus each S˛; S˛;x 2 M for x 2 N \M and ˛ < !1 � M.

• A tree having no infinite branches is absolute between such models containing the trees.
In particular, M � “'.x/” iff M � “9˛ 2 Ord .ŒS˛;x � ¤ ;/” iff V � “9˛ < !V

1 .ŒS˛;x � ¤ ;/” iff V � “'.x/” for
x 2 N \M. a

In fact, by examining the proof of Shoenfield Absoluteness (25A • 8), we get the following.
25A • 9. Corollary

If X is †12, then X is ℵ1-suslin as witnessed by a tree in L: X D pŒT � where T 2 L and T is a tree over ! � !1.

Proof .:.

At the risk of repeating the proof of Shoenfield Absoluteness (25A • 8), we will show X D pŒST �
for the T defined before. More explicitly, let ' a †12-formula defining X , ' has the form
“9y 2 N 8z 2 N 9n < ! R.x � n; y � n; z � n/” and we set

T D ¹h�; �; &i W 8m � lh.�/ D lh.�/ D lh.&/ :R.� � m; � � m; & � m/º.
As this is computable, T 2 L and it’s not difficult to see that ST is constructible from T since !1 � L and taking
just the first component of ŒST � yields pŒST � D X . a

Note that Corollary 25A • 9 is actually enough to show Shoenfield Absoluteness (25A • 8) for inner models of ZF. The
idea is that for any x 2 N \ L, if x 2 pŒST �, then the absoluteness of well-foundedness yields a rank function R 2 L
with hx;Ri 2 ŒST �L so that L � “'.x/”, and the upward absoluteness gives the same for any other inner model of ZF.
That being said, Shoenfield Absoluteness (25A • 8) is slightly stronger than this, giving absoluteness for models that
are sets, unlike inner models.xiv

Introducing parameters gives similar absoluteness results, as one should expect.
25A • 10. Corollary

Let X � N . Every †12.X/-relation (and hence every �13.X/-relation) is absolute between transitive models of ZF
containing !1 and X .

The usefulness of shoenfield absoluteness mostly comes from the ability to code statements in a†12-way. One example
of this is the following.

25A • 11. Result
Assume there are countable, transitive models of ZFC. Therefore L contains transitive models of ZFCC “V ¤ L”.

xivThe same general idea works for set models, but it needs to be modified slightly and requires an analysis of where and how the shoenfield tree
appears in the L˛ levels for ˛ < !1.
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Proof .:.

The technique of forcing allows one to transform a countable, transitive model of ZFC into a countable, transitive
model of ZFCC:CH (the details of this will be discussed in later chapters, for now just take this as provable in
ZFC). Given that ZFCC “V D L” ` CH, these models must satisfy “V ¤ L”. Thus it suffices to show that in L
there are such models. In general, the existence of these models is the following statement:

9M .jM j D ℵ0 ^ 8x; y .x 2 y 2M ! x 2M/ ^M � ZFCC “V ¤ L”/.
The existence of such an M then states the existence of a certain real number coding the structure of hM;2i
with these properties. In particular, if we have a bijection f W M ! !, rather than hM;2i, we want to consider
E D ¹code.f .x/; f .y// W x; y 2M^x 2 yº � ! and vice versa. Then instead of asking questions about hM;2i,
we ask questions about h!;Ei. Moreover, by taking the transitive collapse, we can translate back toM and hence
we merely need to ensure E 2 N (regarded as a subset of ! � !) is well-founded and extensional, something
already contained in satisfying ZFC. Hence the existence of a countable, transitive model of ZFCC “V ¤ L” is
equivalent to the †12-statement

9E 2 N .E is well-founded ^ h!;Ei � ZFCC “V ¤ L”/
$ 9E 2 N .:9x 2 N 8n < ! .x.nC 1/ E x.n//„ ƒ‚ …

:†1
1

D…1
1

^8n < ! .h!;Ei � the nth axiom of ZFCC “V ¤ L”/„ ƒ‚ …
arithmetical„ ƒ‚ …

…1
1

/

„ ƒ‚ …
†1

2

.

In V, we have the existence of such models and therefore the above†12-sentence is true. By Shoenfield Absolute-
ness (25A • 8), it holds in L. Taking the transitive collapse of h!;Ei yields the result. a

A corollary of the above proof is the following.
25A • 12. Corollary

Let T be a theory definable over N (e.g. any finite theory) and ' a formula. Therefore the set of x � ! where there
is a countable, transitive model (which is then in HC) satisfying T C “'.x/” is †12.

Proof .:.

At the risk of repeating the proof of Result 25A • 11, consider the statement
9E 2 N .:9x 2 N 8n < ! .x.nC 1/ E x.n//„ ƒ‚ …

:†1
1

D…1
1

^ h!;Ei � “'.x/” ^ h!;Ei � T„ ƒ‚ …
arithmetical„ ƒ‚ …

…1
1

/

„ ƒ‚ …
†1

2

. (�)

This is equivalent to there being a countable, transitive model satisfying T C“'.x/” since any such model,M, has
a bijection f W M ! ! which yields E D ¹code.f .x/; f .y// W x; y 2 M º witnessing (�). Any E witnessing
(�) has the transitive collapse of h!;Ei as countable, transitive, and isomorphic to h!;Ei meaning it satisfies
T C “'.�.x//” where � is the collapsing map. Since x � ! is transitive, �.x/ D x by Corollary 6C • 2. a

In particular, not every transitive model of ZFC in L is a level of L, in contrast to Condensation (8B • 3). This shows
that the sentence “V D L” is indeed required (or some other requirement) to ensure being a level of L. Although our
transitive M � L with M � ZFC has LOrd\M D LM � M � Lˇ for some ˇ, there’s no reason to think that this
ˇ D Ord \M—that M D VM

Ord\M � LOrd\M—unless M � “V D L”.

The method of proving Result 25A • 11 is important mostly for the idea of coding countable structures into ! and
then categorizing the properties we want into the analytical hierarchy. So Result 25A • 11 is really saying that well-
foundedness is…1

1-definable. Hence the existence of a certain countable well-founded structure with some �-definable
properties is 9N .…1

1 ^ �/ D 9
N…1

1 D †12 for � � †11. In particular, for arithmetical properties like first-order
satisfaction, L has the same things consistent with transitive models as V.
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As explained at the end of Subsection 24D, there is another characterization of †12-sets, and in fact †1n for n � 2.
Proving this isn’t that difficult, but relies on the coding idea above and noting that the existence of a countable structure
with certain properties implies the existence of such a structure in HC, the hereditarily countable sets: HC D Hℵ1

D

¹x W j trcl.x/j < ℵ1º. First we prove the beginning of the induction, and the rest of the analytical hierarchy follows
easily. Note that N � HC is a class of HC D hHC;2i, defined by x 2 N iff HC � “x is a function ^ x � ! � !”.

25A • 13. Lemma
A set X � N is †12 iff X is †HC

1

Proof .:.

SupposeX 2 †12 as defined by the formula “9y 2 N '.x; y/”, where ' is…1
1. Note thatMostowski Absoluteness

(25A • 5) really states absoluteness of ' for transitive models of some finite subset of � � ZF. It follows that
9y 2 N '.x; y/ iff there is a countable, transitive model M � � and a y 2 N \M with M � “'.x; y/” (recall
Corollary 7D • 8, that any finite fragment of ZFC has countable transitive models). Note that this is†1-definable
over HC:

9M 9y
�
8z 2M 8x 2 z .x 2M/ ^ .'.x; y//M ^ 8n 2 y .n 2 !/ ^

^
 2�

 M
�
.

Now suppose ' is a †1-formula of the form 9y  .x; y/ where  is †0. Result 7A • 1 implies that  is absolute
between transitive sets. In particular, by (!) considering M D trcl.¹x; yº/ or ( ) considering upward abso-
luteness, for x 2 N � HC, HC � “9y 2 N '.x; y/” iff there is a countable, transitive M 2 HC with x 2 M
where M � “9y 2 N  .x; y/”. The latter can be coded in a †12-way by Corollary 25A • 12, meaning the set X
of x 2 N where this happens is †12. a

Note that the above uses AC, mostly because of its reliance on taking skolem hulls for Corollary 7D • 8. This isn’t
actually necessary for the ( ) direction. DC is enough in this case because at the heart of the matter, †0-formulas
like  are absolute between all transitive models. So rather than working with skolem hulls to witness them, we can
merely take trcl.¹x; yº/ and proceed using DC.

25A • 14. Theorem
Let 0 < n < ! and X � N . Therefore X is †1nC1 iff X is †HC

n .

Proof .:.

Lemma 25A • 13 gives the result for n D 1. Assuming the result for n, we immediately get the corresponding
result for…1

nC1 and…HC
n just by taking negations in the defining formulas. For the inductive step, note that since

N � HC, for any formula ',
9

N
¹hx; yi 2 N 2

W HC � “'.x; y/”º D ¹x 2 N W HC � “9y 2 N '.x; y/”º.
(!) Suppose X is defined by the †1nC2-formula “9y 2 N '.x; y/” where ' is a …1

nC1-formula. Inductively,
Y D ¹hx; yi 2 N 2 W '.x; y/º is…HC

n by some formula  so that X D 9N Y is †HC
nC1.

( ) Suppose X is defined by the †nC1-formula “9y 2 N  .x; y/” where  is a …n-formula. Inductively,
Y D ¹hx; yi 2 N 2 W HC � “ .x; y/”º is…1

nC1 so that X D 9N Y 2 †1nC2. a

§25B. L and WO with the lightface pointclasses

Mentioned in previous sections, L has
• a…1

1-set without the perfect set property;
• a �12-set without the baire property; and
• a �12-set that isn’t lebesgue measurable.

These mostly come from the fact that L has a �12 well-order of N in addition to other regularity properties. What
exactly is this �12 well-order? It’s precisely the definable well-order of the entire universe of L: the constructibility
order <L D

S
˛<Ord<L˛

as in Theorem 8A • 8 restricted to N .
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25B • 1. Lemma
The map ˛ 7! L˛ is �ZF�P

1 -definable and hence absolute between transitive models of ZF � P.

Proof .:.

This is really just a result of examining the previous results of absoluteness in Subsection 7B. In particular,
Corollary 8A • 4 gives the definition of L˛ by recursion. The first step is �ZF�P

1 and the inductive step is too:
x D FOLp.y/ is �ZF�P

1 . (It’s…ZF�P
1 as “for all things closed under the operations, x is contained in them”. And

it’s�ZF�P
1 as “there exists a function that iteratively defines the closure and x is the the image of this”.) Theorem

7B • 4 then tells us that the recursion x D L˛ is also �ZF�P
1 -definable (for any and all functions L obeying the

†1 or…1-definition, the output is x). a

25B • 2. Theorem
N L is †12. In fact, <L is a †12 well-ordering of N L. If N L D N , then these are �12 and so L � “there’s a �12
well-order of N ”.
Proof .:.

To show N L is †12, we merely need to show N L is 1-definable over HC by Lemma 25A • 13. The proof of
L � GCH (Theorem 8C • 5) tells us that

N L
D N \ L D N \

[
˛<!1

L � HC.

Lemma 25B • 1 tells us that L˛ is †1-definable over between transitive models of ZF � P. Theorem 7C • 8 tells
us that HC D Hℵ1

� ZFC � P. As a result, x 2 N L iff
HC � “9˛ 2 Ord .x 2 L˛„ ƒ‚ …

†1

/

„ ƒ‚ …
†1

”.

This shows N L is†12. To show<L is†12, we also show that it’s†HC
1 : first-order satisfaction is†0 and x <L y iff

HC � “9˛ 2 Ord .x; y 2 L˛ ^ L˛ � “x <L y”„ ƒ‚ …
†1

/”

This is †1 and hence x <L y is †12 by Lemma 25A • 13. a

Thus the various sets considered in Section 23 by use of AC can be placed in the projective hierarchy of L because
L can classify a well-order of N . One might wonder if because this well-order is †12, does Shoenfield Absoluteness
(25A • 8) tell us that this the existence of a well-order is absolute between all transitive models of ZF containing !1?
The answer is no: <L being well-order of N L is absolute between such models, but N D N L isn’t absolute and is
indeed a…1

3 statement: N nN L ¤ ; is †HC
2 and therefore †13:

N nN L
D ; iff HC � “9x 8˛ .x … L˛/„ ƒ‚ …

…1„ ƒ‚ …
†2

”

The point is being constructible is absolute and the order of constructibility is absolute, but these need not encompass
everything.

25B • 3. Corollary
The relation ¹rn 2 N W n 2 !º D ¹y 2 N W y <L xº is †12.

Proof .:.

Regard r 2 N as r 0 D ¹rn 2 N W n 2 !º through coding. Since this is a countable set, r 0 � L˛ 2 HC for some
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˛ < !1. So we show again via Lemma 25A • 13 that the relation is †12: r 0 D ¹y 2 N W y <L xº iff
HC � “8n < ! .rn <L x/„ ƒ‚ …

†1

^9˛ 2 Ord .r 0
� L˛ ^ x 2 L˛ ^ L˛ � “8y <L x 9n 2 ! .y D rn/”„ ƒ‚ …

†1

/”. a

It turns out that the well-order <L� N �N both isn’t lebesgue measurable and doesn’t have the baire property in L.
We prove the weaker statement that there are (potentially different) projective sets without these properties in L

25B • 4. Corollary
L � “there are analytical sets without the baire property and that are non-measurable”.

Proof .:.

The set Vit that isn’t lebesgue measurable from Result 23B • 16 was (any) set of equivalence classes under the
equivalence relation x � y iff x � y 2 Q. This set can be defined in L by

x 2 Vit iff 8y 2 R .9q 2 Q .x � y D q/„ ƒ‚ …
�1

1

! x �L y„ ƒ‚ …
†1

2

/

„ ƒ‚ …
…1

3

This set also doesn’t have the baire property by Result 23C • 11. a

Again, the stronger theorem is as follows. Only a proof sketch is given, since it requiresmore knowledge about lebesgue
measure and meagre sets.xv

25B • 5. Theorem
L � “<L doesn’t have the baire property and isn’t lebesgue measurable”. Hence it’s consistent that there are�12-sets
that aren’t lebesgue measurable and that don’t have the baire property.

Proof Sketch .:.

Work in L. For A � N � N and x 2 N , write Ax D ¹y W hy; xi 2 Aº. For example, .<L/x D ¹y W y <L xº

which is countable and therefore both meagre and lebesgue null. Since this holds for each x 2 N , it follows that:
• If <L is lesbesgue measurable, it’s null; and
• If <L has the baire property, it’s meagre.

But similarly, if we consider the complement A D N 2 n <L, A D ¹hx; yi W hy; xi 2 <Lº [ ¹hx; xi W x 2 N º.
So the same argument applies (taking the second component slices instead of the first-component slices) to tell
us that if A is measurable then it’s null and if A has the baire property then it’s meagre. But A is measurable iff
<L is, and similarly with the baire property. But N 2 isn’t the union of two measure 0 sets, nor the union of two
meagre sets. Hence <L can’t be lebesgue measurable, nor have the baire property. a

Theproof L � “there’s a…1
1-set without the perfect set property” requiresmuchmore involved analysis of the lightface

pointclasses, sowewill not prove it just yet. Nevertheless, we can show there’s a†12-set without the perfect set property.
To do this, we need more information about well-orders. In particular, we need the very useful Boundedness Lemma,
telling us that a

�
†1
1-set of realsX coding ordinals must have the set ¹˛ < !1 W ˛ is coded by an element of Xº bounded

in !1, even if X itself is uncountable.

We first introduce some definitions that have been implicitly used in the background above.

xvIn particular, it uses Fubini--Tonelli for null sets and an analogue of Fubini--Tonelli for category. Fubini--Tonelli says more or less that’
f .x; y/ dx dy D

’
f .x; y/ dy dx for a measurable function f . In our case, the measurable function is the characteristic function �A

where �.x; y/ D 1 if hx; yi 2 A and otherwise �A.x; y/ D 0. It follows that
’
�A.x; y/ dy dx D �.A/. If for all x,

R
�A.x; y/ dy D

�.Ax/ D 0, then �.A/ D
’
�A.x; y/ dy dx D

R
0 dx D 0. There's an analogous result for the baire property though, as usual, the proof is

somewhat different.
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25B • 6. Definition
Let code W !2 ! ! be any computable coding. For x 2 N , define the relationEx D ¹hn;mi 2 !2 W x.code.n;m// D
1º. We then set

• WF D ¹x 2 N W Ex is well-foundedº; and
• WO D ¹x 2 N W Ex is a well-orderº �WF.

For x 2WF, set kxk to be the height of Ex .

We’ve analyzed these before as both being…1
1.

25B • 7. Corollary
WF;WO 2 …1

1.

Proof .:.

x 2 WF iff 8y 2 N :8n 2 ! .y.n C 1/ Ex y.n// which can be decoded further if one desires to the more
explicitly…1

1 statement
8y 2 N :8n 2 ! .x.code.y.nC 1/; y.n/// D 1/.

Similarly, x 2 WO iff x 2 WF ^ Ex is linear. The statement that a real codes a linear order over ! will be
arithmetical and hence…1

1. a

This is the easy part. The harder part is showing that we can talk about kxk in a simple way. It turns out that we can do
this in a �11-way.

25B • 8. Result
For x; y 2WO, kxk � kyk is �11. More precisely, there are †11 and…1

1 relations �0 and �1 where
if y 2WO then x �0 y $ x �1 y $ x 2WO ^ kxk � kyk.

Proof .:.

Suppose y 2WO. Note that x 2WO^kxk � kyk is equivalent to the existence of an order preserving injection
from Ex into Ey whenever Ex is a linear order. Such a function is merely a member of baire space and thus
x 2WO ^ kxk � kyk iff the following †11-relation holds:

x �0 y iff x is a linear order ^ 9r 2 N 8n;m 2 ! .r.n/ ¤ r.m/ ^ .n Ex m! r.n/ Ey r.m///.
To show x 2 WO ^ kxk � kyk is …1

1, for x 2 WO, kxk � kyk iff kyk 6< kxk, meaning there’s no order-
preserving injection from y into x that isn’t surjective. In other words, kxk � kyk iff every order-preserving
injection from Ey isn’t mapping onto an initial segment of Ex . But this is clearly…1

1 by the same idea as before:

x �1 y iff x 2WO ^ 8r 2 N :9b 2 ! 8n;m 2 !

�
r.n/ ¤ r.m/ ¤ b ^

.n Ey m! r.n/ Ex r.m/ Ex b/

�
. a

Note that kxk � kyk isn’t itself �11. Really, assuming y 2 WO, ¹x 2 WO W kxk � kykº is �11 in a uniform way
although the relation R.x; y/$ kxk � kyk isn’t �11 by the following result. This is partly because �0 and �1 above
might differ significantly if y …WO. But we will only use the relation if dealing with codes of well-orders anyway.

25B • 9. Lemma
Let A � N . If A is…1

1 then there is a computable f W N ! N such that A D f �1"WO. In particular, if A is
�
…1
1,

then there is a continuous f W N ! N such that A D f �1"WO.

Proof .:.

Consider †11 Normal Form (25A • 2), which tells us A is…1
1 iff A D ¹x 2 N W ŒTx � D ;º for some computable

map x 7! Tx . Using this computable map, we can define the computable f W N ! N by f .x/ D y where y is
an order on hT;Bi. In other words, we take f .x/ to code the relation � Ef .x/ � for �; � 2 <!! defined as true
iff

• � B � with �; � 2 Tx ; or
• � <lex � and neither � 6| � nor � 6| � for �; � 2 Tx ; or
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• � … Tx but � 2 Tx ; or
• �; � … Tx and code.�/ < code.�/ 2 !.

This relation essentially has that Tx is well-founed iff Ef .x/ is a well-order where � 6| � implies �Ef .x/� . If
Tx had any infinite branches, this corresponds to an infinite Ef .x/ decreasing sequence. Similarly, if Ef .x/ has
an infinite decreasing sequence, it’s not due to the elements not in Tx (by the last two conditions) nor to <lex-
decreasing sequences.

Therefore A D ¹x 2 N W ŒTx � D ;º D ¹x 2 N W f .x/ 2 WOº. So it suffices to show f is computable, but this
is clear because x 7! Tx is computable and f is computable from this map. a

We are now in a position to prove the boundedness lemma. There are actually different versions of the boundedness
lemma. The version presented below says that

�
†1
1-subsets of WO are bounded below !1. The recursive analogue of

this is that †11-subsets of WO are bounded below !CK
1 . Because we have not introduced !CK

1 formally here (just in
Appendix B), we only prove the bound of !1 rather than !CK

1 .
25B • 10. Theorem (The Boundedness Lemma)

Let X �WO be
�
†1
1 . Therefore sup¹kxk W x 2 Xº < !1. In particular, WO D ¹x 2 N W kxk < !1º is not �

†1
1 .

Proof .:.

Suppose not so that every ordinal ˛ < !1 is below the height of some x 2 X . In particular, WO D ¹y 2 N W

9x 2 X .kyk � kxk/º is
�
†1
1 by Result 25B • 8. Thus it suffices to show WO isn’t

�
†1
1 . But this follows from

Lemma 25B • 9: if WO were
�
†1
1 , then any �

…1
1-set would be the continuous preimage of a

�
†1
1-set and hence �

†1
1 ,

contradicting that
�
…1
1 ¤ �

†1
1 . a

One corollary to this is that the relationR.x; y/ iff x; y 2WO and kxk � kyk isn’t�11 (compare with Result 25B • 8)
because otherwise pR 2 †11 but sup¹kxk W x 2 pRº D !1, contradicting The Boundedness Lemma (25B • 10).

For the lightface variant, we take !CK
1 to be the set of all recursive ordinals.

25B • 11. Definition
An ˛ 2 Ord is recursive iff there is some computable R � ! � ! such that h!;Ri Š h˛;2i. !CK

1 D sup¹˛ 2 Ord W
˛ is recursiveº.

It should be clear that every recursive ordinal is countable and as there are only countably many computable relations,
!CK
1 < !1. The only result we need is the intuitively clear result that if ˛ is recursive and ˇ < ˛, then ˇ is recursive

(just by considering an initial segment of the computable relation for � ).
25B • 12. Theorem (The Lightface Boundedness Lemma)

Let X �WO be †11. Therefore sup¹kxk W x 2 Xº < !CK
1 .

A corollary of The Boundedness Lemma (25B • 10) is that L has a †12-set without the perfect set property.
25B • 13. Result

L � “†12 doesn’t have the perfect set property”.

Proof .:.

Argue in L. For each ˛ < !1, we have a real number x 2 N coding h˛;2i. There might be multiple, so for each
˛ < !1, let f .˛/ be the <L-least x 2 N coding h˛;2i. To show imf D X is †12, just note that
x 2 X iff x 2WO„ ƒ‚ …

…1
1

^9r 2 N .¹rn W n 2 !º D ¹y 2 N W y <L xº„ ƒ‚ …
†1

2

^8n 2 ! .rn …WO„ ƒ‚ …
†1

1

_krnk ¤ kxk„ ƒ‚ …
�1

1

//

„ ƒ‚ …
†1

2

.

So it suffices to show X doesn’t have the perfect set property. Clearly X D imf is uncountable since f W !1 !
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X is bijective. To showX has no perfect subset, we can actually showX has no (uncountable) closed subsets and
in fact, no (uncountable)

�
†1
1-sets at all! This follows from The Boundedness Lemma (25B • 10), since if A � X

is
�
…0
1 � �

†1
1 , then sup¹kxk W x 2 Aº < !1. Since x ¤ y 2 X have kxk ¤ kyk, this implies A is countable and

therefore not perfect. a

Again, this can be improved to a …1
1-set without the perfect set property, but this requires more knowledge about

uniformization. The last thing we will talk about in this subsection before getting to more general properties of the
lightface pointclasses is the how this relates to relative constructibility, giving striking theorems that are more precise
about how wrong L can be.

25B • 14. Definition
For x 2 N , LŒx� is the least inner model of ZFC with x as an element.

We will give a proper introduction to relative constructibility later. For now, we state the following interesting results,
appealling to intuition about LŒx� which is constructed in much the same way as L, but given access to x as a kind of
oracle.

25B • 15. Theorem
For every x 2 N , !LŒx�

1 < !1 iff for every x 2 N , LŒx� � “!V
1 is (weakly) inaccessible”.

Proof .:.

Clearly if LŒx� � “!V
1 is inaccessible” then !1 > !

LŒx�
1 . So the ( ) direction is clear. Suppose !LŒx�

1 < !1. We
know !1 is still regular in LŒx� by downward absoluteness. So !1 is (weakly) inaccessible in LŒx� iff !1 is a limit
cardinal.

Suppose not: let !1 D .�C/LŒx� for some � a cardinal of LŒx� which tells us � < !1 so that � is countable in V.
Let y 2 N code � in that h!;Eyi Š h�;2i. So if we consider x; y 2 LŒx�y�, we can decode y to get a bijection:
LŒx � y� � “j�j D !” and thus

LŒx � y� � “!1 D j�jC � .�C/LŒx� D !V
1”,

contradicting that !LŒx�y�
1 < !1. a

This is striking because of the following theorem, which then relates these topological properties with large cardinal
hypotheses: if !V

1 is inaccessible in every LŒx� for x 2 N , then
�
…1
1 has the prefect set property. It turns out that

the three conditions are actually equivalent, as we will show. Thus the stronger statement tells us we can satisfy the
hypothesis of Theorem 25B • 15 just by ensuring

�
…1
1 or �

†1
2 has the perfect set property (which clearly L doesn’t satisfy

by Result 25B • 13)
25B • 16. Theorem

For every x 2 N ,
!

LŒx�
1 < !1 ! †12.x/ has the perfect set property! …1

1.x/ has the perfect set property.

Proof .:.

For the sake of notation, take x D ; as the proof easily generalizes to parameters.
• Suppose !L

1 < !1. Let X 2 †12 be uncountable. We must show X has a perfect subset. By Corollary
25A • 9, X D pŒT � for some T 2 L a tree over ! � !1. We can continually thin out T as in Theorem
23A • 20 just by removing isolated branches:

T0 D T T˛C1 D prune.T˛/ T D
\

˛<
T˛ ,

where prune.S/ just consists of all nodes in S which have incompatible extensions above them (so that
their branch isn’t isolated). Clearly as T 2 L, prune.T / 2 L as having incompatible extensions is absolute
between transitive models. So inductively all members of this sequence are in L. This process stabilizes
by some stage ˛ yielding T � D T˛ 2 L.
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If X doesn’t have a perfect subset, then the reasoning of Theorem 23A • 20 tells us T � D ;, giving an
alternative characterization of X : x 2 X iff x is removed from the projection of ŒT˛� at some stage ˛. But
for each ˛, the things removed from T˛ are uniquely the things in some initial segment’s only corresponding
branch. Since these branches are unique and L certainly thinks they exist by the absoluteness of well-
foundedness, all of these branches are in L and thus X � L. Because X � .pŒT �/L � pŒT � D X , X 2 L.

But in L, X is still †12: the †12-relation ' defining X is still absolute
¹x 2 N \ L W L � “'.x/”º D X \ L D X 2 L.

Hence applying Corollary 25A • 9 inside L, we get that X is in fact ℵL
1-suslin. Since X still doesn’t have a

perfect subset, Theorem 23A • 20 tells us jX j � ℵL
1 < ℵ1 and hence X is countable, a contradiction.

• If every †12.x/-set has the perfect set property, then every…1
1 � †

1
2-set does too.

Theorem25B • 15 andTheorem25B • 16 together tell us that
�
†1
2 has the perfect set property iff LŒx� � “!V

1 is inaccessible”
for all x 2 N and for L D LŒ0� in particular. Thus we have a connection between large cardinal hypotheses like the
consistency of inaccessible cardinals with topological properties of the real numbers. As another example, one can
show that the existence of a measurable cardinal implies the inaccessibility of !V

1 in each LŒx�, x 2 N , and hence the
perfect set property for

�
†1
2-sets.

§25C. Prewellorders

Themotivating concept we will look at will be uniformization, which can be thought of as a choice function with some
restrictions on complexity. To study these sets, we will need to look at scales and prewellorderings. Our study of
these concepts tell us that in L there’s a…1

1-subset without a perfect subset, and we also get the converses to Theorem
25B • 16. These basic ideas also give other theorems similar to The Boundedness Lemma (25B • 10), like that well-
founded

�
†1
2-relations have length< !2, which can be said in the more “impressive” way that

�
ı12 � !2, to be explained

later.
25C • 1. Definition

Let X � A � B . A uniformization is a function f � X such that dom.f / D dom.X/.
For � a pointclass, �-uniformization is the statement that every X 2 � has a uniformization f 2 � .

In the end, the two pointclasses in our hierarchies that provably have uniformization are…1
1 and†12 (and their relativiza-

tions). These analytical (or projective) pointclasses can be talked about in more general terminology. So we introduce
the idea of an adequate pointclass, encompassing all the lightface and boldface pointclasses of our hierarchies thus far.

25C • 2. Definition
A pointclass � � P .N / is adequate iff

• � contains all computable relations;
• � is closed under computable preimages;
• � is closed under finite unions and intersections;
• � is closed under bounded quantification (over !).

It’s not difficult to see that the borel, arithmetical, projective, and analytical pointclasses (and their relativizations) are
all adequate.

The best way to frame the proofs of these results on uniformization is to introduce the concepts of norms and scales.
Norms should be fairly familiar, but scales are a difficult concept to digest, requiring substantial background.

25C • 3. Definition
A prewellorder is a relation 6 that is transitive, total, and well-founded.

This is a prewellorder in the sense that if we “mod out” by the equivalence relation x � y iff x 6 y 6 x, the
result is a well-order. Alternatively, prewellorders are well-orders where we allow clusters of loops, but which don’t
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fundamentally change the length of the order if we merely think of these loops as single elements. In particular, because
prewellorders are well-founded, we have a rank function on them which gives the length. It’s not hard to see that every
element of a loop is given the same rank: if x � y then by transitivity, ¹z W z < xº D ¹z W z < yº and thus the rank of
x is the rank of y.

Frequently these rank functions are thought of as norms, a more general kind of function which will in turn define a
prewellorder.

25C • 4. Definition
A norm on a set X is a function ' W X ! Ord.

25C • 5. Corollary
Every prewellorder has a norm, being its rank function. Moreover, for every norm ' W X ! Ord, there is a
prewellorder 6 � X2 defined by x 6 y iff '.x/ � '.y/.

Proof .:.

That a rank function is a norm is obvious. So suppose ' W X ! Ord is a norm, and define 6 as in the statement.
6 is clearly well-founded since if Y � X , '"Y has a minimal element '.y/ which implies y is 6-minimal in Y .
That 6 is total and transitive follows from � being total and transitive on Ord. a

Note that the norm associated with a prewellorder isn’t unique. The rank function will be unique just because it’s
constructed iteratively, but if we consider for example h¹0; 1º; <i, then ' D ¹h0; 0i; h1; 1iº and '0 D ¹h0; 0i; h1; 4iº

are distinct norms giving the same (pre) well-order: x < y iff '.x/ < '.y/ iff '0.x/ < '0.y/.

We’ve actually already seen norms and prewellorders with WO: x 7! kxk is a norm for this, defining the �11-relation
kxk � kyk for y 2 WO by Result 25B • 8. This is important because we may actually generalize this idea to all
…1
1-sets. The resulting property is called the prewellordering property for…1

1-sets, often written PWO.…1
1/.

25C • 6. Definition
Let � � P .N / be a pointclass.

• X � N has a �-norm iff there’s a norm ' W X ! Ord such that �' and <' are both in � , defined by
x �' y iff x 2 X ^ .y 2 X ! '.x/ � '.y//

x <' y iff x 2 X ^ .y 2 X ! '.x/ < '.y//.
• � has the prewellordering property, PWO.�/, iff every X 2 � has a �-norm.

One might think that every set has a simple to define norm as just the constant 0 function. While it’s true that this will
be a norm, it may not have the best complexity: this constant function might be fairly complex if X is complex. In
particular, if X has a �-norm,xvi then X 2 � , defined by x 2 X $ x �' x. Nevertheless, the constant 0 function
does tell us that PWO.ƒ/ holds whenever ƒ is a σ-algebra like �1n.

25C • 7. Corollary
Let a pointclassƒ be adequate and closed under complements. Therefore PWO.ƒ/. In particular, PWO.�1n.X// for
each n < ! and X � N .

Proof .:.

Let X 2 ƒ and consider ' W X ! ¹0º, the constant 0 map. Therefore y 2 X ! '.x/ D '.y/ for all y 2 X .
Hence x �' y iff x 2 X which is in ƒ (i.e. �' D X � N 2 ƒ). Similarly, x <' y iff x 2 X ^ .y 2 X !
'.x/ < '.y//. But no y 2 X has '.x/ < '.y/, meaning x <' y iff x 2 X ^ y … X . Given the closure
properties of ƒ, this is in ƒ. a

We don’t really care about σ-algebras though, because they admit such a trivial norm. Instead, we will consider
pointclasses � with � ¤ :� . To do this, we proceed similarly to …1

1. An alternative characterization of �-norms is
as follows, similar to comparing (coded) heights of elements of WO in Result 25B • 8.

xviand � is closed under A 7! ¹x W hx; xi 2 Aº
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25C • 8. Result
Let � be an adequate pointclass and X 2 � . Therefore X has a �-norm iff there is a prewellordering 4 of X ; a
relation 60 2 �; and a relation 61 2 :� where for all y 2 X ,

x 2 X ^ x 4 y iff x 60 y iff x 61 y.

Proof .:.

Suppose X has a �-norm '. Define x 4 y iff x; y 2 X ^ '.x/ � '.y/. Therefore, for all y 2 X ,
x 2 X ^ x 4 y iff x 2 X ^ '.x/ � '.y/ iff x �' y,

with �' 2 � . So take �0 to be �' . As a total order, we also have that if y 2 X ,
x 2 X ^ x 4 y iff x 2 X ^ '.x/ � '.y/ iff x 2 X ^ '.y/ 6< '.x/ iff y 6<' x.

So take x �1 y iff y 6<' x which is then in :� .

Alternatively, if there are relations 4, �0, and �1 as in the statement, by Corollary 25C • 5, there is a norm
' W X ! Ord which gives the prewellordering x 4 y iff '.x/ � '.y/. Now we’d like to define, say, x �' y
iff x 2 X ^ .y 2 X ! x �0 y/, but this has the wrong complexity. Instead, note that for x 2 X , y 6�1 x iff
y … X _ .y 2 X ^ '.y/ > '.x//. Hence we can use this in place of the conditional y 2 X ! x �0 y:

x �' y iff x 2 X ^ .x �0 y _ y 6�1 x/

x <' y iff x 2 X ^ y 6�1 x.
And it’s not difficult to see that these are both in � . a

In other words, for x; y 2 X , x 4 y is �\:� , meaning every initial segment of 4 is in �\:� . It’s important to note,
however, for y … X , 60 and 61 might differ significantly. The real statement is that for each y 2 X , ¹x 2 X W x 4 yº

is � \ :� although 4 itself might not be for one reason or another.xvii

The pointclass that is easiest to show the prewellordering property for is †01 D †10.

25C • 9. Result (PWO.†1
0
/)

For any X � N , PWO.†10.X//

Proof .:.

Work with X D ;, as the proof easily generalizes. For A 2 †10 D †01, A D
S
n2! Nf .n/ for some computable

f W ! ! <!!. So define ' W A! Ord by
'.x/ D n iff n is the least such that x 2 Nf .n/.

It’s not hard to see that ' is a †10-norm: each N� is�01, and †01 is closed under bounded quantification, intersec-
tions, and existential quantification over !.

x �' y iff x 2 A ^ 9n 2 !
�
x 2 Nf .n/ ^ 8m < n y … Nf .m/

�
x <' y iff x 2 A ^ 9n 2 !

�
x 2 Nf .n/ ^ 8m � n y … Nf .m/

�
. a

A harder pointclass to show has the prewellordering property is …1
1. Luckily, with the results from Subsection 25B,

we get it fairly easily because WO has a…1
1-norm x 7! kxk.

25C • 10. Theorem (PWO.…1
1
/)

For any X � N ,…1
1.X/ has the prewellordering property.

Proof .:.

Work with X D ; as the proof easily generalizes. Let A 2 …1
1 be arbitrary. By Lemma 25B • 9, there’s a

computable f W N ! N such that ́A D f �1"WO. WO has a …1
1-norm by Result 25B • 8 and the equivalence

xviiFor example, we know WO is…1
1 and kxk � kyk is �1

1 for each y 2 WO. But we don't have the relation R.x; y/ iff kxk � kyk as �1
1,

however, as then pR 2 †1
1 has sup¹kxk W x 2 Rº D !1, contradicting The Boundedness Lemma (25B • 10).
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Result 25C • 8. So using �' ; <' 2 …1
1 we get the norm ' ı f on A with x �'ıf y iff f .x/ �' f .y/, and

similarly for<'ıf . Given that…1
1 is closed under computable substitutions, both of these are in…1

1 and so ' ıf
is a…1

1-norm on A. a

This easily generalizes to †12 by the following theorem of Moschovakis.
25C • 11. Theorem

Let � be an adequate pointclass. SupposeX 2 � has a �-norm. Therefore 9NX has a 9N8N�-norm. In particular,
PWO.�/ implies PWO.9N8N�/.

Proof .:.

Since X has a �-norm ', we can define a norm  W 9NX ! Ord by  .x/ D min¹'.x; y/ W hx; yi 2 Xº. It’s
then clear that this is a 9N8N�-norm:

x � y iff 9y 2 N 8z 2 N .hx; yi �' hx; zi/

x < y iff 9y 2 N 8z 2 N .y ¤ z ! hx; yi <' hx; zi/. a

As a result of PWO.…1
1/ (25C • 10), PWO.…1

1/ implies PWO.†12/.

25C • 12. Corollary (PWO.†1
2
/)

For any X � N , PWO.†12.X//.

Note that although †11 � †12 and PWO.†12/, this does not tell us PWO.†11/—i.e. that every †11-set has a †11-norm. It
only tells us that every †11-set has a †12-norm. In fact, we can show :PWO.†11/, as we will see later. The following
details what’s known in ZFC. It turns out that †12 seems to be the best we can do in ZFC, although not much is known.
What is known is the independence of PWO.†1n/ for odd n 2 ! assuming the consistency of certain large cardinal
hypotheses.

†10 †11 †12 †13 †14

� � �

…1
0 …1

1 …1
2 …1

3 …1
4

25C • 13. Figure: Known analytical � ¤ �1
n such that ZFC � PWO.�/

The pointclasses with the prewellordering property in L, form an initial zig-zag followed by a straight line. This shows
PWO.†1n/ is at least consistent for odd n 2 ! (in addition to even n 2 !).

†10 †11 †12 †13 †14

� � �

…1
0 …1

1 …1
2 …1

3 …1
4

25C • 14. Figure: Analytical � ¤ �1
n such that L � PWO.�/

On the other hand, assuming projective determinacy continues the zig-zag pattern: PWO.†1n/ fails for odd n 2 ! while
holding for even n.

This shows the independence of PWO.†1n/ for odd n 2 !. The independence of PWO.†1n/ for even n is less clear, but
unpublished notes of Leo Harrington states that it’s possible for :PWO.†1n/ and :PWO.…1

n/ for any particular n > 2.
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†10 †11 †12 †13 †14

� � �

…1
0 …1

1 …1
2 …1

3 …1
4

25C • 15. Figure: Analytical � ¤ �1
n such that ZFC C PD � PWO.�/

We should now briefly consider the ideas of reduction and separation before introducing scales, which will tell us that
at most one of †1n and…1

n have the prewellordering property.

§25D. Reduction and separation

25D • 1. Definition
A pointclass � � P .N / has the reduction property iff for every X; Y 2 � , there are disjoint X0; Y0 2 � such that
X0 � X , Y0 � Y , and X [ Y D X0 t Y0.

It’s not difficult to show that the prewellordering property gives the reduction property.
25D • 2. Result

Let � be an adequate pointclass. Therefore PWO.�/ implies � has the reduction property.

Proof .:.

For X; Y 2 � , consider the disjoint union .X � ¹0º/[ .Y � ¹1º/ 2 � . By PWO.�/, we have a �-norm ' on this
set. So define

x 2 X0 iff x 2 X ^ hx; 0i �' hx; 1i

y 2 Y0 iff y 2 Y ^ hy; 1i <' hy; 0i.
As �' and <' are both in � , this will be in � and clearly X0 � X , Y0 � Y , and X0 \ Y0 D ;. To show
that X0 [ Y0 D X [ Y , if x 2 X \ Y , then '.x; 0/ � '.x; 1/ implies x 2 X0 and otherwise x 2 Y0 so that
x 2 X0 [ Y0 in either case. If x 2 X n Y , then hx; 1i … .X � ¹0º/ [ .Y � ¹1º/ and hence hx; 0i �' hx; 1i
vacuously, meaning x 2 X0. A similar idea holds to show Y nX � Y0 and therefore X [ Y � X0 [ Y0. a

The reduction property for an adequate pointclass � corresponds to a “separation” property for the dual class:� . Note
the similarity with The

�
†1
1-Separation Principle (22C • 8).

25D • 3. Definition
A pointclass � has the separation property iff for any disjoint X; Y 2 � , there’s an X 0 2 � \ :� such that
X � X 0 � N n Y .

The
�
†1
1-Separation Principle (22C • 8) then says

�
†1
1 has the separation property.

25D • 4. Result
Let � be an adequate pointclass. Suppose � has the reduction property. Therefore :� has the separation property.

Proof .:.

Let X; Y 2 :� such that X \ Y D ;. Therefore .N n X/ [ .N n Y / D N with N n X;N n Y 2 � . By
reduction for � , there are X0 � N nX and Y0 � N nY such that X0; Y0 2 � , X0[Y0 D N , and X0\Y0 D ;.
But then N n X0 D Y0 2 � so that X0; Y0 2 � \ :� . Moreover, because X0 � N n X , it follows that
X 0 D N n X0 � N n .N n X/ so that X � X 0 and similarly Y � Y 0 D N n Y0. Since X 0 is disjoint from Y 0,
X 0 is disjoint from Y : X � X 0 � N n Y . a

Given that a pointclass can’t have both the reduction property and the separation property, this tells us that at most one
of � and :� can have the prewellordering property and thus PWO.…1

1/ implies :PWO.†11/.
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25D • 5. Result
Let � be an adequate pointclass with a �-universal set. Therefore � and:� cannot both have the reduction property.

Proof .:.

Let U 2 � be �-universal. Note that we identify x D even.x/ � odd.x/. Consider
X D ¹x 2 N W heven.x/; xi 2 U º
Y D ¹y 2 N W hodd.x/; xi 2 U º.

It follows that both X; Y 2 � since x 7! even.x/ is computable. By the reduction property for � , there are
disjoint X0 � X , Y0 � Y in � such that X [ Y D X0 t Y0.

Since :� has the reduction property, Result 25D • 4 tells us ::� D � has the separation property. So let
X 0 2 � \:� be such thatX0 � X 0 � N nY . WriteX 0 D Ur and N nX 0 D Us for some r; s 2 N and consider
s � r .

• If s � r 2 X 0 D Ur then s � r 2 Y by definition, contradicting that X 0 \ Y D ;.
• If s � r … X 0 then s � r 2 N nX 0 D Us implying by definition that s � r 2 X � X 0, a contradiction. a

25D • 6. Corollary
For every X � N ,…0

1.X/, †11.X/, and…1
2.X/ do not have the prewellordering property.

Note that every σ-algebra, like any �1n, has both the reduction property and the separation property by Result 25D • 2
and Corollary 25C • 7. This has the nice side effect that each�1n has no�1n-universal set, although this is easy enough
to prove on its own just by a simple diagonalization argument.

25D • 7. Result
Let ƒ � P .N / be adequate and closed under complements. Thereforeƒ has the reduction and separation property.
In fact, PWO.ƒ/ holds.

Proof .:.

This of course follows from earlier results, but we can show these both directly as well. For the reduction property,
X; Y 2 ƒ implies X n Y 2 ƒ. So take X0 D X n Y and Y0 D Y which are disjoint subsets in ƒ whose union
is X [ Y . The separation property is trivial: for any disjoint X; Y 2 ƒ, take X 0 D X because a σ-algebra ƒ
satisfies :ƒ \ƒ D ƒ.

25D • 8. Corollary
For each n < ! and X � N , �1n.X/ has no �1n.X/-universal set.

Proof .:.

This follows from Result 25D • 5 and Result 25D • 7: �1n D :�1n is an adequate pointclass with the reduction
property. A more standard proof is still provided. Let U 2 �1n be universal. Note that D D ¹x 2 N W hx; xi …

U º 2 :�1n D �
1
n. ThusD D Ur for some r 2 N , but r 2 D iff hr; ri … U iff r … Ur D D, a contradiction. a

Most of this is just to say that we shouldn’t be thinking of the �0ns or �1ns when investigating these properties: they
almost trivially have them. The real work to be done is with the other (analytical) pointclasses.

§25E. Scales and Uniformization

Let’s return to the study of uniformization and norms. The main idea behind this is a certain sequence of norms that
work nicely with sequences.
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25E • 1. Definition
Let X � N . A scale on X is a sequence E' D h'n W n 2 !i such that

• each 'n is a norm on X ;
• for all convergent x 2 !X such that each 'n ı x is eventually constant, we have

– lim x 2 X ; and
– (lower semi-continuity) for all n < !, 'n.lim x/ � lim.'n ı x/.

If E' satisfies all of the above except lower semi-continuity, E' is called a semi-scale.

As with norms, we are more interested in scalesxviii with certain definability restrictions: there are easily scales on any
X , but we want to be able to use scales in arguments about pointclasses.

25E • 2. Corollary
Let X � N . Therefore there is a scale on X .

Proof .:.

For any bijection f W X ! jX j, set 'n D f for every n 2 !. Clearly each 'n is a norm. If x 2 !X is convergent
and f ı x is eventually constant, then x is eventually constant and so lim x 2 im x � X . Lower semi-continuity
also is easy since it follows that f .lim x/ D lim.f ı x/. a

This is actually a result of X � N being jX j-suslin, as the next theorem shows.
25E • 3. Result

For X � N and � an infinite cardinal, the following are equivalent:
1. X has a scale E' where 'n.x/ < � for all n < !, x 2 X .
2. X has a semi-scale E' where 'n.x/ < � for all n < !, x 2 X .
3. X is �-suslin.

Proof .:.

(1)! (2) Trivial.

(2)! (3) Consider the tree buiding up sequences of elements in X and their corresponding norms:
T D ¹h�; �i 2 <!! � <!� W 9x 2 X .� C x ^ � D h'n.x/ W n < lh.�/i/º.

It’s not difficult to see that this is a tree over ! � �. Moreover, it’s clear X � pŒT � since hx; h'n.x/ W
n < !ii 2 ŒT �. To see that pŒT � � X , if x 2 pŒT � then for each n < !, we get xn 2 X with
x � n D xn � n witnessing x � n 2 pT . As they extend each other, 'k.xk/ D 'k.xn/ for every
k < n. In particular, h'n.xk/ W k < !i is eventually constant for each n < ! and so as a semi-scale,
lim xn D x 2 X .

(3)! (1) Let X D pŒT � where T is a tree over ! � �. Assume cof.�/ > !. For ˛ < �, write
T � ˛ D ¹h�; �i 2 T W � 2 <!˛º.

So when we’re building x up as a branch of T , for each n < !, we have x � n 2 dom.T � ˛n/ for
some ˛n < �. And this means hx; supn<! ˛ni 2 ŒT �. In other words, x 2 pŒT � ˛x � for some ˛x < �.
So we can order x 2 X according to this ˛x . In particular, we may order the finite initial segments of
the least branch lexicographically to get a norm for each n < !. In particular, let ˛x be least such that
x 2 pŒT � ˛x �. Of this, let sx 2 !˛x be lexicographically-least such that hx; sxi 2 ŒT � ˛x �. To keep
track of this bound ˛x (to ensure lower-semicontinuity), define for x 2 X ,

'n.x/ D rank.h˛xi_sx � n/ � ˛nx < �,
where rank.�/ is the lexicographic rank of � in the set ¹˛_� 2 nC1� W im � � ˛º. It follows that

xviiiThere's also a separate, more combinatorial notion of a scale on a cardinal �. We will not be interested in this idea, and will only consider scales
in the descriptive set theoretic sense.
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'n.x/ < � for every n < ! and x 2 X .

h'n W n < !i is also a scale on X . To see this, suppose hxk 2 X W k 2 !i converges to
x 2 N , with h'n.xk/ W k 2 !i eventually a constant �n for each n 2 !. For sufficiently large k,
�n D rank.h˛xk

i_sxk
� n/ and xk � n D x � n. But the rank function is a bijection because the lexi-

cographic order is linear. In other words, for sufficiently large k, sxk
� n is a sequence sn and ˛xk

is an
ordinal ˛. Since sxk

� n C sxk
� m for n < m, by looking at even larger k, it follows that sn C sm for

n < m. In particular, for s D
S
n<! sn 2

!�, hx � n; s � ni D hxk � n; sxk
� ni 2 T � ˛k D T � ˛

for sufficiently large k. As a result, hx; si 2 ŒT � ˛� and hence x 2 pŒT � D X . This tells us E' is a semi-
scale. Lower-semicontinuity is immediate because we kept track of ˛: any branch hx; ti 2 ŒT � ˇ�

with ˇ < ˛ has hˇi_t � n lexicographically precede h˛i_s � n whose rank is �n. a

As a result, suslin representations of sets are more-or-less the same as scales on these sets. Of course, this relies on AC
to ensure there’s an injection from X into Ord. But there are less ad hoc examples of scales. This then motivates the
idea of considering �-suslin sets and scales with certain definability restrictions. In particular, we have the following
scale generalized from the usual norm on WO.

25E • 4. Result
There is a scale E' on WO. Moreover, the following relations on triples hx; y; ni 2 N 2 � ! are both in…1

1:
x �'n

y iff x 2WO ^ .y 2WO! 'n.x/ � 'n.y//

x <'n
y iff x 2WO ^ .y 2WO! 'n.x/ < 'n.y//.

Proof .:.

For x 2WO, let Ex � !2 is the well-order coded by x. For n < !, let
.Ex/<n D ¹hk0; k1i 2 Ex W k1 Ex n ¤ k1º,

basically the initial segment of Ex that precedes n (and .Ex/<n D ; if n … dom.Ex/[ ran.Ex/). Note that each
.Ex/<n itself is a well-order. So define 'n WWO! !1 by

'n.x/ D codelex.kExk; k.Ex/<nk/,
where codelex W !1 � !1 ! !1 � !1 is the lexicographic rank function. This allows us to both keep track of the
original height as well as how this height is built up as n increases. Depending on the order, '0.x/ might still be
infinite, but we always have 'n.x/ � 'm.x/ for n � m.

To see that h'n W n 2 !i is a scale onWO, clearly each 'n is a norm. So suppose hxn 2WO W n 2 !i be a sequence
converging to x 2 N such that for each n < !, h'n.xk/ W k 2 !i is eventually a constant value code.�; ˛n/ 2 !1.
Note that � doesn’t depend on n since kExk

k doesn’t depend on n. Clearly hk.Exk
/<nk W k < !i has eventually

constant value ˛n.
• To show x 2 WO, we just need to construct an order-preserving map from h!;Exi to h!1;2i (where
recall Ex D ¹hn;mi 2 !2 W x.code.n;m// D 1º). The map we consider will be n 7! ˛n. If
n Ex m, then x.code.n;m// D 1. But as the limit, we can determine the initial segment of x up to
max.code.m; n/; code.n;m// < ! so that xk.code.n;m// D 1 and (as a well-order) xk.code.m; n// D 0
for sufficiently large k. This means if n Ex m then for sufficiently large k, .Exk

/<n ¨ .Exk
/<m 3 n so in

fact k.Exk
/<nk < k.Exk

/<mk, i.e. ˛n < ˛m. Hence n 7! ˛n witnesses that Ex is a well-order.
• To show 'n.x/ � code.�; ˛n/ for each n < !, the same idea above tells us for every n < !, .Ex/<n �
.Exk

/<n for sufficiently large k. This means k.Ex/<nk � k.Exk
/<nk D ˛n and as the supremum of these,

over n, kExk � �. Thus 'n.x/ D code.kExk; k.Ex/<nk/ � code.�; ˛n/ D limk!1 'n.xk/, as desired.
It’s not difficult to define show the relations �'n

and <'n
are…1

1 from PWO.…1
1/ (25C • 10). We can easily find

a map inputting x and n and outputting a real coding .Ex/<n as follows:

f .x; n/.code.k0; k1// D

´
1 if x.code.k0; k1// D 1 ^ x.code.k1; n// D 1 ^ k1 ¤ n
0 otherwise.

This is x-computable in a uniform way so that f W N � ! ! N is computable. Using the the …1
1-norm
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� WWO! !1 defined by �.x/ D kxk and the…1
1-relations�� and<� , because…1

1 is closed under computable
substitution, f .x; n/ �� f .y; n/ and f .x; n/ <� f .y; n/ are both…1

1. Thus the following are also…1
1:

• x �'n
y iff x �� y or .x �� y ^ y �� x ^ f .x; n/ �� f .y; n//;

• x <'n
y iff x <� y or .x �� y ^ y �� x ^ f .x; n/ <� f .y; n//. a

This motivates the idea of a…1
1-scale just as the map x 7! kxk motivated the idea of a…1

1-norm.
25E • 5. Definition

Let � be a pointclass. A �-scale is a scale E' on a setX such that the following relations on triples hx; y; ni are in �:
x �'n

y iff x 2 X ^ .y 2 X ! 'n.x/ � 'n.y//

x <'n
y iff x 2 X ^ .y 2 X ! 'n.x/ < 'n.y//.

� has the scale property iff every X 2 � has a �-scale on X .

So Result 25 E • 4 says WO has a …1
1-scale. As is usual, for adequate � , a �-scale on X implies X 2 � , defined by

x 2 X iff x �'0
x. Similarly, it’s easy to adapt Result 25C • 8 into the following corollary.

25E • 6. Corollary
Let � be an adequate pointclass and X 2 � . Therefore X has a �-scale iff there are relations S0 2 �; and S1 2 :� ,
where for all y 2 X ,

x 2 X ^ 'n.x/ � 'n.y/ iff S0.x; y; n/ iff S1.x; y; n/.

We can also easily use the…1
1-scale on WO to show that…1

1 has the scale property.

25E • 7. Corollary (…1
1
Scale Property)

For any X � N ,…1
1.X/ has the scale property.

Proof .:.

Work with X D ;. As with PWO.…1
1/ (25C • 10), for A 2 …1

1, Lemma 25B • 9 tells us there’s a computable
(and therefore continuous) f W N ! N where f �1"WO D A. Result 25 E • 4 tells us there’s a …1

1-scale E' on
WO, and it’s easy to see from…1

1’s closure under computable preimages that h'n ı f W n < !i is a…1
1-scale on

A. a

The scale property is instrumental in proving …1
1-uniformization—sometimes called Kondô’s theorem—which we

may now prove. As a reminder, this is the statement that for any X 2 …1
1 with X � N � N , there’s a …1

1-function
f W dom.X/! ran.X/.

25E • 8. Theorem (…1
1
-Uniformization)

For any X � N ,…1
1.X/-uniformization holds.

Proof .:.

Work with X D ; for simplicity. Let A 2 …1
1. For each x 2 N , let A"x D ¹y 2 N W hx; yi 2 Aº. The general

strategy will find a unique y 2 A"x. Uniqueness is relatively easy to establish. The purpose of the scale is to
ensure f is…1

1 and that dom.f / D pA.

So let x 2 N be arbitrary. Let E' be a …1
1-scale on A by …1

1 Scale Property (25 E • 7). Define f .x/ D y iff
hx; yi 2 A and for all z 2 N , and all n 2 !,

1. If hx; zi 2 A ^ z � n D y � n ^ 8m < n .'m.x; z/ D 'm.x; y// (†11 using S1 from Corollary 25 E • 6);
2. Then y.n/ < z.n/ or else y.n/ D z.n/ ^ 'n.x; y/ � 'n.x; z/ (…1

1)
It’s not too difficult to show that this indeed uniquely defines a y 2 A"x because if this holds for two y1; y2 2 N ,
then for the least n where y1.n/ ¤ y2.n/, (1) holds. Suppose y1.n/ < y2.n/, then if we look at (2) applied to
y D y2 and z D y1, then y2.n/ < y1.n/ (which is false) or else y2.n/ D y1.n/ (which is also false).
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As a result, f is :†11 _…1
1 D …1

1 with f � A. So it suffices to show the existence of such a y for any given
x 2 pA. We use that E' is a scale and use this to ensure the limit of constructing y has hx; yi 2 A. In particular,
recursively define An such that A0 D A"x, and

A0 D A"x
A2nC1 D ¹y 2 An W 'n.x; y/ D min¹'n.x; z/ W z 2 Anºº
A2nC2 D ¹y 2 AnC1 W y.n/ D min¹z.n/ W z 2 Anºº.

Any sequence of elements hyn 2 An W n 2 !i is necessarily convergent because ym � n D yn � n for n < m.
Such a sequence also has h'n.yk/ W k 2 !i as eventually constant and therefore limn!1 yn 2

T
n<! An, i.e.

y D limn!1 yn satisfies the definition f .x/ D y. a

One can generalize this proof to show that if � is adequate, closed under 8! , and has the scale property, then �-
uniformization holds. …1

1-uniformization in particular allows us to prove the converses of Theorem 25B • 16.
25E • 9. Theorem

For x 2 N , the following are equivalent:
1. !LŒx�

1 < !1.
2. †12.x/ has the perfect set property.
3. …1

1.x/ has the perfect set property.

Proof .:.

(1) implying (2) is in the proof of Theorem 25B • 16. (2) implying (3) is trivial, so we need to show (3) implies
(1). Let x 2 N and suppose !LŒx�

1 D !1. Define the set X � N as in Result 25B • 13, modified to work with
LŒx�. In particular, for each ˛ < !

LŒx�
1 , we let f .˛/ be the <LŒx�-least real in WO \ LŒx� coding h˛;2i. Set

X D f "!LŒx�
1 .

All the relevant theorems generalize from L to LŒx� to show that;
a. X 2 †12.x/ is uncountable (since ℵ1 D ℵLŒx�

1 ); and
b. X has no uncountable

�
†1
1-subset.

(b) follows fromThe Boundedness Lemma (25B • 10): any two elements of X have different height and because
any

�
†1
1-subset must have height < !LŒx�

1 D !1, it must have cardinality < ℵLŒx�
1 D ℵ1.

So let X D pY for Y 2 …1
1.x/. By …1

1-Uniformization (25 E • 8), there’s a …1
1.x/-function f � Y with

dom.f / D X . Thus jf j D jX j D ℵ1, and f also has no perfect subset. To see this, any closed g � f has
dom.g/ 2

�
†1
1 and dom.g/ � dom.f / D X so jgj D j dom.g/j D ℵ0 by (b). a

The uniformization and scale properties also hold for†12, which can be proven just by modifying the proofs for…1
1, but

not much is known beyond this because clearly the scale property (used to show uniformity) implies the prewellordering
property, and this is often independent.

§25F. Lengths of Definable Prewellorders

The Boundedness Lemma (25B • 10) tells us that no
�
†1
1-set of (coded) ordinals can reach above !1. But what if

instead of a set of ordinals, we consider a single well-order regarded as a relation over N . Forgetting about definability
restrictions, we could reach all the way up to (but not including) jN jC, which is consistently very large. Rather than
work with well-orders, it will be simpler to work with prewellorders.

25F • 1. Definition
Let n < !. Define the projective ordinal

�
ı1n D sup¹kRk W R 2

�
�1
n is a prewellorderº.
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We also define the lightface ı1n.X/ as the supremum of the (heights of) �1n.X/-prewellorders for X � N .

Note that if
�
ı1n D �, then every �

�1
n-prewellorder has height strictly less than �, because otherwise we could append a

point at the end to have a larger height without introducing complexity.
25F • 2. Lemma

For X � N , n < !, if R 2 �1n.X/ is a prewellorder, then kRk < ı1n.X/.

Proof .:.

For x 2 N , write x0 D ¹hn C 1;mi W hn;mi 2 xº. If kRk D ı1n.X/ with R 2 �1n.X/, then define R0 D

¹hx � 0; y � 0i W hx; yi 2 Rº[ ¹hx � 0; const1i W x 2 dom.R/[ ran.R/º. This will also be a�1n.X/-prewellorder
of height kR0k D kRk C 1 > ı1n.X/, a contradiction. a

Clearly if any jı1n.X/j > ℵ1, then :CH. In particular, the following theorem tells us L � “
�
ı11 < �

ı12 D �
ı1n D ℵ2” for

every n > 1. So we in general cannot proof what precisely these ordinals are. At best, we can place bounds on them.
That being said, under certain assumptions, we can calculate these.

25F • 3. Theorem

�
ı11 D !1 while ı11 D !CK

1 .

Proof .:.

For any infinite ˛ < !1, we have a relation on ! coding it: E D ¹hn;mi W f .n/ 2 f .m/º where f W ! ! ˛ is a
bijection. We can translate this to N just by considering R D ¹hx; yi W hx.0/; y.0/i 2 Eº 2 †11.E/. This shows
�
ı11 � !1. Assuming ˛ < !CK

1 , then E is computable so that †11.E/ D †11 and therefore ı11 � !CK
1 .

So suppose R 2
�
†1
1 is a prewellorder of height � !1. For every ˛ < !1, there’s therefore an order-preserving

map f W ˛ ! N , i.e. if  < ˇ < ˛ then f ./ R f .ˇ/. Using this, we can define WO in a†11.R/-way: x 2WO
iff x codes a linear order and there’s such an order-preserving map from Ex to R (i.e. there is a sequence of reals
hxn W n 2 !i where for all n;m 2 !, hn;mi 2 Ex implies hxn; xmi 2 R). But The Boundedness Lemma
(25B • 10) tells us WO isn’t

�
†1
1 , a contradiction. The same idea applies to !CK

1 in place of !1, just noting that
R 2 †11 implies †11.R/ D †11. a

25F • 4. Corollary
CH implies

�
ı11 D ℵ1, and�

ı1n � ℵ2 for every 1 < n < !.
Proof .:.

Work in L. Theorem 25 F • 3 gives the first equality. For the second, if
�
ı12 > ℵ2, then there’s a ℵ2-length

prewellordering 4 of N so after modding out by the equivalence relation x � y $ x 4 y 4 x, we get a
wellordering 4=� still of length ℵ2, contradicting that jN j D ℵ1 by CH. Thus

�
ı1n � ℵ2 for every n < !. a

The following theorem, proven independently by Kenneth Kunen and Donald Martin, gives us another way of working
with these projective ordinals.

25F • 5. Theorem (Kunen–Martin)
If R � N 2 is a prewellordering and R is �-suslin, then kRk < �C.

Proof .:.

Consider the tree S of R-decreasing sequences in <!N . Note that because R is well-founded, S has no infinite
branches. Thus we can consider a rank function on the upside down version of hS;Bi which then means the rank
of Ex_hyi 2 S is determined by what is above this in S , i.e. the R-predecessors of y. In particular, by a simple
induction, rankR.y/ D rankhS;Bi.Ex_hyi/ whenever Ex_hyi 2 S . (In particular, kRk D rankhS;Bi.;/ D khS;B
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ik.)

By Result 25 E • 3, let E' be a scale on R�1 with 'n.x; y/ < � for every n < ! and hy; xi 2 R. (We use R�1

because finite R�1-increasing sequences are finite R-decreasing sequences and therefore are in S .) For y R x,
define

 n.x; y/ D code.hx.i/; y.i/; 'i .x; y/ W i < ni/,
where code.�/ is the lexicographic rank of � in <!.! � ! � �/.

Claim 1
If ¹Evn W n < !º � R�1, and each h n.Evi / W i < !i is eventually constant, then hEvn W n < !i converges to
some Ev 2 R�1.
Proof .:.

If h n.Evi / W i < !i is eventually constant, then h'k.Evi / W k < !i is eventually constant and because
 n.Evi / encodes (and therefore solidifies) more and more of the initial values of Evi for larger and larger i ,
hEvn W n < !i converges to some Ev 2 N 2. But E' being a scale on R�1 then ensures Ev 2 R�1. a

Now consider the function f W S ! <!Ord as follows: f .;/ D ;, f .hxi/ D ;, and for Ex D hx0; � � � ; xn�1i 2 S ,
and Ex_hxni 2 S ,
f .Ex_hxni/ D f .Ex/

_
h n�1.xi ; xiC1/ W i < ni

_
h n�2.xi ; xiC1/ W i < ni

_
� � �

_
h 0.xi ; xiC1/ W i < ni.

This way, every  k.xi ; xiC1/ for i; k < n is coded by f .hx0; � � � ; xni/. The point of this construction is the
following two properties we will prove:

1. There is some � < �C where f W S ! <!�.
2. f is order-preserving in the sense that � C � with �; � 2 S (of length at least 1) implies f .�/ C f .�/.
3. himf;Bi is well-founded with therefore kRk D khS;Bik � khimf;Bik < �C.

(1) is easy enough to see just because each 'n.x; y/ < � so that  n.x; y/ < .! �! � �/<! (i.e. ordinal exponenti-
ation .! � ! � �/!) and thus we can regard f .�/ < ..! � ! � �/<!/<! < �C for any � 2 S . (2) also isn’t difficult
to see by the inductive definition of f .

For (3), we first show himf;Bi is well-founded. Suppose not: let h�n 2 S W n < !i yield hf .�n/ W n < !i

as an infinite B-decreasing sequence where (without loss of generality) �n D h�n.k/ W k � ni has length nC 1
and therefore as an element of S , �n.k/ R�1 �n.j / for k < j � n. Now because f .�0/ B f .�1/, all the coded
information from  0 is retained in f .�1/. And more generally, the information from  n is retained in f .�k/ for
k > n. In particular, for any given n < !, h n.�i .0/; �i .1// W 1 � i < !i is constant. Generalizing this, for
any given k < n < !, h n.�i .k/; �i .k C 1// W k � i < !i is constant. But by Claim 1, this means for each
k < !, hh�i .k/; �i .k C 1/i W k � i < !i converges to some h�.k/; �.k C 1/i 2 R�1. Thus we have an infinite
R�1-increasing sequence, contradicting that R is well-founded. a

Note that this actually provides another proof that
�
ı11 D ℵ1 since clearly �

ı11 � ℵ1, and the fact that �
�1
1 � �

†1
1-sets are

ℵ0-suslin implies their prewellorders have height <
�
ı11 � ℵ1. These two consequences of Kunen–Martin (25 F • 5)—

that
�
ı11 D ℵ1 and�

ı12 � ℵ2—are more-or-less the only results known in ZFC.
25F • 6. Corollary

�
ı12 � !2.

Proof .:.

All
�
†1
2-sets (and hence �

�1
2-sets) are ℵ1-suslin by the proof of Shoenfield Absoluteness (25A • 8) namely, Corol-

lary 25A • 9. So by Kunen–Martin (25 F • 5), any
�
�1
2 � �

†1
2-prewellorder has height at most ℵC

1 D ℵ2. a

In particular, we aren’t going to find an order contradicting CH at the level of
�
†1
2 .

In general, these projective ordinals are not cardinals. That being said, assuming determinacy axioms, they often will
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be, and in ZFCAD, every
�
ı1n is actually a regular cardinal. Calculating these however is not exactly easy, and transfering

these to results in ZFC isn’t exactly possible either since AD is incompatible with AC. The general strategy is instead
to look at the consequences of AD and then translate these results to PD and L.R/ (which hasn’t yet been defined):

ZFC ` “
�
ı11 D ℵ1”
“

�
ı12 � ℵ2”

ZFCC CH ` “
�
ı11 D ℵ1”
“

�
ı1n � ℵ2 for every n < !”

ZFC AD ` “
�
ı1nC1 D .�ı

1
n/

C for odd n”
“

�
ı11 D ℵ1”
“

�
ı12 D ℵ2”
“

�
ı13 D ℵ!C1”
:::

ZFCC PD ` “
�
ı11 D ℵ1”
“

�
ı12 D ℵL.R/

2 � ℵ2”
“

�
ı13 D ℵL.R/

!C1 � ℵ3”.
In ZF C AD, we generally have that

�
ı1n, for odd n, is the successor of a suslin cardinalxix that has cofinality ! [19].

Determinacy is the right context to study these ideas in, because of the connection between scales and suslin cardinals
as per Result 25 E • 3 and Kunen–Martin (25 F • 5), and also noting that stronger determinacy axioms propagate the
scale property further in the projective hierarchy. Note that it’s currently an open question whether the pattern of
ZFC PD ` “

�
ı1n � ℵn” for n � 4 continues for n � 5 under PD, even if we make additional assumptions.xx

xixA suslin cardinal is a cardinal � such that someX � N is �-suslin, but not ˛-suslin for any ˛ < �.
xxWell, it's open with assumptions that don't make the problem trivial like “jRj � ℵ4” or parts of the conjecture itself like “�

ı1
5 � ℵ5”.
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Section 26. Exercises
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Chapter V. Games and Determinacy*

Section 27. Fundamentals of Games

Determinacy has developed into an incredibly rich area of research about fairly concrete questions: what is
�
ı12? What

pointclasses have the reduction property? What sets are lebesguemeasurable? Answering these questions in ZFmaking
(sometimes modest) determinacy assumptions can help us to understand the situation in V � ZFC. What’s perhaps most
remarkable, is that the questions of determinacy can be phrased in a way accessible to most people, mathematicians or
not, further motivating just how concrete the questions are. Nevertheless, their connection with large cardinal axioms
can help us understand why the questions are hard to answer, and also help provide techniques to study the questions.

We begin with the basic definition of the games in question.
27 • 1. Definition

For our purposes, a number game refers to a game between players I and II who take turns playing natural numbers
ni 2 ! for i < !.

I: n0 n2 n4 � � �

II: n1 n3 n5 � � �

• The resulting play is the real x D hni W i < !i 2 N .
• On any given turn, we call x � n D hni W i < ni a partial play.
• There is a win-state in that I or II has won based on the resulting play. For simplicity, no ties are allowed: for
any resulting play, I wins iff II loses, and a player wins iff that player does not lose.

Of course, this is just the general setup to the games we will be considering: we haven’t specified the winning conidi-
tions yet. But given that there are no ties, we can always consider the set of plays where one of the players has won:
A D ¹x 2 N W I winsº has I win iff x 2 A. This motivates thinking of games where I and II take turns are building a
real x 2 N where I tries to ensure x 2 A while II tries to ensure x … A.

27 • 2. Definition
Let A � N . The game G.A/ is the number game where I wins with x 2 N iff the resulting play x 2 A.

Note that this definition encompasses all physical, non-luck based games between two players that can see the other
player’s decisions. For example, it’s not difficult to see that rules don’t matter. Here, having “rules” just means that on
any given turn, there’s only a subset of natural numbers I or II is allowed to play. As a result, we can form a tree T
over ! of allowed partial plays according to these rules (say a player loses if they don’t have any valid moves).

27 • 3. Result
Let T be a tree over !. Consider the number game G where each partial play must be in T . Therefore, there is a
set A � N where for any resulting play x in G.A/, I wins G.A/ iff I wins G with some initial segment of x, and
similarly for II.

Proof .:.

Note that because I plays n0 on the first turn and plays every two-levels thereafter, for any play x, x � n for even
n < ! had II play last. Consider the set

A D ¹x 2 N W I wins in G with some initial segment of xº
D ¹x 2 ŒT � W I wins in G with xº [ ¹x 2 N W II broke a rule firstº.
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Here by “II broke a rule first”, we mean there’s some n < ! where x � n 2 T but x � nC 1 … T with nC 1
even (so that II just played to break a rule). It follows that G.A/ is equivalent to G in the sense of the statement.
a

We can also encompass finite length games with finitely many options at any given turn just through coding. We give
an example rather than work through this informal statement.

With chess, we can label each piece with a number n < 32. As there are 64 possible positions for any given piece,
which we can also label with a number. So we can describe the current board with finitely many numbers coding where
each piece is on the board. All of this is just to say that a move in chess is just a natural number which describes the
new resulting board (such that the move obeys whatever rules of chess there are). So now we have a number game
where we want partial plays to be in a certain tree. By Result 27 • 3, this is the same as playing a game G.A/ for some
A � N .

The same idea can be applied to other board strategy games like checkers in addition to games like solitaire where I
moves cards, and II chooses the revealed cards’ values (where II must play according to how the deck of cards was
shuffled). Similarly, video games can be seen as number games where each frame is a turn, and the natural number
played codes the inputs given on that frame. All this is just to say that it suffices to consider games of the form G.A/

for A � N .

The main purpose of looking at games is figuring out how to win them.
27 • 4. Definition

A strategy is a function � W <!! ! !. A strategy � is a winning strategy for I (or � wins for I) in a number game
G iff playing according to � always results in a win for I in G. In other words, � is a winning strategy for I if for
any x 2 N and play of the game of the form

I: �.;/ D �0 �.�0; x.0// D �1 �.�0; x.0/; �1/ �.�0; � � � ; x.2// � � �

II: x.0/ x.1/ x.2/ � � �

Then I wins G with the resulting play, which we denote by � � x so that for every even n < !, .� � x/.n/ D
�.� � x � n/.

• A number game is determined iff one of the players has a winning strategy.
• A set A � N is determined iff G.A/ is determined.
• �-determinacy, also written Det.�/, for a pointclass � holds iff every A 2 � is determined.

And these definitions work similarly for II: � is a winning strategy for II iff for all x 2 N , x � � wins for II.

Now all of this has appealed to the intuitive idea of a game. Formally speaking, questions aboutG.A/ can be recast as
questions about A and N : a winning strategy � for I in G.A/ is just a � 2 !.<!!/ where 8x 2 N .� � x 2 A/.

§27A. Determinacy in ZFC

The easiest games to win are those where there are only countably many win-states for I.
27A • 1. Result

Let A � N be countable. Therefore II wins G.A/.

Proof .:.

We give a diagonalization argument. Enumerate A D ¹an W n < !º. IIs strategy will be on their nth turn (i.e. the
2nC 1st entry of the resulting play) to choose a value different from an.2nC 1/: for a partial play p of length
2nC 1, �.p/ D an.2nC 1/C 1. It follows that for any x 2 N and n < !, .x � �/.2nC 1/ ¤ an.2nC 1/ and
thus x � � … ¹an W n < !º D A so that II has won. a

This is the easiest sort of game to win: II doesn’t even care what I plays and just focuses on diagonalizing against A.
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Harder games involve actual strategy where we care what the other player is doing, and where we care what happens
after a given partial play. As such, it will be useful to consider the following.

27A • 2. Definition
Let A � N and let p 2 <!! be a partial play in G.A/.

• If p has even length (so p D ; or II just played) say II can force a win at p iff II has a winning strategy in
G.¹x 2 N W p_x 2 Aº/.

• If p has odd length (so I just played) say II can force a win at p iff there’s somem 2 ! where II has a winning
strategy in G.¹x 2 N W p_hmi_x 2 Aº/

And these definitions work similarly for I. Basically, II can force a win at p if II has a winning strategy for how to
play after p. This is useful especially in showing simple games are determined.

27A • 3. Theorem (Closed Determinacy)
Let A � N be closed. Therefore G.A/ is determined. In other words, Det.

�
…0
1/.

Proof .:.

Suppose II doesn’t have a winning strategy. We will describe a defensive strategy by player I which basically
amounts to (at every turn) trying to not lose. In the end, II will not have won by the closure of A so that I wins.
The crucial observation is the following, basically saying that if II can always force a win at no matter what I
does, then II could have forced a win at their previous turn. We use this for the contrapositive.

Claim 1
Let p be a partial play of odd length (so I just played). Suppose there’s a move m 2 ! by player II such that
for any move n 2 ! by player I, II can force a win at p_hm; ni. Therefore II can force a win at p.

Proof .:.

For each n 2 !, let �n force a win for II at p_hm; ni. Intuitively, II’s strategy is then just to use �n if I
responds with n. This strategy will force a win for II. In other words, the strategy � defined by �.;/ D m

and �.hm; ni_q/ D �n.q/. forces a win for II at p. a

Sowhat’s the strategy that I uses? At the start, because II doesn’t have awinning strategy, there’s amove �.;/ 2 !
by I such that II can’t force a win at h�.;/i. But then by Claim 1, no matter what n0 2 ! II plays, there’s some
�.n0/ such that II can’t force a win at h�.;/; n0; �.n0/i. So inductively, at every partial play p where I just
played according to � defined thus far, II can’t force a win at p and thus by Claim 1, no matter what n 2 ! II
plays, there’s some �.p_hni/ 2 ! such that II can’t force a win at p_hn; �.p_hpi/i.

This defines the strategy � W <!! ! ! for I. To see that this wins for I, suppose II plays x 2 N so the resulting
play is � � x. Note that II can’t force a win at any partial play p C � � x by definition. But then Np \ A ¤ ;

for every p C � � x. Hence � � x 2 A because A is closed. So � wins G.A/ for I. a

It’s important to note that this doesn’t say that I always wins closed games. Clearly II wins the game G.;/ where ; is
closed. Really, the fact that A is determined says nothing about which player has a winning strategy, just that one of
them does. This is especially so with the fact that open games are also determined.

27A • 4. Result
Suppose A and ¹x 2 N W hni_x 2 Aº is determined for every n < !. Therefore N n A is determined.

Proof .:.

The idea here is that going from G.A/ to G.N nA/, we’re switching players, and adding a turn at the beginning.
Suppose II wins G.A/ with � . Consider the strategy � 0 for I in G.N n A/ defined by � 0.�/ D �.h0i_�/. It
follows that � 0 wins for I in G.N n A/ because for any x 2 N , � 0 � x D .h0i_x/ � � … A.

Suppose I does not win G.N n A/. Thus there’s no initial move that forces a win for I. Let n 2 ! be any initial
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play by I in G.N n A/. Consider G.¹x 2 N W hni_x 2 Aº/. If II wins this, then the above argument tells us I
wins, a contradiction. Therefore by determinacy of this game, I wins with a strategy �n. Define a strategy � 0 for
II in G.N n A/ by � 0.hni_p/ D �n.p/, for any n 2 ! and p 2 <!!. This wins for II in G.N n A/ because for
any x D hx.0/i_x0 2 N , x � � 0 D hx.0/i_�x.0/ � x

0. Since �x.0/ wins for I in G.¹y 2 N W hx.0/i_y 2 Aº/,
it follows this x � � 0 … A so that � 0 wins for II in G.N n A/. a

In general, we cannot do better than Result 27A • 4: it’s not true in general that if A is determined then N n A is
determined (if there are sets that aren’t determined). To see this, let Z be some set that isn’t determined, and consider

A D Nh0i [
[

0<n2!

¹hni_x 2 N W x … Zº,

Then clearly I wins G.A/ just by playing 0 as the first move. But N n A isn’t determined. To see this, any winning
strategy for I will have the first move n0 ¤ 0 (else I immediately will lose). But then I wins in the game G.¹x 2 N W

hn0i
_x … Aº/ D G.Z/, which is a contradiction. Similarly, if II wins G.N n A/ with � , then � 0.�/ D �.h1i_�/

wins for I in G.Z/.

Nevertheless, given the closure properties of the borel and projective pointclasses, we get open determinacy.
27A • 5. Corollary (Open Determinacy)

Every open A � N is determined. In other words, Det.
�
†0
1/. In general, Det.�

†1
n/ iff Det.

�
…1
n/ for n < !.

Another corollary to the determinacy of open and closed games is that games of finite length are determined, just
because we can consider

S
�2A N� where A � <!! is the set of winning positionsi for I in the game. This is open and

therefore determined.

We can go much further beyond open and closed determinacy by the remarkable theorem due to Donald Martin. We
will not prove this here because the proof is very complicated and unnecessary for our purposes.

27A • 6. Theorem (Borel Determinacy)
Every borel A � N is determined. In other words, Det.

�
�1
1/.

This just serves as motivation for the idea that simply definable sets of reals should be determined. Going beyond this,
however, isn’t possible in ZFC alone, as it’s consistent that there are projective sets that aren’t determined. This is
partially a result of the analytical well order of N L in L, because we have the following theorem showing that not all
sets are determined.

27A • 7. Theorem
• There is a set A � N that is not determined.
• In fact, every B � N of size jBj D jN j has a subset A � B that is not determined.
• As a result, in L, there is an projective (and in fact, analytical) set that is not determined.

Proof .:.

• Since j!.<!!/j D jN j, there are as many strategies as real numbers. LetB � N be given of size jN j D �.
Well-order B and enumerate the strategies ¹�˛ W ˛ < �º. Define two sequences Ex D hx˛ W ˛ < �i and
Ey D hy˛ W ˛ < �i by recursion.

For ˛ < � and Ex � ˛, Ey � ˛ defined, consider ¹�˛ � r W r 2 Bº n ¹y� W � < ˛º, which isn’t empty since
j¹r � �˛ W r 2 Bºj D jBj D � > j˛j D j¹y� W � < ˛ºj.

So let x˛ D r��˛ for the least r 2 B such that r��˛ … ¹y� W � < ˛º. Similarly, we can define y˛ D �˛�r 0

for the least r 0 2 B such that �˛ � r 0 … ¹x� W � � ˛º. By construction, x˛ ¤ yˇ for ˛; ˇ < �.

Define A D ¹x˛ W ˛ < �º. G.A/ will not be determined. To see this, suppose I wins with � D �˛ . For any
x 2 N , write x D even.x/�odd.x/. If II playswith odd.y˛/, then the resulting play is �˛�odd.y˛/ D y˛ …

iAssuming here that the finite length game has no rules. If it does have rules, we use the same idea as in Result 27 • 3.
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Ameaning I has lost. Similarly, if II wins with � D �˛ , then the resulting play of even.x˛/��˛ D x˛ 2 A
meaning II has lost.

• To show that L has an analytical set that is not determined, work in L. Consider A above, constructed as a
subset of B D N with the �12-well order from Theorem 25B • 2. We can code strategies as real numbers
using some computable coding of <!! into!, allowing us to define resulting plays in a�11-way: for x 2 N

coding � , write x ? y for � � y in the sense of Definition 27 • 4. As a result, x 2 A iff x appears in some
partial list of our construction Ex � ˛ for ˛ < jN j D ℵ1. In other words, there are ˛ 2 WO (…1

1) and
�;  2 N such that

1. There is an n < ! such that 8k < ! .�.code.n; k// D x.k// (�11); and
2. For every n < !, there is a real �n (where �n.k/ D �.code.n; k// for k < !), a real � coding a

strategy, and a real r such that
a. �n D r ? � (�11),
b. 8m 2 ! .˛.code.m; n// D 1! 9k 2 ! .�.code.n; k// ¤ .code.m; k/// (�11), and
c. For every z 2 N such that the above occurs for .z��/.k/ in place of �.code.n; k//, then r �L z

(8N .�11 ! �12/ D …
1
3; and

3. (1) and (2) hold, switching � and  , and replacing “˛.code.m; n// D 1! : : :” in (2b) with
“˛.code.m; n// D 1 _m D n! : : :” (…1

3).

The same proof as above tells us A isn’t determined. Given the above description, we can say A has
complexity

9
N .…1

1 ^�
1
1 ^ 8

!
9

N .�11 ^�
1
1 ^…

1
3 ^…

1
3// D †

1
6.

Hence there’s an analytical set that isn’t determined in L. a

The set in question above can be categorized as †16 in L and hence it’s consistent for sets far along in the analytical
hierarchy to not be determined. But what about something of lowest complexity not already known by Borel Deter-
minacy (27A • 6): †11? It turns out that †11-determinacy is implied by the existence of a measurable cardinal, which
we already know is incompatible with L by L Has No Measurable Cardinals (12D • 4). This is partly due to the fact
that a measurable cardinal implies the existence of a certain real 0] that codes an elementary embedding j W L ! L
in V. In fact, †11-determinacy is equivalent to the existence of 0]. More generally, †11.x/-determinacy for x 2 N is
equivalent to the existence of x], which codes an elementary embedding j W LŒx�! LŒx�. We will return to this idea
in the next chapter once relative constructibility has been introduced.

We’ve seen that there are non-determined sets, but it’s interesting to note that we needed to use AC in order to do this:
we needed to be able to enumerate the strategies and deal with them one by one. But in what sense is choice essential
here? Is it possible in ZF alone that there are no undetermined sets of reals?

27A • 8. Definition (Axiom)
(Determinacy) AD states: every number game G.A/ for A � N is determined.

Of course, Theorem 27A • 7 tells us that AD is incompatible with ZFC. But is ZFCAD consistent? The answer to this is
yes relative to the existence of sufficiently large cardinals. Of course, this partially begs the question of why we would
care to examine a world where AD holds.
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Section 28. Determinacy and Pointclass Properties

§28A. Regularity properties from determinacy

One subject of interest is the interaction of AD with the regularity properties of Section 23. In particular, under AD,
every set of reals has the perfect set property, the baire property, and is lebesgue measurable. Frequently such results
are translatable to the context of ZFC, especially in relation to the projective and analytical hierarchy.

Firstly, note that we still get Closed Determinacy (27A • 3) and Open Determinacy (27A • 5) in ZF C DC. The same
proof goes through, where the strategy is just to avoid losing. DC is necessary here to choose the strategies in the case
that we can ever force a win. Often AD is studied in conjunction with DC, as we will do here. It’s actually an open
problem whether AD outright implies DC, which would certainly make the stated assumptions much simpler.ii Firstly,
recall what exactly DC is saying from Definition 9B • 6.

28A • 1. Definition (Axiom)
(Dependent Choice) DC states: if a relation has infinite height, then it has an infinite branch, i.e. for every X and R

8x 2 X 9y 2 X .hx; yi 2 R/! 9s .s W ! ! X ^ 8n 2 ! hs.n/; s.nC 1/i 2 R/.

Let’s show the first regularity property holds under ZFC DCC AD. The proof of this fact essentially uses a different
kind of number game: one in which players play only 0s and 1s. This really ensures PSP.X/ for each X � � D !2,
but the result can still be translated to

�
N by a continuous injection.

28A • 2. Theorem (AD C DC Implies PSP)
Assume ZFC DCC AD. Therefore PSP.X/ for every X � N .

Proof .:.

We first show the result for
�
� . Let X � � be given. Consider the game G0.X/ where I plays finite sequences of

0s and 1s each turn whereas II plays only a single 0 or 1 each turn.
I: s0 2

<!2 s1 � � �

II: x0 2 2 x1 � � �

The resulting play is r D s0_hx0i_s1_hx1i_ � � � 2 � . We say that I wins iff r 2 X . This game looks extremely
biased towards I, but this is good news for us.

Claim 1
I has a winning strategy for G0.X/ iff X contains a perfect subset.

iiPart of the reason why this is open is that all the models we have of AD are also models of AD C DC and in fact of an ostensibly stronger (but
also unknown whether it's equivalent to AD) hypothesis called ADC. One thing we due know due to Kechris is that AD implies DCR in the model
L.N /, where DCR is a restriction of DC to R (or N ).
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Proof .:.

Firstly, suppose that I winsG0.X/ with a strategy � . It follows that X contains a perfect subset. To see this,
we find a continuous injection from � intoX and use Lemma 23A • 4. for x 2 !2, let f .x/ be the resulting
play where I uses � and II plays x: f .x/ D � � x 2 !2. It’s clear that f is injective. To see that f is also
continuous, note that for any y, x � n D y � n has f .x/ � n D f .y/ � n (and in fact, probably much
more) because

f .x/ B �.;/_hx0i
_�.x0/

_
� � �

_
hxn�1i D �.;/

_
hy0i

_�.y0/
_
� � �

_
hyn�1i C f .y/,

and the length of that initial segment is at least n. f is thus continuous by Corollary 21B • 4. So by Lemma
23A • 4, imf is perfect in

�
� . Since I wins with � , f D x 7! � � x W � ! X and so imf is a perfect

subset of X . Note that the proof of Lemma 23A • 4 uses DC to show that
�
� is compact by a use of Kőnig’s

Lemma on Trees (9 B • 5) (and Theorem 9B • 7 to get that DC implies countable choice).

Now suppose thatX contains a perfect subsetP . We can then consider the “tree” resulting fromP similarly
to Lemma 23A • 4 by

T D ¹y � n W y 2 imf ^ n 2 !º.
Since P has no isolated points, at any stage p 2 T there is some s such that p_s_h0i and p_s_h1i are
both in T . We can then define a strategy for I by playing according to the tree in that way: at stage p, I
plays such an s (as chosen using DC). This strategy clearly wins for I. a

Claim 2
II has a winning strategy for G0.X/ iff X is countable.

Proof .:.

Now suppose that II winsG0.X/ with a strategy � . It follows that each y 2 X must be rejected somewhere,
meaning that our play of the game diverges from y where it previously agreed with y. More precisely, a
position p (where II just moved) rejects y 2 � iff

• p C y; and
• for all s 2 <!2 with p_s C y, the strategy � moves away from y: p_s_�.p; s/ 6C y.

The idea is that each y 2 X must be rejected somewhere, but there can only be countably many points
rejected, meaning X should be countable. Let’s do this rigorously.

Note that at each position p, there’s at most one real that’s rejected (recall we’re working with � rather than
N ). To see this, suppose p rejects y 2 � . We can then construct y from p and � . Because p rejects y,
if I plays s0 D ;, then II playing with � will move away from y: �.p; s0/ D i 2 2 has p_hii 6C y. In
other words, y.lh.p// ¤ i and so y.lh.p// D 1 � i 2 2. So then we can consider what happens when I
plays s1 D �.p_s0/. Again, because p rejects y, the play by II with � will differ from y now at position
lh.p/ C 1: y.lh.p/ C 1/ D 1 � �.p; s1/. So we proceed in this way. Recursively define s0 D ; and
siC1 D s

_
i h1 � �.p; si /i. The result is that p_

S
n<! sn D y.

It’s not hard to see that each y 2 X is rejected at some position p, since otherwise—by DC to choose I’s
moves at each stage—there’s a play of the game that results in y: there is some play s 2 <!2 by I where
p_s_�.p; s/ C y of strictly longer length. If y isn’t rejected at this position either, we can continue to
lengthen our position until the resulting play is y. Hence X �

S
p2<!2¹y 2 � W p rejects yº is contained

in a countable set. It follows that X is countable.

Now suppose X is countable. Enumerate X D ¹xn W n 2 !º. II’s strategy is to diagonalize: at position p
where it’s II’s nth turn, II plays 1�xn.lh.p// ¤ xn.lh.p//. Since II gets infinitely many turns, the resulting
play differs from each xn eventually, and so the resulting play is not in X and II has won. a

Under AD, each gameG0.X/ is determined by Result 27 • 3, since it’s equivalent to a number game with the rules
• I plays numbers that are codes for finite binary sequences;
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• II plays 0 or 1.
As a result, X has the perfect set property and thus PSP.X/ for each X � � . Now let Y � N be arbitrary,
aiming to show PSP.Y / just by translating it to � . Let f W N ! � be a continuous injection by Theorem
21B • 7. It follows that f "Y � � has the perfect set property. So either jf "Y j D jY j is countable, or there is
a perfect subset P � f "Y . In the latter case, consider f �1"P � Y , which must also be closed since P is and
f is continuous. f �1"P also must contain no isolated points for the same reason, meaning f �1"P would be a
perfect subset of Y . a

As a result, ZFCDCCAD implies a version of CH, namely Result 5 E • 3: that every subset of N has cardinality � ℵ0
or cardinality ŒN �size. Given that AC fails in ZFC DCC AD, it follows that that cardinality of N is not a cardinal, and
in fact, there are no injections from !1 into N .

28A • 3. Corollary
Assume ZFC DCC AD. Therefore there are no injections f W !1 ! N .

Proof .:.

If there were such an injection, then f "!1 � N would have size !1. By ADC DC Implies PSP (28A • 2), f "!1
would have size ℵ0 or would be in bijection with N . Since the former is by definition impossible, we get that
jN j D ℵ1. But then we can enumerate strategies and real numbers as in Theorem 27A • 7 to get a set that is not
determined, contradicting AD. a

This has quite a lot of consequences relating to measure that we will start to consider in the next subsection.

There is also a ZFC-compatible version of AD C DC Implies PSP (28A • 2) with the same proof after some tedious
consideration about classifying complexity, telling us that under determinacy assumptions, CH would hold for levels
of the projective hierarchy.

28A • 4. Corollary
Assume ZFC DC. Therefore, for n 2 !, Det.

�
†1
n/ implies PSP.

�
†1
n/, and similarly for

�
…1
n.

Proof .:.

Suppose X � N is
�
†1
n. Let f W N ! � be a continuous injection by Theorem 21B • 7. It follows that f "X is

�
†1
n and G0.f "X/ is equivalent to the number game G.B/ where B � N consists of all x 2 N such that
1. For all n < !, x.2n/ is the code of a finite binary sequence �n;
2. for all n < !, x.2nC 1/ 2 2;
3. �_0 hx.1/i_�_1 hx.3/i_�_2 hx.5/i_ � � � is in f "X .

Since the map taking x 2 B to �_0 hx.1/i_�_1 hx.3/i_�_2 hx.5/i_ � � � is continuous by Corollary 21B • 4, taking
the preimage of f "X yields another

�
†1
n set. (1) and (2) above are clearly �

�1
1 so that B , being the intersection of

these with the preimage of f "X , is
�
†1
n just asX is. ThusG.B/ and soG0.f "X/ are determined. By the proof of

ADCDC Implies PSP (28A • 2), f "X has the perfect set property and thusX does too: either jf "X j D jX j � ℵ0,
or there is a perfect subset P � f "X where therefore f �1"P � X is also perfect. a

The next regularity concept introduced was that of lebesgue measurability in Subsection 23B. We established the
lebesgue measurability for

�
†1
1-sets with Corollary 23B • 20 but could not go beyond due to Theorem 25B • 5: ZFCC

“V D L” implies that there are simply definable sets—�12 to be precise—that aren’t lebesgue measurable and don’t
have the baire property. We will see that AD implies that all sets are lebesgue measurable and so AD (or even Det.†12/)
is incompatible with L.

Showing that every set is lebesgue measurable under AD isn’t quite as simple a task as it was for the perfect set property.
But all three of the proofs that AD implies a regularity property take the following form: first consider a variant game,
show that something desirable happens depending on which player wins that game, and then conclude that the game
is still determined by AD even though it’s not a number game as in Definition 27 • 1.

278



DETERMINACY AND POINTCLASS PROPERTIES CH V §28A

The variant game we will consider for lebesgue measurability is the covering game. The basic idea is that II tries to
cover a set X with small open sets and I tries to build a point in X that is left uncovered: II has a winning strategy if
they can cover X , and otherwise I will try to find a point left uncovered. We need to be careful though, since we need
to be able to translate this kind of game into a number game, and so this is where the technical details start to creep in:
we need II to only be able to play increasingly smaller sets from a countable list of options. One way to do this is by
indexing a certain list of sets and having II play the indices while I builds a real in Œ0; 1� � R as written in binary and
considered completely separately from II.

28A • 5. Definition
Let " > 0 in R be given. For i 2 !, let hB in."/ W n 2 !i enumerate all sets B � R of lebesgue measure
�.B/ � "=4iC1 that are finite unions of closed intervals with rational endpoints.

The definition makes sense of course since there are only jQ �Qj<! D ℵ0-many finite unions of open intervals with
rational endpoints. We make use of this definition because we can still correctly calculate lebesgue measure with these
sets. The following lemma proves this, but it is unfortunately technical. The reader is recommended to be convinced
of the fact and skip the calculation oriented proof of the lemma.

28A • 6. Lemma
(ZF) Suppose X � Œ0; 1� � R. Therefore X is lebesgue measurable with measure 0 iff

0 D inf
°X

i2!
�.B i / W each B i 2 ¹B in."/ W n 2 !º for some " and X �

[
i2!

B i
±
. (�)

Proof .:.

Clearly if (�) holds then the lebesgue outer-measure of X is ��.X/ D 0 and so X is lebesgue measurable by
Result 23B • 7. So suppose X is lebesgue measurable with measure 0.

Let �0.X/ denote the right-hand side in (�). Suppose 0 < �0.X/. Let 0 < " < �0.X/ be arbitrary and let
¹Ii W i 2 !º be an arbitrary countable collection of closed intervals such that

1.
P
i2! �.Ii / is less than "=6 (and therefore below �0.X/); and

2. X �
S
i2! Ii .

Each Ii D Œai ; bi � is contained in a closed interval Œ˛i ; ˇi � with rational endpoints where ai � ˛i and ˇi � bi are
arbitrarily small by the density of Q in R. In particular, we can have jai � ˛i j; jˇi � b1j < "=4iC2. Then X is
still covered by

S
i2! Œ˛i ; ˇi � andX

i2!

�.Œ˛i ; ˇi �/ �
X
i2!

�.Ii /C 2
"

4iC2
D
X
i2!

.�.Ii //C 2"
X
i2!

1

4iC2

�
X
i2!

.�.Ii //C
2"

12
<
"

6
C
"

6
D
"

3
< �0.X/.

We also have that
P
i2! �.Œ˛i ; ˇi �/ is below "=3 D

P
n<! "=4

nC1. So without loss of generality, let’s work with
In D Œ˛n; ˇn�, closed intervals with rational endpoints.

Now we can break up ¹Ii W i < !º in a way such that we may regard them as B in."/s. Actually doing this is quite
tedious.

• Case 1. �.
S
n<! In/ >

P
j�i "=4

jC1.

– Let m 2 ! be the least such that the measure of
S
n<m In is less than

P
j�i "=4

jC1 but
S
n�m Im

has a larger measure.
– Consider the closure of

S
n�m In n

S
j<i B

j and let B i be composed of the remaining intervals and
initial segments of intervals of this set with as large measure as possible such that �.B i / � "=4iC1.
(This can be done explicitly with lots more technical detail.)

• Case 2. �.
S
n<! In/ �

P
j�i "=4

jC1. This case occurs eventually since
P
j<! "=4

jC1 D "=3 while
�.
S
n<! In/ �

P
n<! �.In/ < "=6.

– Let m 2 ! be such that
S
j<i B

j �
S
n<m Im and �.

S
n�m In/ � �.

S
n<! In/ < "=4iC1 and then

considerB i D
S
n�m Inn

S
j<i B

j . Such anm exists since�.
S
n<! In/ �

P
n<! �.In/ converges.
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Inductively, �.B i / � "=4iC1 in Case 1. In Case 2, the least i� for which we enter case 2, will inductively have
that

S
j<i� B

j has size
P
j<i� "=4

jC1 which means the measure of B i� is �.
S
n�m Im/ � �.

S
j<i� Bj / �P

j�i� "=4
jC1 �

P
j<i� "=4

jC1 D "=4i
�C1. It’s easy to see by induction that all subsequent instances of Case

2, i > i�, similarly obey �.B i / � "=4iC1. It should be clear that
S
n<! In D

S
n<! B

n so that both cover X .
Moreover,

P
n<! �.B

n/ � "=3 < �0.X/ even though the Bns take the proper form to witness �0.X/ � "=3, a
contradiction. a

Nowwe also make use of an old lemma about finding “minimal” measurable sets to give an equivalent characterization
of all sets being lebesgue measurable. In particular, we need only deal with sets Y such that every measurable subset
is null. In the context of ZFC this doesn’t imply that Y itself is null since Y might not be measurable. But if we can
show in the context of ZFC ADC DC that Y must be measure 0, this would imply every set is measurable.

28A • 7. Lemma
(ZF) Suppose that for everyX � R, if every measurable subset ofX is null, thenX is measurable and null. Therefore
every subset of R is lebesgue measurable.

Proof .:.

Let X � R be arbitrary. Let X � Y be as in Lemma 23B • 13: Y is measurable and every measurable A with
X � A � Y has �.Y nA/ D 0. It follows that Y nX has measure 0. To see this, letA be an arbitrary measurable
subset of Y nX and consider A0 D Y nA so that X � A0 � Y . Thus 0 D �.Y nA0/ D �.A/. Since A � Y nX
was an arbitrary, measurable subset, Y n X is measurable. Since Y is measurable, X D Y n .Y n X/ is also
measurable. a

So really it suffices to work just with subsets that satisfy the hypothesis of Lemma 28A • 7. So now we can put it all
together: the covering game that we now define, the characterization of Lemma 28A • 6 and using such null sets with
Lemma 28A • 7.

28A • 8. Definition
Let X � Œ0; 1� and " > 0. The covering game for X; " is the game G"cov.X/ that takes the form

I: x0 2 2 x1 x2 � � �

II: B0n0
."/ B1n1

."/ B2n2
."/ � � �

where each ni 2 ! and each xi 2 2. We say I wins iff x D
P
n2!

xn

2nC1 2 X n
S
i2! B

i
ni
."/.

We use this game to show lebesgue measurability as with Lemma 28A • 7, breaking down into cases depending on
which player has a winning strategy.

28A • 9. Theorem (AD C DC Implies Lebesgue Measurability)
Assume ZFC DCC AD. Therefore every X � R is lebesgue measurable.

Proof .:.

By Lemma 28A • 7, it suffices to show that anyX � Œ0; 1� is null whenever every measurable subset ofX is null.
So suppose every measurable subset of X � Œ0; 1� is null and consider G"cov.X/. This game is determined due to
AD, as it is equivalent to a certain number game where II plays ni 2 ! instead of B ini

."/.

Claim 1
I does not have a winning strategy in G"cov.X/ for any ".
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Proof .:.

Let � be winning and define f W N ! R by f .x/ D even.� � x/, the play by I where x D hnm W m < !i

has II playing hBmnm
."/ W m < !i. Since f is calculated term by term from � , it follows that f is continuous

by Corollary 21B • 4 and f "N � X . Since N is
�
…0
1, the image is

�
†1
1 and therefore lebesgue measurable

by Corollary 23B • 20. Thus f "N has measure 0. But then by Lemma 28A • 6, we can cover f "N by a
play hB ini

."/ W i < !i by II. So that � � hni W i < !i 2 f "N �
S
i<! B

i
ni
."/ and hence � wasn’t winning.

a

Therefore, by DC, for each 0 ¤ n < !, II has a winning strategy �n for G1=ncov .X/. So now we should examine
what happens when II wins.

Claim 2
If II has a winning strategy in G"cov.X/ then X has lebesgue outer-measure at most ��.X/ � ".

Proof .:.

Suppose � wins for II. For each partial play p 2 <!2 by I, let B.p/ be the set II plays in response using
� . Since � wins, every x 2 X will be covered by the resulting play by II: each x 2 Œ0; 1� can be written in
binary so that it can be played by II with Ex D hxn 2 2 W n < !i and therefore x 2

S
pCEx B.p/. Thus

X �
[

p2<!2

B.p/ D
[
n<!

[
p2n2

B.p/,

and the measure of
S
p2n2 B.p/ is at most 2n � ."=22n/ D "=2n. Hence the measure of

S
p2<!2 B.p/ is at

most
P
n2! "=2

n D ". So ��.X/ � ��.
S
p2<!2 B.p// � ". a

Hence X has outer measure at most 1=n for each n < !, i.e. X has outer-measure 0. Thus X is lebesgue
measurable by Result 23B • 7. By Lemma 28A • 7, every subset of Œ0; 1� is lebesgue measurable. a

As with Corollary 28A • 4, we get a ZFC-compatible version of this theorem just by showing that for X � N , the
covering gameGcov.X/ recast as a number gameG.A/ hasAwith the same complexity asX wheneverX is projective.
Doing this explicitly is a little annoying, so we give most of a proof.

28A • 10. Corollary
Assume ZF C DC. Therefore, for n < !, Det.

�
†1
n/ implies every

�
†1
n-set is lebesgue measurable, and similarly for

�
…1
n.

Proof .:.

Let X � Œ0; 1� be
�
†1
n. The “minimal” measurable A � X as in Lemma 23B • 13 is the countable intersection of

open sets and thus is
�
�1
1 � �

…1
n. Hence A n X is

�
…1
n and every measurable subset of A n X is null. Note that

Det.
�
…1
n/ holds by Result 27A • 4 and Det.

�
†1
n/.

Let f W � ! Œ0; 1� be defined by f .x/ D
P
n<! x.n/=2

nC1 which is continuous by Corollary 21B • 4 and
surjective. Hence f �1"X 2

�
†1
n in both

�
N and

�
� . To show A n X is Lebesgue measurable, note that the

covering game G1=Ncov .A n X/ for N < ! is equivalent to the number game G.BN / where BN � N is defined
by the set of all x 2 N such that

1. for every n < !, x.2n/ is either 0 or 1;
2. for every n < !, x.2nC 1/ is the code of a sequence E�n of an even number of elements of <!2 such that

• f .E�n.m// is rational for every m < dom.E�n/ (a �
�1
1-property),

• f .E�n.m// < f .E�n.mC 1// for mC 1 < dom.E�n/, and
•
P
2mC1<dom.E�n/ f .E�n.2mC 1// � f .E�n.2m// <

1
N �4nC1 (a

�
�1
1-property);

3. there is some n < ! such that for every m 2 dom.E�n/, E�n.m/ C even.x/; and
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4. even.x/ 2 f �1"X .
Each BN will therefore be 9!

�
…1
n D �

…1
n and so each G.BN / and G

1=N
cov .A nX/ are determined. By the proof of

ADCDC Implies Lebesgue Measurability (28A • 9), it follows that A nX , and hence X , is lebesgue measurable.
a

The final result tells us that all sets of reals have the baire property (recall Definition 23C • 3 that a set has the baire
property iff every set is meagre modulo an open set). The proof of this regularity property is perhaps the hardest. The
previous proof that all sets of reals are lebesgue measurable under ADCDC required a fair amount of background, but
the resulting proof was fairly straightforward. The reverse will be the case for the baire property from ADC DC, and
will introduce the first instance of the technique of “copying” a strategy from an “auxiliary” game.

The idea behind copying is that we have two games, G1 and G2, or possibly more. We suppose that one of the players
has a strategy in G2, or possibly more, and we use this strategy to generate one in G1 by copying moves.

I: c0 c1 � � �

II: a0 a1 � � �

I: a0 a1 � � �

II: b0 b1 � � �

G2

G1

28A • 11. Figure: Copying I's moves in G1 to create moves for II in G2

The game we will use for the baire property will be a banach–mazur game, named after the Polish mathematicians
Stefan Banach and Stanisław Mazur. The idea behind the game is that I and II play a decreasing sequence of basic
open sets. I tries to having the resulting limit (the intersection) intersect a given desired set X while II tries to avoid
X .

28A • 12. Definition
Let X � N be given. The banach–mazur game for X is the game Gbm.X/ that takes the form

I: N�0 N�2 � � �

II: N�1 N�3 � � �

where �n C �nC1 2
<!! for all n < !. We say I wins iff X \

T
n<! N�n ¤ ;.

This is similar to the variant game in the proof of AD C DC Implies PSP (28A • 2). There, one of the players could
play arbitrarily large finite binary sequence where the other could play only one digit at a time. Here, both players can
play arbitrarily large finite sequences of integers, so the game is more “balanced” in this way. In this way, the winning
condition is similar to number games: if I and II instead just play �n 2 <!!, the two build up a real x 2 N where then
I wins iff x 2 X .

Recall the following characterization of being nowhere dense from Result 23C • 6: a setX is nowhere dense iffX \U
is not dense in (the inherited topology on) U for any open U .

The basic idea now is that II has a winning strategy in the banach–mazur game Gbm.X/ iff X is meagre, and I has a
winning strategy in it iff N� n X is meagre for some � . Hence AD allows us to enforce that one or the other happens
all the time.

28A • 13. Theorem (AD C DC implies BP)
Assume ZFC DCC AD. Therefore every set X � N has the baire property.

Proof .:.

Consider the banach–mazur game Gbm.X/ for X � N arbitrary. Firstly, it’s not too difficult to see that II wins if
X is meagre.
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Claim 1
If X is meagre then II has a winning strategy for Gbm.X/.

Proof .:.

Suppose X is meagre, and write X D
S
n<! Xn where each Xn is nowhere dense. We define a winning

strategy for II using DC and diagonalizing through each Xn. By Result 23C • 6, inductively, suppose p is
a partial play where I just played � and it is now II’s nth turn. By Result 23C • 6, since Xn is nowhere
dense, Xn \ N� is not dense, meaning there is an open set (and hence basic open set by taking a subset)
W � N� where Xn \W D ;. Such a W can take the form N� for some � which therefore has � B �n.
By DC we may define �.p/ as N� . It follows that � wins for II since at II’s nth turn in the partial play p,
we ensure Xn \

T
�Cp N� D ;. It follows that in the resulting play hN�n W n < !i, X \

T
n<! N�n DS

n<! Xn \
T
n<! N�n D ; and so II wins. a

Actually this is an equivalence.
Claim 2

If II has a winning strategy for Gbm.X/ then X is meagre.

Proof .:.

Suppose II has a winning strategy � . Let p a partial according to � , where II just played. We can say x 2 X
is rejected at stage p iff x 2

T
n<lh.p/ p.n/ but for all plays N� by I, x …

T
n<lh.p/ p.n/\ �.p

_hN� i/, i.e.
II playing according to the strategy ensures x isn’t in the resulting set.

Since � is winning, every x 2 X is rejected by some partial play p—since otherwise using DC to choose
I’s moves at each stage—there’s a play of the game that results in x being in the intersection, contradicting
that � won. We can define

Rp D ¹x 2 X W x is rejected at pº.
ThusX D

S
p2<!! Rp . Previously in Claim 2 ofADCDC Implies PSP (28A • 2), jRpj D 1. Here, however,

Rp will be nowhere dense which tells us that X D
S
p2<!! Rp is meagre: the idea is that if x is rejected at

p, x can’t be rejected at a later stage too. More explicitly, suppose x 2 Rp and N� is the last move in p, and
it’s I’s turn. Suppose I plays x � n for an arbitrary n > lh.�/. Responding with �.p_hNx�ni/ D Nx�n_� 0 ,
it follows that x � n _ h� 0.0/ C 1i disagrees with � and with x: the disagreement isn’t due to I’s turn
since it disagrees with x, and the disagreement isn’t due to II since it disagrees with � . Hence any resulting
play from that point on wasn’t rejected at stage p: Nx�n_h� 0.0/C1i \ Rp D ;. Thus if U � N is (basic)
open and x 2 Rp \ U , then we have found a (basic) open setW � U such that Rp \W D ; and so Rp is
nowhere dense by Result 23C • 6. a

This tells us what happens if II winsGbm.X/, and tells usX (trivially) has the baire property in such cases. What
happens when I wins things are slightly less direct because it only gives partial information about X .

Claim 3
I has a winning strategy for Gbm.X/ iff N� nX is meagre for some � 2 <! .
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Proof .:.

Suppose � is a winning strategy for I in G1 D Gbm.X/. Let N�.;/ be the first move by I. Now consider
the auxiliary game G2 D Gbm.N�.;/ n X/. It follows that II has a winning strategy for this game by
copying moves. More precisely, suppose I plays N�0 in G2. Without loss of generality (since otherwise I
immediately loses in that game) suppose �0 extends � . Then we have II copy this move inG1 and see how I
responds there with N�1 using � . We copy that move as player II in G2 and so on: I in G1 always responds
using � and everything else is generated using arbitrary plays by I in G2.

I: N�.;/ N�1 N�3 � � �

II: N�0 N�2 � � �

I: N�0 N�2 � � �

II: N�1 N�3 � � �

Gbm.X/
� �

Gbm.N�.;/ nX/

Following the arrows above gives a winning strategy for II in G2 since both games have the same resulting
intersection: X \

T
n<! N�n ¤ ; in G1 means

S
n<! �n D x 2 X so that .N�.;/ n X/ \

T
n<! N�n D

¹xº nX D ; and hence II has won in G2. By Claim 2, N�.;/ nX is meagre.

The same idea applies in the reverse direction to tell us that if N� n X is meagre for some � then I has a
winning strategy for Gbm.X/: let � be winning for II in Gbm.N� nX/ and copy moves as below.

I: N; N�1
N�3

� � �

II: N�0
N�2

� � �

I: N�0
N�2

� � �

II: N�1
N�3

� � �

Gbm.N� nX/
� �

Gbm.X/

So I in Gbm.X/ take’s II move, plays it as I in Gbm.N� nX/ and then uses the strateegy � to determine II’s
move there, and then copies it in Gbm.X/. a

So how does this tell us that X has the baire property? The unfortunate fact is that the determinacy of Gbm.X/

doesn’t in general tell us thatX has the baire property. We instead need to assume the determinacy ofGbm.X nS/

for a certain set S . In particular, define
S D

[
¹N� W � 2

<!! ^N� nX is meagreº.
In essence, S is the best approximation of N n X modulo meagre sets. It’s not hard to see that S is open and
S nX is meagre, given that it’s the countable union of meagre sets (cf. Lemma 23C • 4 (4)).

Thus we have the final proposition to prove the theorem: if Gbm.X n S/ is determined then X has the baire
property. To see this, if I has a winning strategy, then N� n .X n S/ is meagre for some � 2 <!! by Claim 3.
But then as a subset, N� nX � N� n .X n S/ is meagre. Hence N� � S . Yet this implies N� n .X n S/ D N� ,
which isn’t meagre, a contradiction. So I cannot have a winning strategy, and by determinacy, II wins. By Claim
2, X n S is meagre. Thus X 4 S D .S n X/ [ .X n S/ is the union of two meagre sets and is hence meagre.
Since S is open, it follows that X has the baire property. a

As before, we get a ZFC-compatible version of this theorem.
28A • 14. Corollary

Assume ZFC DC. Therefore, for n 2 !, Det.
�
†1
n/ implies BP.

�
†1
n/, and similarly for

�
…1
n.
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Proof .:.
Let X 2

�
†1
n. Let S be as in the proof of ADC DC implies BP (28A • 13):

S D
[
¹N� W � 2

<!! ^N� nX is meagreº.

As an open set, S 2
�
†0
1 and hence X n S is

�
†1
n. The determinacy of the banach–mazur game Gbm.A/ for any

A ¨ N is equivalent to the determinacy of the number game G.B/ where B consists of all x 2 N such that
1. For each n < !, x.n/ D code.�n/ for some � 2 <!!; and
2. �_0 �_1 �_2 � � � 2 A.

Using a computable coding, consider the map taking x 2 N to code�1.x.0//_ code�1.x.1//_ � � � if each
code�1.x.n// exists, and otherwise x is mapped to some element of N n A. This map f W N ! N is clearly
continuous and f �1"A D B therefore has the same projective complexity as A whenever A is projective. Hence
the determinacy of Gbm.X n S/ is equivalent to the determinacy of G.B/ for some B 2

�
…1
n. Since Det.�

…1
n/

holds, we get that X has the baire property by the proof of ADC DC implies BP (28A • 13). a

We can therefore collect together Corollary 28A • 4, Corollary 28A • 10, and Corollary 28A • 14 to get the following.
28A • 15. Corollary

Assume ZFCDC. Therefore, for n < !, Det.
�
†1
n/ implies every

�
†1
n-set has the perfect set proeprty, the baire property,

and is lebesgue measurable.

Such a statement is weaker than pure AD, but more interestingly, compatible with ZFC despite being strictly stronger.iii

28A • 16. Definition
Projective determinacy (PD) is the statement that Det.

�
†1
n/ holds for every n < !.

Relative to the existence of sufficiently large cardinals, PD is consistent with ZFC [?], allowing us to make use of the
techniques of determinacy ideas even outside the context where AC fails.

Corollary 28A • 15 is not the end of the story as far as the implications of Det.
�
†1
n/ on regularity properties are con-

cerned. In particular, we can go one step further into
�
†1
nC1.

28A • 17. Theorem
Assume ZFCDCCDet.

�
†1
n/. Therefore every

�
†1
n-set has the perfect set proeprty, the baire property, and is lebesgue

measurable.

This gives an alternative proof of Corollary 23A • 21, Corollary 23C • 10, and Corollary 23B • 20 using Closed Deter-
minacy (27A • 3) or Open Determinacy (27A • 5).iv The general idea behind this is a technique called unfolding. In
what sense we are “unfolding” something is unclear to me. Nevertheless, the idea behind the technique is to represent
X 2

�
†1
nC1 as the projection 9N Y . In most of the games we play, we would attempt to find a certain element of X .

With unfolding, we instead play modified games that have one of the players attempt to find not only x 2 X but also
guess the y paired with x in the simpler set Y : hx; yi 2 Y . The determinacy of the simpler games about Y allows us
to make similar conclusions as before just by ignoring the chosen y.

Proof of Theorem 28A • 17 .:.

Note that Det.
�
†1
n/ implies Det.

�
…1
n/ by Result 27A • 4.

For the perfect set property, argue as in ADC DC Implies PSP (28A • 2) and Corollary 28A • 4 to work with an
arbitrary X 2

�
†1
nC1 X � � . Let Y 2

�
…1
n have X D pY , Y � N � � . Consider the game OG0.X/ which takes

the form
OG0.X/

I: s0 2
<!2; y0 2 ! s1; y1 � � �

II: x0 2 2 x1 � � �

iiiIn particular, ZFC C Det.
�
†1

1/ implies PSP.
�
…1

1/ and thus !LŒx�
1 < !1 by Theorem 25B • 16 and so !V

1 is (weakly) inaccessible in LŒx� for
every x 2 N by Theorem 25B • 15. Hence the consistency of ZFC C Det.

�
†1

1/ implies the consistency of the existence of a weakly inacessible
cardinal.

ivTo be fair, we used Corollary 23B • 20 in the proof of AD C DC Implies Lebesgue Measurability (28A • 9).
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writing r D s_0 hx0i
_s_1 hx1i

_ � � � and y D hyn W n < !i, we say I wins if hr; yi 2 Y . As with Corollary
28A • 4, we can recast this as a number game G.B/ for some B 2

�
…1
n. The same proof as Claim 1 of ADC DC

Implies PSP (28A • 2) implies that I has a winning strategy � implies pY has a perfect subset: the map taking
x 2 � to r from the resulting play hr; yi via � is continuous, injective, and witnesses that there is a perfect subset
ofX by Lemma 23A • 4. Similarly, if IIwins, just as before with Claim 2 of ADCDC Implies PSP (28A • 2), pY
will be countable since everything will be rejected at some partial play p. For any fixed y.n/ in p, there can be
only one possible x 2 � rejected at the nth stage p. Since there are only countably many y.n/, the set of x 2 �

rejected at p is countable. Hence the countable union of all x 2 � rejected somewhere is countable, and so all
of pY D X is countable. By determinacy, one of the players has a winning strategy and thus PSP.X/ holds.

For lebesgue measurability, we argue again as in Corollary 28A • 10 to work with X � Œ0; 1�, X 2
�
†1
nC1, such

that every measurable subset of X is null. Let X D pY for Y � Œ0; 1� �N , Y 2
�
…1
n. Now consider the variant

of the covering game OG1=Ncov .X/ for N < ! which takes the form

OG1=Ncov .X/
I: x0 2 2; y0 2 ! x1; y1 � � �

II: B0n0
.1=N / B1n1

.1=N / � � �

For x D
P
n<! xn=2

nC1 and y D hyn W n < !i, we say that I wins iff hx; yi 2 Y n .
S
n<! B

0
n0
.1=N /�N /. As

with Corollary 28A • 10, this is equivalent to a number gameG.B/ for someB 2
�
†1
n and is therefore determined.

Just as before in Claim 1 from AD C DC Implies Lebesgue Measurability (28A • 9), I cannot have a winning
strategy here: f mapping (indices of) plays by II into x where hx; yi is the resulting play by I is continuous and
f "N � X is

�
†1
1 , measurable, and so null. Thus f "N is covered by a play by II, meaning I couldn’t win with

the strategy. Thus II has a winning strategy, and without loss of generality, can ignore the sequence hyn W n < !i.
The same idea in Claim 2 of ADC DC Implies Lebesgue Measurability (28A • 9) tells us that the outer measure
of X is at most 1=N . To give a sketch, if � is the strategy for II, let B.p/ be the set II plays in response using
� . Without loss of generality, for any hx; yi 2 Y played by I, x will be in B.p/ for some initial segment of the
resulting play p. By a counting argument, we can ensure that the outer-measure of what II could play is at most
1=N . Since this holds for each N 2 !, X is null and so measurable.

For the baire property, let X 2
�
†1
nC1, X � N be arbitrary. Let S be the open set as in AD C DC implies BP

(28A • 13):
S D

[
¹N� W � 2

<!! ^N� nX is meagreº.
Note that X n S is therefore still

�
†1
nC1, and S nX is meagre. so let Y 2

�
…1
n witness X n S D pY . Consider the

variant of the banach–mazur game OGbm.Y / which takes the form

OGbm.Y /
I: yn 2 !;N�0 y1;N�2 � � �

II: N�1 Nt3 � � �

where �n C �nC1 for all n < ! and where I wins iff hx; yi 2 Y where x D
S
n<! �n and y D hyn W n < !i.

Again as with Corollary 28A • 14, this can be recast as a number game G.B/ for some B 2
�
…1
n and so the game

is determined. Similarly to before with Claim 2 of ADC DC implies BP (28A • 13), if II has a winning strategy,
then X is meagre, sense we can in effect ignore y: the points in X n S rejected at each stage is meagre and so
X n S will be meagre, meaning X 4 S D .S n X/ [ .X n S/ is meagre and X has the baire property. If I has
a winning strategy � , then as before, we can just copy this winning strategy in the complement game where we
ignore y: Gbm.�.;/ n .X n S// to tell us by Claim 2 of ADC DC implies BP (28A • 13) that �.;/ n .X n S/ is
meagre. But then �.;/ n X � �.;/ n .X n S/ is meagre so that �.;/ � S , implying �.;/ n .X n S/ D �.;/

which isn’t meagre, a contradiction. Hence II wins and X has the baire property. a

It’s important to realize that Det.
�
†1
n/merely implies these regularity properties for

�
†1
nC1, it doesn’t imply Det.

�
†1
nC1/

(otherwise Open Determinacy (27A • 5) would imply PD).

§28B. Basic consequences for measure

Obviously AD, as a statement about real numbers, has a lot to say about sets of real numbers as we’ve seen. But beyond
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this, there are also consequences for the rest of set theory, especially in relation to large cardinal hypotheses and choice
principles.

For example, we’ve thus far been working with the theory ZF C DC C AD, but as stated, it’s unknown whether AD
already implies DC. Indeed, we already have that AD implies a very simple form of choice: countable choice for sets
of reals.

28B • 1. Result
Assume ZF. Therefore AD implies that for every countable family ¹Xn � N W n < !º such that each 0 < jXnj � ℵ0,
there is a choice function f 2

Q
n<! Xn.

Proof .:.

Consider the game that takes the following form:
I: n 2 !

II: x.0/ 2 ! x.1/ x.2/ � � �

where I wins iff x D hx.m/ W m < !i … Xn. In other words, I chooses which Xn to play, and II tries to get
into Xn with their moves. This is clearly equivalent to a number game and is hence determined by AD. Clearly I
doesn’t have a winning strategy since for any particular n 2 ! that I plays, II can play any particular x 2 Xn ¤ ;.
Thus II wins with some strategy � . If n 2 ! is a play by I, we can let &.n/ 2 N be the resulting real played by
II’s moves using � . Since � wins, &.n/ 2 Xn for each n < ! and hence & is a choice function in

Q
n<! Xn. a

As a result, !1 is regular in ZFC AD, which is not as trivial as is the case with ZFC. A decent exercise is to identify
precisely where the assumption of AC comes into play in the standard proof that �C is regular for any cardinal �, Result
5D • 20.

Note that the baire property holding for all sets of reals implies that there are no !1-length sequences of (distinct) reals,
another way in which AC fails in ZFCDCCAD, just as with Corollary 28A • 3. One can also say that in ZFCDCCAD
that R is amorphous in the sense that its cardinality is not directly comparable with cardinals.

28B • 2. Result
Assume ZFC DCC AD. Therefore there is no injection f W !1 ! N .

Proof .:.

Without loss of generality, consider f W !1 ! R an injection. Consider a construction of the vitali set. In
particular, for each a; b 2 f "!1, write a � b iff a � b 2 Q. Let X � f "A be a set of representatives of
�-equivalence classes. Note that X must be uncountable since otherwise f "A � ¹x C q W x 2 X ^ q 2 Qº is
contained in a countable set. But X—as a Vitali set—is not lebesgue measurable, nor has the baire property by
Result 23B • 16 and Result 23C • 11. This contradicts AD C DC Implies Lebesgue Measurability (28A • 9) and
ADC DC implies BP (28A • 13). a

28B • 3. Corollary
Assume ZFC DCC AD. Therefore there is no ordinal ˛ such that N Dsize ˛.

Proof .:.

By Result 28B • 2, the only bijection f W ˛ ! N that can exist has ˛ < !1. Thus the minimal such ˛ is !. But
N ¤size ! by Cantor’s Theorem (5B • 13). a

This has quite a lot of consequences in relation to large cardinals. In particular, !1 is measurable in ZFCDCCAD. One
might think this is impossible since measurable cardinals need to be limit cardinals and indeed strongly inaccessible.
But in the world without choice, such oddities are possible, partially because any non-principal ultrafilter over!, recast
as a subset of N , doesn’t have the baire property and isn’t lebesgue measurable [?needcitation].

28B • 4. Lemma
Assume ZFC AD. Therefore there are no non-principal ultrafilters over !.
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Proof .:.

Suppose U is a non-principal ultrafilter over !. Consider the game G that takes the form
I: s0 s2 � � �

II: s1 s3 � � �

where each si 2 Œ!�<! is disjoint from all the previous sk , k < i . We say Iwins iff
S
i<! s2i 2 U . Hence IIwins

iff the complement is in U . This game is straight-forwardly recast as a number gameG.A/ for some A � N , and
hence is determined.

Suppose I has a winning strategy � . Consider playing an auxiliary game as II and copying moves to generate a
winning strategy for II. Write s0 for �.;/ and for any s1 2 Œ!�<! , play as follows.

I: s0 s2 s4 s6 � � �

II: s1 s3 s5 � � �

I: s0 s3 s5 � � �

II: s1 [ s2 s4 s6 � � �

(Original)
� � �

(Auxiliary)
� �

The resulting play by I in the original is the set
S
n<! s2n which is disjoint from

S
n<! s2nC1 and in the auxiliary

game, I’s play is s0 [
S
0<n<! s2nC1. Because I uses � in both games, both sets are in U but have intersection

s0 2 Œ!�
<! in U . But U , being non-principal, contains no finite sets, a contradiction. Hence U could not be

non-principal. a

28B • 5. Theorem
Assume ZFC AD. Therefore every non-principal ultrafilter is !1-complete.

Proof .:.

Let U be a non-principal ultrafilter over some set X . Let Xn 2 U for n < !. To see that
T
n<! Xn is in U ,

suppose not:
T
n<! Xn … U . Without loss of generality,

1. X0 D X ;
2. XnC1 � Xn for each n < !; and
3.
T
n<! Xn D ; (consider

T
i�nXi n

T
i<! Xi 2 U instead of Xn for 0 < n < !).

Now let f W X ! ! be defined by f .x/ D n iff n is the least such that x … An so that f is surjective. Define an
ultrafilter � over ! by

� D ¹A � ! W f �1"A 2 U º.
It’s straightforward to see that � is an filter. To see that � is an ultrafilter, if A … � then f �1"A … U and hence
X n f �1"A 2 U . Since X D f �1"!, X n f �1"A D f �1".! n A/ 2 U and hence ! n A 2 �.

� is non-principal by the assumption that
T
n<! Xn … U : suppose � D ¹A � ! W N 2 Aº for some fixed

N < !. Since, for every n < !, Xn 2 U , f "Xn 2 � and thus N 2 f "Xn. In particular, N 2 f "XN , which
is impossible: any x with f .x/ D N has x … XN by definition of f . Thus � is principal, contradicting Lemma
28B • 4. Hence U must be !1-complete. a

This alone doesn’t tell us that !1 is measurable since we have not guaranteed the existence of a non-principal ultrafilter
over !1. Nevertheless, there will be, and in fact, there will be many such measures. In fact, in ZF C DC C AD, !1
and !2 are in fact measurable. A theorem of Steel actually tells us that for “small” uncountable cardinals in L.N /,
assuming L.N / � AD, regularity is equivalent to measurability in L.N /. This idea in L.N / is something which an
assumption ADC outright implies with a proof due to Woodin.

§28C. Two periodicity theorems

Recall the situation of the prewellordering property, the scale property, uniformization, the reduction property, and the
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separation property, all of which we have for…1
1 or (†11 in the case of separation): cf. PWO.…1

1/ (25C • 10),…1
1 Scale

Property (25 E • 7), …1
1-Uniformization (25 E • 8), Result 25D • 2, and Result 25D • 4). Through results like Theorem

25C • 11, we also have gotten PWO.†12/ and Scale.†12/ in the context of ZFC. In the context of AD or PD, we actually
get much more as in Figure 25C • 15 reproduced below.

†10 †11 †12 †13 †14

� � �

…1
0 …1

1 …1
2 …1

3 …1
4

28C • 1. Figure: Analytical � ¤ �1
n such that ZF C DC C PD � PWO.�/

We also get separation, reduction, uniformization and so forth throughout the analytical and projective hierarchies.
We can also propogate the scale property when making use of “very good” scales. These represent two periodicity
theorems that allow us to propogate the prewellordering and scale properties throughout the analytic and projective
hierarchies in a technique due to Yiannis Moschovakis (Γιάννης Μοσχοβάκης), which allows us to go from †-like
pointclasses to…-like pointclasses. The original technique from Theorem 25C • 11 (which required no choice axiom)
allows us to go from…-like pointclasses to†-like pointclasses and thus in the context of determinacy, we can go back
and forth through the entire analytical hierarchy.

28C • 2. Theorem (The First Periodicity Theorem)
Assume ZFCDCCDet.� \:�/ and PWO.�/ where � � P .N / is an adequate pointclass. Therefore PWO.8N�/.

Proof .:.

Let A 2 8N� and B 2 � be such that A D 8NB . We want to define a 8N�-norm on A. So let ' be a �-norm
on B and consider the following sup game: given x; y 2 A, let Gx;y be the game

Gx;y
I: a0 2 ! a1 a2 � � �

II: b0 2 ! b1 b2 � � �

where II wins iff '.x; a/ � '.y; b/ where a D han W n < !i and b D hbn W n < !i. Basically, II wants to play
the bigger ordinal. Note that this is well defined since x; y 2 A D 8NB and hence hx; ai; hy; bi 2 B for all
a; b 2 N . The idea here is that Gx;y takes the form of a number game G.X/ for some X 2 � \ :� by Result
25C • 8: Ex �' Ey is � \ :� whenever Ex; Ey 2 B and so

X D ¹a � b W '.x; a/ � '.y; b/º 2 � \ :� .
Thus Gx;y is determined for each x; y 2 A. This will give us a relation on A defined by x �� y iff II has a
winning strategy in Gx;y . The result is that �� will be a 8N�-prewellorder, and we now aim to show this.

Note that �� is reflexive since II can merely copy I’s moves:
I: a0 a1 a2 � � �

II: a0 a1 a2 � � �
Gx;x

The resulting play of each player is a D han W n < !iwhere then clearly inGx;x , IIwins since '.x; a/ � '.x; a/.
Claim 1

�� is transitive.
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Proof .:.

Suppose x �� y �� z. We want to show II wins Gx;z and we do this by playing an intermediary game
since �' is already transitive: for some a; b; c 2 N , '.x; a/ � '.y; b/ � '.z; c/ and so we need to play
in a way such that Gx;z has the resulting play as a; c. So let a D han W n < !i 2 N be an arbitrary play by
I in Gx;z . We simultaneously play Gx;y and Gy;z in a way that generates a winning strategy for II in Gx;z .
Let �y be a winning strategy for II in Gx;y and let �z win for II in Gy;z . In essence, the strategy for II in
Gx;y is just ”�z ı �y” in a refined, technical sense.

I: a0 a1 � � �

II: c0 c1 � � �

I: a0 a1 � � �

II: b0 b1 � � �

I: b0 b1 � � �

II: c0 c1 � � �

Gx;z

Gx;y
�y �y

Gy;z
�z �z

There are thus three reals played: a, b D hbn W n < !i, and c D hcn W n < !i. The result is that IIwinsGx;y
by using �y and thus '.x; a/ � '.y; b/. Since II wins Gy;z by using �z , we also have '.y; b/ � '.z; c/.
But these are the reals played in Gx;z , meaning II has won there—'.x; a/ � '.y; b/ � '.z; c/—and the
strategy detailed above thus gives a winning strategy in Gx;z . a

Claim 2
�� is total over A: x �� y or y �� x for all x; y 2 A.

Proof .:.

Suppose x 6�� y so that II doesn’t have a winning strategy forGx;y . ByDet.�\:�/, IwinsGx;y with some
strategy � . Using � , we show II wins Gy;x merely by copying I’s moves as follows, writing �.;/ D a0,
and I’s moves b D hbn W n < !i 2 N in Gx;y as arbitrary:

I: b0 b1 b2 b3 � � �

II: a0 a1 a2 a3 � � �

I: a0 a1 a2 a3 � � �

II: b0 b1 b2 � � �

Gx;y

Gy;x � � �

Hence there are only two reals played: a D han W n < !i and b. Since I wins Gy;x , '.y; a/ 6� '.x; b/

which means '.x; b/ � '.y; a/ and thus II has won Gx;y . a

So that that remains to show �� is a prewellorder is that it is well-founded.
Claim 3

�� is well-founded
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Proof .:.

Suppose hxn W n < !i is <�-decreasing, meaning II wins GxnC1;xn
but loses Gxn;xnC1

. Since I therefore
wins Gxn;xnC1

, using DC, we choose a strategy �n for I in Gxn;xnC1
for each n < !. In each Gxn;xnC1

, the
first move �n.;/, which we call an.0/, is always determined. But then we just play inGxn;xnC1

the previous
move by I in GxnC1;xnC2

:

I: a0.0/ a0.1/ a0.2/ a0.3/ � � �

II: a1.0/ a1.1/ a1.2/ � � �

I: a1.0/ a1.1/ a1.2/ � � �

II: a2.0/ a2.1/ � � �

I: a2.0/ a2.1/ � � �

II: a3.0/ � � �

I: a3.0/ � � �

II: a4.0/

:::

Gx0;x1

�0 �0 �0

Gx1;x2

�1 �1

Gx2;x3

�2

Gx3;x4

The resulting plays define ai D hai .n/ W n < !i. In all of the boards, I plays with a winning strategy
and thus always wins: '.xn; an/ 6� '.xnC1; anC1/, meaning '.xn; an/ > '.xnC1; anC1/. But since this
happens for all n < !, we get a strictly decreasing sequence of ordinals, a contradiction. a

Thus �� is a prewellorder, and all that remains is that �� defines a 8N�-norm. So it suffices to find relations
612 8N� and 602 :8N� D 9N:8N� as in Result 25C • 8: for y 2 A,

x 2 A ^ x �� y iff x 60 y iff x 61 y.
To do this, notice that we can phrase this in terms of one of the players having or not having a winning strategy:

x 2 A ^ x �� y iff II wins Gx;y with some �
iff 9� 8a .'.x; a/ � '.y; a � �//„ ƒ‚ …

:8N �

x 2 A ^ x �� y iff I does not win Gx;y with any �
iff 8� 9b .'.x; � � b/ � '.y; b//„ ƒ‚ …

8N �

It follows by Result 25C • 8 that�� is a 8N�-norm onA, and sinceA 2 8N� was arbitrary, PWO.8N�/ holds.
a

28C • 3. Corollary
Assume ZFC DCC Det.�1n.X// for n < ! and X � N . Therefore

1. PWO.…1
m.X// for odd m � n, and

2. PWO.†1m.X// for even m � nC 1.
In particular, ZFC DCC PD implies PWO.…1

i .X// and PWO.†1j .X// for all odd i < ! and even j < !.

Proof .:.

Proceed by induction on n < !. For n D 0, we already have PWO.†10.X// by PWO.†10/ (25C • 9). Indutively,
Det.�1nC1.X// implies Det.�1n.X// and therefore PWO.…1

m.X// holds for oddm � n and PWO.†1m.X// holds
for even m � n.
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• Suppose n is odd. Hence we only need to show PWO.†1nC1.X//. But this holds by Theorem 25C • 11 and
PWO.…1

n.X//: 9N8N…1
n.X/ D †

1
nC1.X/.

• If n is even, we need to show PWO.…1
nC1.X// and PWO.†1nC2.X//. The first holds by The First Periodic-

ity Theorem (28C • 2) since inductively PWO.†1n.X// and Det.�1n.X// hold. PWO.†1nC2.X// therefore
follows by PWO.…1

nC1.X// and Theorem 25C • 11. a

This also implies separation and reduction in a similar pattern to Figure 28C • 1 as a result of Result 25D • 2 (for
reduction) and Result 25D • 4 (for separation in the dual pointclasses).

The second periodicity theorem tells us about how the scale property propogates through the analytic and projective
hierarchy, which is exactly the same as with the prewellordering property in Figure 28C • 1. Recall from Definition
25 E • 1 that a scale is just a sequence of prewellorders that work nicely together and that have a nice limit property. A
�-scale for � a pointclass, from Definition 25 E • 5, is just a scale where the relations on hx; y; ni defined by x �n y
and x <n y is in � where �n is the nth prewellorder of the scale.

For many purposes, arbitrary scales are insufficient, and we need to refine ourselves to work with very good scales.
28C • 4. Definition

We say E' D h'n W n < !i is a very good scale on a set X � N iff
1. each 'n is a norm on X ;
2. for all x 2 !X such that each 'n ı x is eventually constant, we have

a. lim x exists and lim x 2 X , and
b. 8n < ! .'n.lim x/ � lim.'n ı x//

3. For all n < !, x; y 2 X , if 'n.x/ � 'n.y/ then 8m < n 'm.x/ � 'm.y/.
We say E' is a very good �-scale on X iff E' is a very good scale and a �-scale.

Note that (2) this is stronger than the condition in a standard scale from Definition 25 E • 1. For a scale, we require
every convergent sequence x 2 !X to have (2a) and (2b) hold. But here, the mere fact that 'n ı x is eventually
constant implies that x is convergent. Luckily for us, the property of having a �-scale is equivalent to having a very
good �-scale whenever � is adequate. This is basically mimics some of the nice properties of the…1

1-scale on WO.
28C • 5. Result

Assume ZF. For � adequate, there is a �-scale on X � N iff there is a very good �-scale on X .

Proof .:.

One direction is obvious. So suppose E' is a �-scale on X . Consider E D h n W n < !i defined by, for x 2 X
and n < !,

 n.x/ D code.'0.x/; x.0/; '1.x/; x.1/; � � � ; 'n.x/; x.n// 2 Ord
through a simple coding, which is really the rank of an order we describe, sometimes called short lexicographic.
We order based on length (2.nC1/ for a fixed n) and then lexicographically, and the rank function for this defines
E . It follows that  n.x/ <  n.y/ iff there is some m � n such that x � m D y � m, 'i .x/ D 'i .y/ for all
i < m, and

• '0.x/ < 'n.y/; or
• '0.x/ D 'n.y/ and x.n/ < y.n/.

Similarly,  n.x/ �  n.y/ iff the above occurs but with the last inequality replaced with “'n.x/ � 'n.y/”.
Claim 1

Assume E is a scale. Therefore E is a �-scale.
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Proof .:.

We need to show that the following relations on triples hx; y; ni are in �:
x � n

y iff x 2 X ^ .y 2 X !  n.x/ �  n.y//

x < n
y iff x 2 X ^ .y 2 X !  n.x/ <  n.y//.

But this follows from the characterization above:  n.x/ <  n.y/ iff x 2 X 2 � and 9m � n such that
1. x � m D y � m (a computable relation); and
2. 8i < m .x �'i

y ^ y �'i
x/ (a 8<!� ^ � D � relation); and

3. x <'m
y or x �'m

y ^ y �'m
x ^ x.m/ < y.m/ (a � _ .� ^ �/ D � relation).

Since � is adequate, this is in � and defines x < n
y and similarly for  n.x/ �  n.y/: it asserts x 2 X ,

and if y … X then m D 0 witnesses the result; whereas if y 2 X , then clearly the other conditions assert
 n.x/ <  n.y/. a

So it suffices to show that E is a very good scale. Clearly each  n is a norm on X so (1) of Definition 28C • 4
holds. (3) is straightforward since we have coded previous information into later information:  m.x/ is coded
in  n.x/ for m < n and  n.x/ �  n.y/ iff there’s a disagreement coded into some previous stage, and that
disagreement gives the same inequality. The stages before the least disagreement all have equality, and the stages
after the least disagreement all realize that there’s an earlier disagreement just like  n.x/;  n.y/.

For (2) of Definition 28C • 4, suppose Ex D hxn W n < !i 2 !X is such that h n.xk/ W k < !i is eventually
constant for each n < !. It follows that h'n.xk/ W k < !i is eventually constant and hxk W k < !i is convergent
since 'n.xk/ and initial segments of xk are coded in  n.xk/. Thus since lim Ex exists and E' is a scale, lim Ex 2 X
and (2a) holds.

For (2b), we use the lower semi-continuity of E'. In particular, write x D lim Ex. We thus have for any n < ! and
m � n, 'm.x/ � 'm.xk/ for sufficiently large k < !. Hence we can choose k such that x � n D xk � n and so

 n.x/ D code.'0.x/; x.0/; � � � ; 'n.x/; x.n//
� code.'0.xk/; x.0/; � � � ; 'n.xk/; x.n// D  n.xk/.

Since this holds for sufficiently large k < !, it follows that  n.x/ � limk!!  n.xk/. Hence E is a very good
scale, and a �-scale by Claim 1. a

This allows us to now prove the second periodicity theorem and again, argue in a back and forth style that the scale
property holds for various analytical pointclasses. Periodicity allows us to go from †1n to …1

nC1. Through more
traditional means we can go from…1

n to †1nC1, in particular through the use of very good scales.

28C • 6. Theorem (The Second Periodicity Theorem)
Assume ZFCDCCDet.�\:�/where � is a pointclass closed under 9N . Therefore Scale.�/ implies Scale.8N�/.

Proof .:.

We start out similarly as with The First Periodicity Theorem (28C • 2). Let A 2 8N� where B 2 � is such that
A D 8NB . Let E' be a �-scale on B where without loss of generality by Result 28C • 5, we can assume E' is very
good. We want to show A has a 8N�-scale. For x; y 2 A and n < !, consider the game Gnx;y similar to The
First Periodicity Theorem (28C • 2) that takes the following form:

Gnx;y
I: a.0/ a.1/ � � �

II: b.0/ b.1/ � � �

Write sn 2 !<! for the finite sequence coded by n 2 !. We say II wins iff 'n.x; sn_a/ � 'n.y; sn_b/ so that
again, II wants to play the larger ordinal with y. Again from The First Periodicity Theorem (28C • 2), we define
x ��

n y iff II has a winning strategy in Gnx;y . By the proof of The First Periodicity Theorem (28C • 2), we know
that each Gnx;y is determined and each ��

n is a 8N�-prewellorder of A. So the trouble is mostly going to be with
the limit property of scales since we intend to show the rank functions E D h n W n < !i from h��

nW n < !i
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forms a 8N�-scale. Note that by definition of E being a rank function,
 n.x/ �  n.y/! II has a winning strategy in Gnx;y . (�)

In particular,  n.x/ D  n.y/ implies II wins Gnx;y and Gny;x . This is particularly useful if  n.xk/ is eventually
constant for large k < !.

Claim 1
Suppose Ex D hxi W i < !i 2 A! converges to x such that  n ı Ex is eventually constant. Therefore x 2 A.

Proof .:.

Let ˛n be the eventually constant value of h n.xk/ W k < !i. By removing entries from Ex if necessary,
assume  n.xk/ D ˛n for k � n. We need to show hx; bi 2 B for each b 2 N . The idea is for any given
b, we want a sequence hbn W n < !i such that hhxn; bni W n < !i converges to hx; bi and witnesses via E'
and its very good scale limit properties that hx; bi 2 B . The strategy first will be to define hbn W n < !i in
a way such that '.xnC1; bnC1/ � '.xn; bn/ for each n so that the sequence is eventually constant. (Really
we use a subsequence of Ex though.)

Let b 2 N be arbitrary. We will play many games but to make sure they all cohere together (that we’re using
the same initial segments each time), for each k < ! let n.k/ 2 ! be such that sn.k/ D b � k. Since each
 n.xk/ D ˛n for k � n, we have  n.k/.xn.k// D  n.k/.xn.kC1// D ˛n.k/. And so II wins Gn.k/xn.kC1/;xn.k/

with some strategy �k by (�) and DC to choose the strategies. Now let’s consider playing infinitely many
games at once to define bn for n < !. The first move by I in Gn.k/xn.kC1/;xn.k/

will be b.k/. We then just
translate downward and copy moves as below.

:::

I: b.2/ � � �

II: b2.2/ � � �

I: b.1/ b2.2/ � � �

II: b1.1/ b1.2/ � � �

I: b.0/ b1.1/ b1.2/ � � �

II: b0.0/ b0.1/ b0.2/ � � �

G
n.2/
xn.3/;xn.2/

�2

G
n.1/
xn.2/;xn.1/

�1 �1

G
n.0/
xn.1/;xn.2/

�0 �0 �0

This defines bn.m/ form � n explicitly and we can now define bn � n D b � n so we have bn 2 N . More
importantly, II’s play in Gn.k/xn.kC1/;xn.k/

is bk � Œk; !/ whereas I’s play is b.k/_bkC1 � Œk C 1; !/. Thus
after adjoining sn.k/ at the beginning, we arrive at bk and bkC1. So since II wins in each board, we get that
'n.k/.xn.kC1/; bkC1/ � 'n.k/.xn.k/; bk/. As a very good scale, since n.j / � n.k/ for j � �, we get that
for all j � k, 'n.j /.xn.kC1/; bkC1/ � 'n.j /.xn.k/; bk/. In fact, for all j � n.k/, and hence all j < k,

'j .xn.kC1/; bkC1/ � 'j .xn.k/; bk/.
Thus h'j .xn.k/; bk/ W j < k < !i is a decreasing sequence of ordinals and is therefore eventually constant.
Since E' is very good on B , the limit of hhxn.k/; bki W k < !i, which is hx; bi, is in B . Since b was arbitrary,
x 2 A. a

Now we need to show lower semi-continuity: if Ex D hxk W k < !i 2 !A converges to x 2 A with each  n ı Ex
eventually constant, then that the limit x has norms  n.x/ � than the constant value ˛n D limk!!  n.xk/,
meaning that we want to show that II has a winning strategy for Gnx;xn

for each n < !.

Again, without loss of generality by deleting entries if necessary, assume  n.xk/ D ˛n for k � n so that II has
a winning strategy in Gnxk ;xn

by (�).
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Now let b 2 N be arbitrary. For k 2 !, consider nk 2 ! such that snk
D sn

_b � k (so in particular, nk > n and
n0 D n). Since nkC1 � nk , it follows (again from (�) and  nk

being constant after xnk
) that II winsGnk

xnkC1
;xnk

with some strategy �k . Now consider playing infinitely many games to tell us how to play in Gnx;xn
.

:::

I: b.2/

II: b2.2/

I: b.1/ b2.2/

II: b1.1/ b1.2/

I: b.0/ b1.1/ b1.2/

II: b0.0/ b0.1/ b0.2/

I: b.0/ b.1/ b.2/ � � �

II: b0.0/ b0.1/ b0.2/

G
n2
xn3

;xn1

�2

G
n1
xn2

;xn1

�1 �1

Gnxn1
;xn

�0 �0 �0

Gnx;xn

We want to show II wins Gnx;xn
. The first move in Gnk

xnkC1
;xnk

by I is b.k/ for each k < !. This is good because
implicitly, in that game we are adjoining sn by b � k, so the next game which considers b � k C 1 will match.
The result is that we define bk as sn_b � k D snk

followed by II’s moves in Gnk
xnkC1;nk

. Note that therefore
hhxnk

; bki W k < !i converges to hx; bi because bk � k D b � k. Since I copies the next move’s board, we
also have that bkC1 is sn_b � k D snk

followed by I’s moves in Gnk
xnkC1

;xnk
. Since II wins in each board above

Gnx;xn
, it follows that for each k < !,

'nk
.xnkC1

; bkC1/ � 'nk
.xnkC1

; bk/.
As a very good scale, the same follows for previous indices of ', and hence for each j 2 !, the sequence
h'j .xnk

; bk/ W k 2 Œj; !/i is a decreasing sequence of ordinals. Therefore this sequence is eventually some
constant value ǰ . So as E' is a scale, lower semi-continuity implies that for all n < !,

'n.x; b/ � ˇn D 'n0
.xn0

; b0/ D 'n.xn; b0/.
Hence in the above board, II has won Gnx;xn

. Hence the strategy described wins for II and x ��
n xn for each n

and  n.x/ � limk!1  n.xk/ for each n. This establishes lower continuity for E and so E is a scale.

E forms a 8N� scale since
x �

n
y iff x 2 A ^ .y 2 A! I does not win Gnx;y/

iff x 2 A ^ 8� 9z .hx; � � zi �'n
hy; zi„ ƒ‚ …

�

/

„ ƒ‚ …
8N 9N �D8N �

x < n
y iff x 2 A ^ .y 2 A! I does not win Gnx;y ^ II does not win Gny;x/

iff x 2 A ^ 8� 9z .hx; � � zi �'n
hy; zi„ ƒ‚ …

�

/

„ ƒ‚ …
8N �

^8� 9z .hx; zi �'n
hy; z � �i„ ƒ‚ …

�

/

„ ƒ‚ …
8N �

If x; y 2 A then this works: I doesn’t have a winning strategy in Gnx;y iff II does iff x ��
n y iff  n.x/ �  n.y/,

and similarly x <�
n y iff x ��

n y ^ y 6�
�
n x. If x 2 A and y … A, then there is some z with hy; zi … A and thus

hx; ai �'n
hy; zi is true for any a 2 N . This similarly holds for < n

. Thus E is a 8N�-scale. a

Similar to the ideas around the prewellordering property, we get the following.
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28C • 7. Corollary
Assume ZFC DCC PD. Therefore Scale.†1n.X// implies Scale.…1

nC1.X// for any X � N .

Indeed, we get the same pattern as with Figure 28C • 1: under ZFC DCC PD, Scale.
�
†1
n/ holds for even n < ! while

Scale.
�
…1
n/ holds for odd n < !.

†10 †11 †12 †13 †14

� � �

…1
0 …1

1 …1
2 …1

3 …1
4

28C • 8. Figure: Analytical � ¤ �1
n such that ZF C DC C PD � Scale.�/

There are actually three periodicity theorems, although the third is mostly unnecessary for our purposes. It concerns the
complexity of the strategies that win games, and basically says that if I has a winning strategy for G.X/ for X 2 �—
where � is analytical with Scale.�/ and Det.� \ :�/—then I has a winning strategy for G.X/ in Â� . The proof of
the theorem is quite difficult and technical, and can be found in [23] (Sections 6D and 6E).

One explanation why we get the back and forth propogation of these pointclass properties is the following involving
the so-called “game” quantifier.

28C • 9. Definition
For X � N 2, n < !, we write ÂX � N for the set of all x 2 N such that I wins G.¹y 2 N W hx; yi 2 Xº/. We
also write Â� for ¹ÂX W X 2 �º whenever � is a pointclass.

Another way to view this game quantifier is realizing that, under AD,
x 2 ÂX iff I has a winning strategy for G.¹y 2 N W hx; yi 2 Xº/

iff 9�8y hx; � � yi 2 X

iff II does not have a winning strategy for G.¹y 2 N W hx; yi 2 Xº/

iff :9�8y hx; y � �i … X .
It follows that if X 2 � for some adequate � , then ÂX 2 9N8N� and ÂX 2 8N 9N� . So for example, under AD,
if X 2 …1

1 then ÂX 2 †12. In particular, Â…1
1 D †12 and likewise Â†12 D 8N 9N†12 D …1

3. Generalizing this in
AD, we get that if � is closed under 8N , Â� � 9N� . Moreover, we also get that if 9N� � � , then Â� � 8N� .
And so this gives some explanation of the periodicity pattern we’ve seen with Figure 28C • 1 and Figure 28C • 8:
Â†1n D …1

nC1, and Â…1
n D †

1
nC1. The other periodicity theorems are then about moving properties of � to Â� under

mild determinacy assumptions.
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Section 29. Measure, Degrees, and Coding

One of the most unfortunate aspects of studying AD is that some of the most fundamental results require a very large
amount of effort to understand and work though. The First Periodicity Theorem (28C • 2) and The Second Periodicity
Theorem (28C • 6), for example, take quite a bit of work to prove, and the situation is evenworse for the third periodicity
theorem [23]. Nevertheless, such theorems are very useful for their consequences and for their uses. An example of this
is from the “coding” lemma. We shall use this theorem in our proofs before actually proving it, partly to motivate why
it is important. There are three versions we shall use, one being easier to prove, but also much weaker as a statement.

29 • 1. Theorem (Cheapo Coding Lemma)
Assume ZFC DCC AD. If there is a surjection f W N ! � then there is a surjection g W N ! P .�/.

The others are harder to prove, but much stronger, more technical statements.

§29A. Consequences of the coding lemma

Section 30. Exercises
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Chapter VI. An Overview of Forcing

The goal of this chapter is to present the basics of forcing in a more or less self contained way. This is especially so,
because the content is adapted from the notes I wrote for a talk introducing forcing for the 2020 GOST (Graduate
Organized Set Theory) Seminar at Rutgers.

Section 31. The Purpose, Motivation, and Terminology of Forcing

Themain idea behind forcing is to expand a model of set theory by a new set. Moreover, we should do this in aminimal
way, and we should hope to preserve the membership relation, meaning that the new model should be transitive.

31 • 1. Theorem
Let V � ZFC be a transitive model. Let P 2 V be a poset.
A generic extension of V via P by a G … V , written V ŒG�, has the following properties:

1. G � P ;
2. VŒG� � ZFC is transitive;
3. VŒG� is the �-least transitive model M of ZFC with V � M and G 2 M.

(1) is a really where P comes into play: we attempt to find a set G not in V , but which still has some intelligible
structure to it. (2) is just a nice result of P being a set. (3) is the most important and motivating idea for us. The idea is
that, despite G not being in V , we carry out a bunch of potential constructions of V ŒG� inside V (so-called P -names).
It is only through using G as a kind of oracle that allows us to form V ŒG� by interpreting these constructions in V .

The general picture can be understood through the diagram below: V is an inner model of V ŒG�, equivalently, V ŒG� is
an “outer-model” of V .

Ord
V V ŒG�

VVŒG�
1

VVŒG�
2

:::

VVŒG�
!

:::

31 • 2. Figure: The ground model V and its generic extension V ŒG�

To figure out which G � P are appropriate, we have the following theorem relating truth in V ŒG� with P in V . Here
p  ' is a notion definable in V which we will introduce later: it’s the forcing relation.

31 • 3. Theorem
Let P 2 V be a preorder and ' a FOL-sentence. Let G � P be “generic”. Therefore, VŒG� � ' iff there is some
p 2 G with p  '.

Interpretting the forcing relation requires a lot of work, and there are many perspectives to take on it. Regardless, one
can always take the formal approach, using the definition of it in V from Appendix C.
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If we’re working with the actual universe of sets, the existence of these generic setsG … V is called into question. This
worry can be alleviated in several ways. Firstly, we can regard ourselves as working in a relatively small inner model
V � V, and assume that for each P 2 V and p 2 P , there are generic Gs with p 2 G (and we will see that for most
preorders, G … V ). L, for example, consistently has relatively few sets, so it should be a little more understandable for
there to be these G … L, although this still depends on what sets exist in the ambient universe V.

Many authors choose to think about countable transitive models of ZFC as sort of toy models to play with. With such
models, the existence of these Gs for every P and p 2 P is provable from ZFC. Unfortunately, the existence of these
models does not follow from ZFC by Gödel incompleteness. This sub-worry can be alleviated when we acknowledge
what the purpose of forcing is: consistency results. In particular, the existence of such models is consistent iff ZFC
is consistent. So if we’re trying to show the consistency of some theory, Con.T /, assuming Con.ZFC/, it suffices to
show Con.T / from Con.ZFCC “there is a countable transitive model of ZFC”/. Equivalently, we just take countable,
transitive models of sufficiently large finite fragments of ZFC,i and get countable, transitive models of sufficiently large
finite fragments of ZFCCT for some theory T , demonstrating that ZFCCT is consistent by the compactness theorem
(applied in the real world rather than in ZFC).

There is a third interpretation of the generic extension by way of Boolean valued models, where truth value is not taken
to be either 0 or 1, but instead an element of a Boolean algebra. Under this interpretation, a suitable ultrafilter G tells
us how to interpret the non-strictly-true and non-strictly-false statements as either true or false. Alternatively, if we
forgo the existence of such a G, the resulting Boolean algebra can still allow us to see whether a certain theory T is
consistent relative to ZFC: in the Boolean valued model, each formula of ZFC has truth value 1, and perhaps so do all
the elements of T . If so, one can show using logic that this shows the consistency of ZFCC T .

We will mostly just consider V D hV;2i to be a transitive inner model in the ambient universe V D hV;2i, and we
just assume that every poset or preorder P 2 V and p 2 P that we consider will have a generic G with p 2 G.ii This
is contained in the following, non-standard definition. Again, we are delaying what exactly a “generic” is for later,
because the definition needs significant motivation.

31 • 4. Definition
LetM be a transitive model with P 2 M a poset or preorder. We sayM can be forced over with P iff for every p 2 P ,
there is a P -generic G with p 2 G. We say M can be forced over iff M can be forced over with P for every poset or
preorder P 2 M.

First we will consider what V ŒG�will actually be, and then we will consider truth in V ŒG�. The idea behind what V ŒG�
will be is a bunch of conditional constructions that, once we have access to G is, can be thinned out to yield what we
were trying to construct dependent on G. This yields a kind of forcing to be true in that knowing just a bit aboutG can
already determine the outcome of some constructions.

§31A. Names

For G … L, there is already the notation of LŒG�. Recall that L is defined recursively:
L0 D ; L˛C1 D ¹x � L˛ W x is definable over hL˛;2iº L D

[
˛<

L˛ , for  a limit.

So at each stage, we’re taking definable subsets. What is the natural model ofL that includesG (given thatG � P 2 L)?
Well, we just make G a definable subset of P : rather than consider definable subsets of hL˛;2i, we allow membership
in G as a predicate:

L0ŒG� D ;

iThe existence of such models follows from Corollary 7D • 8.
iiThe notation here of V versus V is deliberately similar. Often in the literature, V is the starting point and VŒG� is the extension with V ¨ VŒG�

andG 2 VŒG� n V. This is impossible with our framework with how we've defined V: as the collection of all sets,G couldn't exist. Nevertheless,
we could have considered ourselves as working in an inner model V of the “true” universe V ŒG� D V. So in essence, we might as well assume all
of these are inner models of the actual universe of sets. And rather than work over V—dealing with the odd philosophical ideas about expanding to
VŒG�—we just assume we're working over some inner model V and expanding to another inner model V ŒG� � V. Again, we also could consider
the other interpretations of forcing.
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L˛C1ŒG� D ¹x � L˛ŒG� W x is definable over hL˛ŒG�;2; Giº

L ŒG� D
[
˛<

L˛ŒG�, for  a limit.

As G � P , G is a definable subset of P over hL˛ŒG�;2; Gi whenever P 2 L˛ . Clearly if G were in L already,
this wouldn’t make a difference: LŒG� D L. Moreover, any inner model M with G 2 M can do this construction:
LŒG� � M if G 2 M . Hence LŒG� is the least inner modelM of ZFC with G 2 M (assuming G � P 2 L). This is
kind of the gold standard we want to emulate when forming the generic extension, and it motivates the idea of a name.

Suppose V has access to G. What sets can V form from G? V doesn’t know what G is, but it can at consider
constructions from P and then we can thin these out with access to G. The idea is to tag elements at each stage of the
construction with elements of P : look at things of the form hx; pi for p 2 P . Once we have access to G, if p … G, we
throw out x, and if p 2 G, we include it. For example, ¹hp; pi W p 2 Pº will be thinned out to G, as we only include
the first coordinate of hp; pi where p 2 G. This is the motivation, but it doesn’t precisely work because we also need
to think about potential constructions that depend on other potential constructions. This gives a cumulative hierarchy
of names.

The idea is that each set is tagged with an element of P , and we just consider the elements tagged with an element of
G. We can also iterate this concept:

®˝®
h;; p0i

¯
; p1

˛
; h;; p0i

¯
will be thinned out to

8̂̂̂<̂
ˆ̂:
¹¹;º;;º if p0; p1 2 G,
¹;º if p1 2 G but p0 … G,
¹;º if p0 2 G but p1 … G,
; otherwise.

Note that we aren’t going to assume any set-theoretic axioms of V in these definitions. If V doesn’t think there are any
such sets, the resulting concept is just left as undefined. We also don’t assume P is a poset or anything with intelligible
structure: it’s just a set we’re using to tag elements.

31A • 1. Definition
Let V be a transitive class. Let P 2 V . A P -name is defined by recursion on rank: define

• V P
0 D ;;

• V P
 D

S
˛< V

P
˛ for  a limit;

• V P
˛C1 D .P .V

P
˛ � P//V .

Say that � is a P -name (of V ) iff � is in V P D
S
˛2Ord V

P � V .

As a result, any P -name is a collection of pairs h�; pi where p 2 P and � is another P -name.

Note that this creates a P -name rank similar to the rank of a set in the cumulative hierarchy: at each stage we don’t just
take collections of previous stages, we take collections that have been marked with elements of P . The result is that
we can perform induction on P -name rank.

31A • 2. Result
Let V be a transitive class. Let P 2 V and � a P -name. Therefore there is some least ˛ with � 2 VP

˛C1 n VP
˛ called

the P -rank of � .

Each � 2 V P can be “thinned out” once we’re given access to G. To make this more precise, we iteratively only
consider the names tagged with elements of G. This process will be well-defined because at some point we reach
; 2 V P

1 , which is just to say that P -names are well-founded as a result of their P -rank.
31A • 3. Definition

Let V be a transitive class. Let P 2 V be a set, and G � P , possibly not in V . For a P -name � , define by recursion
on P -names

�G D ¹�G W 9p 2 G .h�; pi 2 �/º.

So, for example, ; is a P -name, as is � D ¹h0; pi W p 2 Pº. For G ¤ ;, this is a P -name for �G D ¹0º D 1. Note that
there can be multiple P -names for a single set. For example, for p; q 2 G ¹hx; piºG D ¹hx; pi; hx; qiºG D ¹xGº. The
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first component of a pair hx; pi 2 � 2 V P tells us what the pair is transformed to while the second component tells us
whether we include the transformation xG in �G .

Note that since G might not be in V , there’s no reason to expect �G 2 V . In the end, our expanded model V ŒG� will
be the collection of these interpretations: V ŒG� D ¹�G W � 2 V Pº. So it’s important to realize that when working with
G, we are almost never working inside V.

We can try to get a P -name for G itself just with ¹hp; pi W p 2 Pº, but this is transformed into ¹pG W p 2 Gº rather
than ¹p W p 2 Gº. So we need an inverse of � 7! �G whenever we can. Such a thing isn’t possible in general, but we
can get the next best thing: an easily definable name for any given x 2 V .

31A • 4. Definition
Let V be a transitive class. Let P 2 V . For x 2 V define the canonical name or check-name Lx 2 V P recursively to
be ¹ Ly W y 2 xº � P .

For example,
• L; D ; � P D ; is a P -name for ;;
• L1 D ¹L0º � P is a P -name for 1;
• L2 D ¹L0; L1º � P is a P -name for 2;
• .x [ y/zD Lx [ Ly is a P -name for x [ y;
• ¹x; yºzD ¹h Lx; pi; h Ly; pi W p 2 Pº is a P -name for ¹x; yº; etc.

One can easily see that Lx is well-defined (by induction on P -name rank), is inductively a P -name, and that its interpre-
tation is just x.

31A • 5. Result
Let V be a transitive class. Let P be a set and ; ¤ G � P . Let x 2 V . Therefore . Lx/G D x.

Proof .:.

Proceed by induction on the rank of x. Inductively, . Ly/G D y for each y of lower rank, in particular, for y 2 x.
Hence we can calculate,

. Lx/G D ¹h Ly; pi W y 2 x ^ p 2 PºG D ¹. Ly/G W 9p 2 G .h Ly; pi 2 Lx/º

But the existence of a p 2 G with h Ly; pi 2 Lx is just always true if Ly 2 dom. Lx/ since G \ P ¤ ; and h Ly; pi 2 Lx
for every p 2 P . Thus . Lx/G D ¹. Ly/G W y 2 xº D ¹y W y 2 xº D x. a

This allows us to give a P -name for G: ¹h Lp; pi W p 2 Pº. Hence, by the following definition, V D ¹. Lx/G W x 2 V º �
V ŒG� and G 2 V ŒG�.

31A • 6. Theorem
Let V be a transitive class. Let P 2 V be a set and ; ¤ G � P . Define V ŒG� D ¹�G W � 2 V Pº. Therefore,

1. V � V ŒG� and G 2 V ŒG�;
2. V ŒG� is transitive; and
3. Any transitive M � ZF with V � M and G 2 M has V ŒG� � M.

Proof .:.
1. Lx has . Lx/G D x 2 V ŒG� so that V � V ŒG�. We have the name PG D ¹h Lp; pi W p 2 Pº for G so that
G D . PG/G 2 V ŒG�.

2. To see that V ŒG� is transitive, let x 2 �G 2 V ŒG� where � 2 V P . Therefore, x D �G for some � 2 V P so
that x D �G 2 V ŒG�.

3. Any such M with V � M can construct each P -name: V P � M. Note that V need not be a class for this
to hold; M doesn’t need to consider the class V P , just each individual � 2 V P � V � M. Indeed, usually
MP will be significantly bigger than V P . Now since G 2 M, for each P -name � of V , we can construct �G
in M (M knows enough set theory to carry out these constructions). Hence V ŒG� � M. a

So already we have a kind of “minimal” model by expanding V to V ŒG�. But it’s not obvious how we can know
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whether VŒG� � ZFC or not. Indeed, it’s not at all obvious how to calculate truth in V ŒG�. Just from it being transitive,
finding the right P -names allows us to argue by absoluteness that V ŒG� models pairing, union, and some of the other
simple axioms. But going further than this isn’t easy, especially because V ŒG�’s FOL-theory can differ significantly
from V .

§31B. Posets, information, and forcing

Recall the definition of a preorder and poset (a partially ordered set).
31B • 1. Definition

A preorder is a structure P D hP ;6i such that
• (reflexive) for all p 2 P , p 6 p;
• (transitive) for all p; q; r 2 P , p 6 q 6 r implies p 6 r .

The more common notion is a poset: P is a poset iff it’s a preorder that is also ani-symmetric (for all p; q 2 P ,
p 6 q 6 p implies p D q).

For p; q 2 P , we say q extends p, is an extension of p, is stronger than p, or is below p iff q 6 p. We frequently
call elements of P conditions.

In some sense, we don’t really need reflexivity, as any non-reflexive hP ; <i has a corresponding reflexive version
hP ;6i where we just consider 6 D < [ ¹hp; pi W p 2 Pº, and similarly from a reflexive hP ;6i we can consider the
irreflexive < D 6 n id. The concept of a poset should be fairly familiar, as it corresponds to directed graphs (that are
transitive) with no loops. Similarly, we don’t actually care about anti-symmetry since we can just take equivalence
relation x � y $ x 6 y ^ y 6 x and look consider P= � as a poset (as we will see at the end of the next section).

All of this is just to say that we really only care about preorders. Elsewhere in the literature, the word “poset” is often
used to denote what are actually preorders, it’s just that “poset” is a much more familiar concept to mathematicians
than preorders. Again, the distinction won’t actually matter in the end because all posets are preorders, and we may
easily consider the poset “version” of a preorder instead of the preorder itself.

We will be viewing posets and preorders as coding information. Consider the following analogy with knowledge and
discovery. Currently, we have a fair amount of knowledge p. At a later point in time, we could make discoveries such
that we know q or r . In this way, we have an ordering on our knowledge. Given that more precise, specific information
is less likely to be true in general, we say that p� 6 p to represent that p� has more information than p. This gives a
kind of poset, and motivates the terminology of p 2 P as a “condition”. Moreover, this analogy allows us to introduce
the forcing relation already: p forces something to be true if p has enough information to determine it.iii

31B • 2. Definition
Let V be a transitive class we can force over. Let P 2 V be a preorder with p 2 P . Let ' be a formula and let E� be
P -names. We say p forces “'.E�/”, written p  “'.E�/”, iff p 2 G implies VŒG� � '.E�G/ for all G � P “generic”
over V (to be defined later).

31B • 3. Motivation
Let V be a transitive class we can force over. Let P 2 V be a preorder. For p 2 P , write p� 2 P for an arbitrary
p� 6P p (an arbitrary point in time after p). Therefore, for all formulas ' with P -name parameters,

1. if p  ' then every p�  ';
2. p  “:'” iff every p� 6 ', i.e. you can conclude it’s false iff you will never discover that it’s true;
3. p  “' ^  ” iff p  ' and p   ;
4. if p  “9x '.x/” then there is some p� 6P p and � where p�  “'.�/”; and
5. if p  ', and ' is logically equivalent to  , then p   ;

iiiThere is a competing notation in some relatively small circles where conditions with more information are considered “larger”: p� > p. We
do not adopt this notation as it is less widespread and also counter-intuitive with the boolean algebra interpretation of forcing. In either notation, p�

is said to be stronger than p, or p� is an extension of p. This can help disambiguate when other sources use a different notation.
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Note that this is very intuitionistic. There is actually a fairly close connection between forcing and intuitionistic
logic [9]. Note, for example, p 6 ' is not equivalent to p  “:'”. The motivation behind (4) is that if we know
something is true, we should be able to discover an example.

31B • 4. Corollary
Assume Motivation 31B • 3. Let V be a transitive class we can force over. Let P 2 V be a preorder, p 2 P , and ' a
formula. Therefore, p  ' iff every extension p�  '.

Proof .:.

The “!” direction is clear. For the “ ” direction, suppose p 6 ', i.e. p 6 “::'”. By (2) of Motivation
31B • 3, there is then an extension p�  “:'”, contradicting that every p�  '.

The idea given by the proof also shows the following: if it’s currently unclear whether something is true, it will be
decided later.

31B • 5. Corollary
Assume Motivation 31B • 3. Let V be a transitive class we can force over. Let P 2 V be a preorder, p 2 P , and ' a
formula. Therefore, p 6 ' and p 6 “:'” implies there are q; r 6P p where q  ' and r  “:'”.

In the end, our goal will be the following.
31B • 6. Theorem

Assume Motivation 31B • 3. Let V be a transitive model we can force over. Let P 2 V be a preorder. Let G � P be
“generic” over V . Therefore, VŒG� � ' iff there is some p 2 G with p  '.

Proof .:.

Clearly if p 2 G has p  ' then VŒG� � ' by Definition 31B • 2. So suppose VŒG� � ', but every p 2 G has
p 6 '. In particular, for every p 2 G, every p� 6 ' and thus p  “:'” by the unproven Motivation 31B • 3.
Therefore VŒG� � :', a contradiction. a

So really we need a notion that ensure the forcing relation as defined in Definition 31B • 2 obeys Motivation 31B • 3.
So this partially motivates what G should look like: we obviously need all p 2 G to be compatible with each other in
a precise sense. We also need G to interact nicely with extensions: we need to be able to extend elements of G with
certain properties as needed. We will see later that this amounts to being a filter and intersecting dense sets.

To state all of this, we need to think about the topology of P . Many of the topological concepts have been introduced
in Section 21, but we only care about characterizations relevant and useful for preorders.

§31C. Poset topology

Properties of the genericG will be induced by the topology of the corresponding preorder P . The topology on preorders
is given by their ordering relation. In particular, basic open sets are just sets that are closed downward.

31C • 1. Definition
Let P be a preorder. For p 2 P , the basic open neighborhood around p is P6Pp D ¹q 2 P W q 6P pº, i.e. everything
below p. The preorder topology on P is the topology generated by these: the topology with basis ¹P6Pp W p 2 Pº.

31C • 2. Corollary
Let P be a preorder. Therefore U � P is open iff U is closed downward: p 2 U and q 6P p implies q 2 U .

Proof .:.

If U is closed downward, then for every p 2 U , P6Pp � U and hence U is open. If U is open, note that U has
been generated by the basic open neighborhoods, which are closed downward. To be generated by these basic

304



THE PURPOSE, MOTIVATION, AND TERMINOLOGY OF FORCING CH VI §31C

open sets, U must be an arbitrary union of finite intersections of these P6Pps. These finite intersections are easily
seen to be closed downward, and unions of sets closed downward are also closed downward. Hence U is closed
downward. a

Without appealling to topology, one can make the following result a definition.
31C • 3. Corollary

Let P be a preorder. A setD � P is dense iffD intersects every open set. ThusD � P is dense iff for every p 2 P ,
there is some p� 6P p where p� 2 D. In other words,D is dense iff we can always extend a p to a p� 2 D.

Proof .:.

SupposeD is dense with p 2 P . SinceD \ P6Pp ¤ ;, there is some p� 6P p with p� 2 D. a

For the most part, the above ideas are not used: we do not care about topological definitions in general. We really
only care about sets closed downward, and sets where we can always go downward into the set. In the analogy with
knowledge and discovery, these correspond to things that always remain true (closed downward), and things that always
have the potential to be true (density) in that for any point of time p, it’s always possible to discover at a later time p�

that it’s true.

The notion of being able to extend an element is incredibly important for us. We thus have two additional notions for
preorders.

31C • 4. Definition
Let P be a preorder. Let p; q 2 P . p and q are compatible iff there is a common extension r 6P p; q.
p and q are incompatible, written p ? q, otherwise: there is no common extension.

Easy examples of compatible elements include any two comparable elements: p� 6 p implies p and p� are compati-
ble. The basic pictures of compatibility and incompatibility are below.

p q

r

Compatible elements
p q

r

Incompatible elements

31C • 5. Figure: Compatibility of p and q in example preorders

There need not be a common predecessor to p and q if p ? q, as the figure above suggests. But we will only consider
preorders where this occurs, sometimes artificially adding a maximal element to P to ensure that this happens.

In the context of forcing, if p and q are compatible, then there are no conflicts with what they force: there is no ' with
p  ' and q  “:'”. This follows from (1) of Motivation 31B • 3: a common extension r 6 p; q would need to
have r  “' ^ :'”, which would mean any G with r 2 G has VŒG� � “' ^ :'”, which is impossible. This still, of
course, depends on some knowledge about what G can be, but it provides some motivation on what we want G to be.

So we now have the fundamental concepts with preorders: extending individual elements, and extending perhaps
incomparable (but still compatible) elements. The notion of density is closely connected with the idea that “most”
elements have the property or at least are compatible with the property in a loose sense.

31C • 6. Lemma
Let P be a preorder. LetD0 and D1 be open, dense sets in P . Therefore D0 \D1 is open, dense (and in particular,
non-empty).

Proof .:.

Since bothD0 andD1 are closed downwards, so isD0\D1, meaning it’s open. To show density, suppose p 2 P .
We can extend this to some p� 2 D0 and then to some p�� 2 D1. SinceD0 is closed downward, p�� 2 D0. By
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transitivity, p�� 6P p so thatD0 \D1 is dense. a

§31D. Generic filters and solidifying the motivations

We are now in a position to say what properties G needs to have. Firstly, consider the following theorem of ZFC.
31D • 1. Theorem

Let P be a preorder with p 2 P . Let D be a countable collection of dense sets. Therefore, there is a filter G � P
where p 2 G and G \D ¤ ; for everyD 2 D .

Proof .:.

Enumerate D D ¹Dn W n < !º. AsD0 is dense, let p0 6P p be inD0. As in Lemma 31C • 6, just by continually
expanding, we get a sequence hpn 2 P W n 2 !i, where pnC1 6P pn 6P p and pn 2 Dn. Taking the upward
closure of this chain G D ¹q 2 P W 9n 2 ! .pn 6P q/º yields a filter (a set closed upward where all elements
are compatible) where p 2 G, and pn 2 G \Dn for each n < !. a

The question then becomes: how many dense sets can we intersect? The generic G is one that intersects all dense sets
of V . Of course, P itself also has this property, but we require in addition that all the elements of G are compatible to
ensure Motivation 31B • 3 holds.

31D • 2. Definition
Let P be a preorder. Let D be a collection of dense sents. A set G � P is said to be P -generic over D iff

• G \D ¤ ; for everyD 2 D ; and
• G is a filter over P in that

– p� 2 G and p� 6P p implies p 2 G; and
– p; q 2 G implies there is some r 6P p; q with r 2 G (so all elements of G are compatible.)

We say that G is generic over V iff G is P -generic over ¹D 2 V W D is denseº.

Theorem 31D • 1 then tells us we can force over countable, transitive models whose existence is independent of ZFC,
but nevertheless consistent (relative to the consistency of ZFC).

31D • 3. Corollary
Let V � ZFC be a countable, transitive model. Therefore we can force over V.

Proof .:.

For any preorder P 2 V and p 2 P , the set of dense subsets in V is countable (since V is) and therefore Theorem
31D • 1 tells us there is a G that is P -generic over V with p 2 G. a

It will turn out that G … V if P satisfies some weak requirements. So what preorders are appropriate to use in forcing?
The following terminology is non-standard, and is really just short-hand for the concept.

31D • 4. Definition
A preorder P is appropriate for forcing iff

• there is a 6P -maximal element 1P ; and
• for every p 2 P , there are q; r 6P p where q ? r .

Hence we usually refer to preorders as FOL.¹6; 1º/-structures hP ;6P ; 1P i where 1P is a maximal element.

If P has no maximal element, we can artificially consider P 0 D P [ ¹1º and take 1 > p for each p 2 P . P 0 then has a
maximal element. The reason we want these properties is the following.
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31D • 5. Theorem
Let V be a transitive class. Let P 2 V be appropriate for forcing. Therefore, there is no G 2 V that is P -generic
over V .
Proof .:.

Suppose G \D ¤ ; for every dense D 2 V . Clearly G ¤ P , as there are incompatible elements in P , but all
elements of G must be compatible. So consider P nG. This set will be dense.

To see that P n G is dense, let p 2 P be arbitrary. There are then two incompatible conditions q ? r below p.
Since any two elements ofG are compatible, we cannot have both q; r 2 G. So one of these is in P nG, meaning
we have an extension of p in P n G. Hence P n G is dense, and thus G … V as otherwise genericity over V
implies G \ .P n G/ ¤ ;, a contradiction. a

This is in contrast to Theorem 31D • 1. In particular, if V is countable in our universe (and thus isn’t an inner model,
but just some countable transitive model of ZFC), then there are only countably many dense sets in V and hence a
generic exists in the real world. It’s just that V just doesn’t see this subset of P .

We will never actually confirm that a preorder is appropriate for forcing, because we rarely care whether there is a
generic already in V : sometimes V D V ŒG�. This is the case with trivial preorders, for example: a preorder P D ¹1º
has G D P 2 V as generic over V . So whether G 2 V or not is practically irrelevant: we care more what properties
V ŒG� has.

We’ve already defined the generic extension in Subsection 31A, but we repeat it here for ease of reference. Recall that
a P -name is just a potential construction hinging on G in the sense that it is (inductively) some potential constructions
marked with elements of P . When interpretting a P -name � , we just take those elements tagged with an element in G:
�G D ¹�G W 9p 2 G .h�; pi 2 �/º. Note that the collection of P -names depends on the sets V can construct, hence
the notation “V P” for the colleciton of P -names in V .

31D • 6. Definition
Let V be a transitive class we can force over. Let P 2 V be a preorder and G P -generic over V . The generic
extension V ŒG� D ¹�G W � is a P -nameº. We also call V the ground model.

We can then state the reasons why we only want to consider preorders appropriate for forcing as in Definition 31D • 4:
• When forcing without a maximal element in the preorder P , we can just add a new element 1 as a maximum
without any harm: we get the same generic extensions and the generics are easily changed as well: going from
P to P [ ¹1º, G 7! G [ ¹1º identifies the generics of the two preorders.

• When forcing with a preorder P such that everything below p 2 P is compatible, there is a P -generic G 2 V .
The second of these is then a kind of converse to Theorem 31D • 5, showing that such forcings are irrelevent in our
goal.

31D • 7. Result
Let V � ZFC be a transitive model. Let P 2 V and p 2 P . Suppose that any two q; r below p are compatible.
Therefore G being the upward closure of P6p is P -generic over V with G 2 V and so V ŒG� D V .

Proof .:.

As P6p is open, any dense set must intersect it. G D ¹q 2 P W 9r 6 p .r 6 q/º is clearly closed upward and any
two elements are compatible with p. Hence G is P -generic over V . But G is in V . As a result, each � 2 V P can
be decoded as �G inside V already. Hence V ŒG� � V . Since Lx 2 V P for each x 2 V , LxG D x 2 V ŒG� so that
V � V ŒG� and hence we have equality. a

Of course, we maybe have other generics that are not in the ground model, but the point is that we aren’t guaranteed
a new set. And we can rectify this just by continually removing such points (and everything below them) from the
preorder until we’re left with one appropriate for forcing (or else the empty set). So these are the reasons for considering
preorders appropriate for forcing: to work with a maximal element for simplicity, and to guarantee that we’re adding
new sets. That being said, it might be useful to consider forcing with a trivial preorder later where we force over and
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over, and at some stages we don’t want to do anything. The trivial preorder we have in mind is just ¹1º ordered by
¹h1; 1iº.

Back on topic of formalizing our previous motivations, we now can formally define the forcing relation as in Definition
31B • 2.

31D • 8. Definition
Let V � ZFC be a transitive model we can force over. Let P 2 V be a preorder and p 2 P . Write p  ', iff
VŒG� � ' for every G that is P -generic over V with p 2 G.

This allows us to confirm the results of Motivation 31B • 3. The proof of this fact is quite long, however, and is only
given at the end of Appendix C. A very thorough treatment of the forcing relation in general can be found in Appendix
C as well as in Chapter VII of [20] (which the appendix is based on).

31D • 9. Lemma
Let V � ZF be a transitive model we can force over. Let P 2 V be a preorder and ' a formula. Therefore the relation
¹hp; E�i W p  “'.E�/”º is FOL-definable over V.

31D • 10. Corollary
Let V be a transitive class we can force over. Let P 2 V be appropriate for forcing and p 2 P . Write p� 2 P for an
arbitrary p� <P p. Therefore,

1. p  ' iff every p�  ';
2. p  “:'” iff every p� 6 ';
3. p  “' ^  ” iff p  ' and p   ;
4. p  “9x '.x/” iff there is some P -name � and extension p� 6P p where p�  “'.�/”; and
5. For ' and  logically equivalent, p  ' iff p   .

As before with Theorem 31B • 6, this allows us to characterize truth in V ŒG�.
31D • 11. Corollary

Let V be a transitive class we can force over. Let P 2 V be a preorder. Let G be P -generic over V . Therefore
VŒG� � ' iff 9p 2 G .p  '/.

Moreover, through tedious checking, we can confirm each individual axiom of ZFC in V ŒG�.
31D • 12. Theorem

Let V � ZFC be a transitive model we can force over. Let P 2 V be a preorder. LetG be P -generic over V . Therefore
VŒG� � ZFC. In fact, more generally

• V � ZF� (i.e. V � ZF � PC Col) implies VŒG� � ZF � P;
• V � ZF implies VŒG� � ZF;
• V � ZFC implies VŒG� � ZFC.

The proof of the model theoretic implications are quite tedious, but can also be found later in Appendix C and in Chapter
VII of [20].

Overall, we have the following properties of the generic extension.
31D • 13. Theorem

Let V � ZFC be a transitive model we can force over. Let P 2 V be a preorder. LetG be P -generic over V . Therefore
1. V ŒG� D ¹�G W � 2 V Pº is transitive with V [ ¹Gº � V ŒG�.
2. VŒG� � ZFC.
3. VŒG� is the least transitive model of ZF where V [ ¹Gº � V ŒG�.
4. For any FOL-formula ' and P -names E� , VŒG� � “'.E�G/” iff p  “'.E�/” for some p 2 G.

Proof .:.
1. This follows from Definition 31D • 6 and Theorem 31A • 6 (1) and (2).
2. This follows from Theorem 31D • 12.
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3. This follows from Theorem 31A • 6 (3) and Theorem 31D • 12.
4. This follows from Corollary 31D • 11. a

And these are the main properties we actually care about. The properties of the forcing relation we care about are
covered in Definition 31D • 8, Lemma 31D • 9, and Corollary 31D • 10.
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Section 32. Examples of Forcing

If forcing is all about adding new objects into the universe, we should think about what sorts of objects we want to
add. There are all sorts of preorders that generically add in all sorts of objects. There are, of course, limits to what
we can add with forcing,iv but commonly we add in functions and subsets. So this will be the purpose of the first few
preorders: add in subsets and functions.

One immediate question that pops up is how do we choose what preorder to force with? Commonly, the idea begins
with the goal in mind: we want to add in some G � V . Our preorder will often consist of V’s approximations to
G where p 6 q iff p approximates more than q. In the context of functions and subsets, this ordering is usually
containment: p 6 q iff p � q.

§32A. Collapsing cardinals

Recall that cardinals are really just special ordinals. They are determined by what functionsv the model V has. For
example, to calculate !1, the general idea is that V looks at each ordinal ˛, determines whether there’s a bijection with
!. Then, the first place it has no bijection, it stops and says “this is !1”.

But because this is all based on what functions V has, if we add in a bijection with ! and, say, ˛ D !V1 , we can
show this ordinal ˛ is countable in VŒG�, meaning !V1 D ˛ < !

VŒG�
1 . We can also generalize this, but let’s stick with

“collapsing” a cardinal to ! for now.
32A • 1. Definition

Let � be an infinite ordinal. The preorder Col.ℵ0; �/ D hCol.ℵ0; �/;6i consists of functions f where
• jf j < ℵ0; and
• dom.f / � !, im.f / � �.

We write f 6 g iff f � g.

We say f is a partial function from ! to �, written elsewhere in this document as f W ! * �, in the sense that
f W A ! � for some subset A � !. This shorthand is quite useful as each f is an approximation to a full-fledged
function from ! to �.

The first thing to confirm is that this gives us what we want: G codes a surjection from ℵ0 onto �. We will show this
slowly with all the detail. The main idea is that

S
G D g inherets properties from the approximations in Col.ℵ0; �/.

So since we can always add in an n < ! into the domain of these approximations, and always add in an ˛ < � into the
range, it follows that these form dense sets. Hence each n < ! is in the domain of g, and each ˛ < � is in the range
of g.

32A • 2. Theorem
Let V � ZFC be a transitive model we can force over. Let � be an infinite ordinal. LetG be Col.ℵ0; �/V D P -generic
over V . Therefore

S
G D g is a surjection from ! to �. In particular, VŒG� � “j�j D ℵ0”.

Proof .:.

We need to confirm several things: that g is in fact a function, that dom.g/ D !, and that im.g/ D � so that g is
a surjection.

ivFor example, we can't add ordinals with forcing.
vIn particular, what bijections
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Claim 1
g is a function

Proof .:.

This is a simple application of compatibility of G. In particular, if hn; ˛i; hn; ˇi 2 g for some n < ! and
˛; ˇ < �, there are some f; g 2 G with f .n/ D ˛ and g.n/ D ˇ. By compatibility, there is some h 2 G
with h 6 f; g, meaning a finite, partial function h � f; g. But then hn; ˛i; hn; ˇi 2 f [ g � h requires
that ˛ D ˇ for h to be a function at all. Hence hn; ˛i; hn; ˇi 2 g implies ˛ D ˇ and thus g is a function. a

Just by definition of g D
S
G � ! � �, we have that g has domain dom.g/ � ! and im.g/ � �. The issue,

however, is whether we have equality. This is where dense sets come into play.
Claim 2

g W ! ! �, i.e. dom.g/ D !.

Proof .:.

We need to show that for each n < !, there is some ˛ with hn; ˛i 2
S
G. The only real way we have to

ensure something is inG is to find an appropriate dense set. ThenG intersects it, and we have a witness. So
for our case, we need an f 2 G where hn; ˛i 2 f for some ˛. For each n < !, consider the set of such f :

Dn D ¹f 2 P W n 2 dom.f /º.
Note that this is dense in P , since for any p 2 P , if n 2 dom.p/, we’re done. If n … dom.p/, then we just
choose some ˛ < � not already in im.p/ (p is finite while � is infinite, so this is possible), and then consider
q D p [ ¹hn; ˛iº 6 p. This q 2 Dn and extends our arbitrary p 2 P , so eachDn is dense.

In particular, G \Dn ¤ ; for each n, and thus n 2 dom.f / � dom.g/ for some f 2 G, implying each
n 2 dom.g/. Therefore ! � dom.g/. Since clearly dom.g/ � !, we have equality. a

So all that remains to be shown is that g is surjective. To see this, we proceed exactly like in Claim 2 for the
range. Let ˛ < � be arbitrary. Consider the set

E˛ D ¹f 2 P W ˛ 2 im.f /º.
This set is dense by the same reason as above: since p 2 P is finite, take n 2 ! n dom.p/ and add in hn; ˛i:
q D p [ ¹hn; ˛iº 6 p has q 2 E˛ and thus E˛ is dense. Therefore there is some f 2 G \ E˛ and so
˛ 2 im.f / � im.g/. As ˛ < � was arbitrary, � � im.g/. We obviously have im.g/ � �, and thus equality. This
means g W ! ! � is a surjection. It follows that VŒG� � “j�j D ℵ0”. a

Where exactly did the forcing relation come into play here? The idea is that f 2 P has f  “ Lf � Pg”, where Pg is a
name for gvi and it’s this sense that our f 2 P is an approximation to g.

The above forcing notion gives us the idea of “collapsing” a cardinal in the following sense. This allows us to consider
other forcing notions that do not collapse cardinals. Generally such notions are said to preserve cardinals, though
perhaps it would be better to say that they preserve the ℵ˛s, as other cardinalities can change.

32A • 3. Definition
Let V � ZFC be a transitive model we can force over. Let P 2 V be a preorder. We say that P preserves cardinals
iff every ˛ 2 V such that V � “˛ D j˛j” has 1P  “ L̨ D j L̨ j”. Equivalently, P preserves cardinals iff for every
P -generic G over V , V � “˛ D j˛j” iff VŒG� � “˛ D j˛j”.

The above definition also makes sense for other properties. For example, one can say that P preserves cofinalities
whenever V and VŒG� agree on the function ˛ 7! cof.˛/. Similarly, P preserves stationary sets whenever S 2 V is
stationary implies VŒG� � “S is stationary”. So it should be obvious that Col.!; �/ does not preserve cardinality when
� > ℵ0. But Col.!; �/ does preserve cardinals � ℵ0.vii

vifor example, ¹hhn; ˛iz; pi 2 .! � �/z� P W p.n/ D ˛º (where “.x/z” is just a way of writing “ Lx” when “x” is too large written out).
viiAll forcings do this as ! and n < ! are absolute between transitive models of set theory.
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We can define more generally Col.�; �/, which forces that j�j D � in the generic extension (so long as � > �). While
this preorder also collapses cardinals, it doesn’t collapse all of them. In particular, it leaves cardinals � � alone. To
prove this, we need some more concepts related to preorders.

32A • 4. Definition
Let � < � be infinite ordinals. The preorder Col.�; �/ D hCol.�; �/;6i consists of functions f where:

• jf j < �; and
• dom.f / � �, im.f / � �.

We write f 6 g iff f � g.

We of course have a similar property as before:
32A • 5. Theorem

Let V � ZFC be a transitive model we can force over. Let � < � be infinite cardinals of V. LetG be Col.�; �/V D P -
generic over V . Therefore

S
G D g is a surjection from � to �. In particular, VŒG� � “j�j D j�j”.

Proof .:.

By the same reasoning as before, we already know g is a function with domain dom.g/ � � and image im.g/ � �.
So we want to show equality of each of these. For each ˛ < � and each ˇ < �, consider the sets

D˛ D ¹f 2 P W ˛ 2 dom.f /º
Eˇ D ¹f 2 P W ˇ 2 im.f /º.

Since � > �, any f 2 P (which then has size jf j < �) is not a bijection: dom.f / ¨ � and im.f / ¨ �. If
˛ … dom.f / and ˇ … im.f /, f � D f [ ¹h˛; ˇiº 6 f has f � 2 D˛ \ Eˇ and thus each is dense. Hence
G \ D˛ ¤ ; and G \ Eˇ ¤ ; for each ˛ < � and ˇ < �. In particular, this yields that ˛ 2 dom.g/ and
ˇ 2 im.g/ for each ˛ < � and ˇ < �, meaning g W �! � is a surjection. a

This shows Col.�; �/ collapses (the cardinality of) � to �. Col.�; �/ still preserves some cardinals by the following
fact.

32A • 6. Definition
Let ˛ be an ordinal. A preorder P is < ˛-closed iff for every 6P -decreasing sequence hp� 2 P W � < i of length
 < ˛, there is some condition p 2 P below each entry: p 6P p� for each � <  .

32A • 7. Lemma
Col.�; �/ is < cof.�/-closed.

Proof .:.

Let hp˛ W ˛ < i be as in the statement. Thus p D
S
˛< p˛ is a partial function from � to �. Moreover, as

 < cof.�/ and each p˛ has size jp˛j < �, it follows that this union has size jpj � j j � sup˛< jp˛j < �. Hence
p is a condition in P , and clearly lies below each p˛ . a

This gives the following corollary. It’s also a nice exercise to see how the result should change if � is not regular.
32A • 8. Lemma

Let V � ZFC be a transitive model we can force over. Let � be a regular, infinite cardinal of V. Let P 2 V be a
preorder that is < �-closed in V . Therefore P preserves cardinals � �. In other words, for G P -generic over V and
� < �, V � “� D j� j” iff VŒG� � “� D j� j”.

Proof .:.

Just by downward absoluteness, if VŒG� � “� D j� j”, then clearly V � “� D j� j”, because if V ŒG� has no
bijections from smaller ordinals to � then neither does V . So suppose V � “� D j� j”, but VŒG� � “j� j D ı < �”
as witnessed by a bijection f W ı ! � in V ŒG�. f 2 V ŒG� has a name Pf 2 V P and by Corollary 31D • 11, there
is some p0 2 G where p0  “ Pf is a function from Lı to L�”.
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We’d like to do the following that doesn’t actually work. It does provide motivation, however, of continually
deciding more and more of f . The < �-closure of P allows us to decide all of f with a single condition.
Construct a 6P -decreasing sequence hp˛ 2 G W ˛ < ıi where 9ˇ < � .p˛  “ Pf . L̨ / D Ľ”/. We would do this
recursively: starting with p0 as above and for f .˛/ D ˇ, let q˛ 2 G be such that q˛  “ Pf . L̨ / D Ľ”. Then we
find a common extension p˛C1 6P q˛; p˛ . At limit stages  < ı, we would appeal to < �-closure to find a
p 6P p˛ for all ˛ <  . Then a p� 6P p˛ for all ˛ < ı (which is supposed to exist by < �-closure) has

f D ¹h˛; ˇi W p�  “ Pf . L̨ / D Ľ”º 2 V .
This implies f 2 V is a bijection from ı to � , contradicting that V � “� D j� j”.

The issue with this approach is that this construction of hp˛ W ˛ < ıi takes place outside of V . In other words,
because V doesn’t have access to G, it cannot form this sequence. This is especially obvious when V is some
countable transitive model where it’s clear V doesn’t contain all countable sequences (V thinks P is < �-closed
just in case all sequences in V have lower bounds, but many sequences outside V may not). So we must use a
slightly different approach with the same motivating idea just translated into terms of dense sets. But if the reader
understands the idea above, this is enough, as the actual approach below doesn’t add much understanding.viii

For each ˛ < ı, consider
D˛ D ¹q 6P p0 W 9ˇ < � .q  “ Pf . L̨ / D Ľ”/º.

This will be open by Corollary 31D • 10 (1), and also dense below p0. To see density, let q 6P p0 be arbitrary.
Let H be P -generic over V with q 2 H . Thus VŒH � � “f .˛/ D ˇ” for some ˇ. There is then some r 2 H
forcing this: r  “ Pf . L̨ / D Ľ”. A common extension q� 6P r; q has q� 2 D˛ . SoD˛ is dense below p0.

Claim 1
For each  � ı,

T
˛< D˛ is open (by Corollary 31D • 10 (1)) and dense below p0.

Proof .:.

Suppose the result holds for all ordinals below  . Let q 6P p0 be arbitrary. Choose p0
ˇ
2
T
˛<ˇ D˛ for

ˇ <  . Without loss of generality, choose the p0
ˇ
s so that they are 6P -decreasing (density allows this) with

p0
0 6P q. As  < ı < �, by < �-closure, there is some q� 6P p0

ˇ
for every ˇ <  . By density of D ,

there is some p0
 6P q� 6P q inD and in fact in

T
˛< D˛ . Thus

T
˛< D˛ is dense below p0. a

Note that each p�
0 2 Dı decides all of Pf . In particular, for p�

0 2 G \Dı ,

f D ¹h˛; ˇi W p�
0  “ Pf . L̨ / D Ľ”º 2 V ,

tells us that f 2 V and we get the contradiction as in the faulty proof. a

32A • 9. Corollary
Let V � ZFC be a transitive model we can force over. Let � be a regular, infinite cardinal of V with � < � 2 V .
Therefore P D Col.�; �/V preserves cardinals � �.

§32B. Forcing :CH

The above forcing shows that cardinals are not absolute between transitive models of set theory. Now we will show
both that CH is independent of ZFC,ix and that we can both preserve cardinals and change cardinality. To argue this, we
will need a little more technology. Lemma 32A • 8 tells us that < �-closure of a preorder implies preserving cardinals
� �. To argue whether a preorder preserves cardinals > �, we need to talk more about names in the next subsection.

But first, let’s introduce the preorder for forcing :CH, and then show this gives what we want. Recall that P .!/ can
be identified with characterisitic functions f W ! ! 2: X � ! is just ¹n < ! W �X .n/ D 1º where �X .n/ D 1 if
n 2 X and 0 otherwise. If we want to add a subset of !, we could then consider the preorder which looks at finite
viiiit does, however, motivate the definition of the distibutivity of a preorder.
ixSince L � ZFC C CH, this shows CH is relatively consistent with ZFC, so we will merely show ZFC C :CH is relatively consistent with ZFC.

313



EXAMPLES OF FORCING CH VI §32C

approximations of characteristic functions: finite partial functions from ! to 2. If we want to add a lot of partial
functions to bump up the size of P .!/, we can instead index them: adding in ¹f˛ 2 !2 W ˛ < �º for � some cardinal.
This is equivalent to adding in a single function f W � �! ! 2 where each f˛ is just the slice n 7! f .˛; n/. So this is
what we are approximating.

32B • 1. Definition
Let �; � be a cardinals. Define Add.�; �/ D hAdd.�; �/;6i by

Add.�; �/ D ¹p W � � � * 2 W jpj < �º where p 6 q iff p � q.

We will mostly consider Add.ℵ0; �/x since we’re focusing on CH.

If we consider the forcing relation on Add.ℵ0; �/, for g D
S
G, p  “ Lp � Pg”. As with Col.�; �/, we can show this

does what we want. Note that we freely identify g W � � ! ! 2 as a function g W � ! !2 just by taking ˛ to the map
g˛ defined by g˛.n/ D g.˛; n/.

32B • 2. Theorem
Let V � ZFC be a transitive model we can force over. Let � > jP .!/jV be an infinite, regular cardinal of V. Let G
be Add.ℵ0; �/V D P generic over V . Therefore g D

S
G 2 V ŒG� yields an injection from � to !2. In particular,

VŒG� � “jP .!/j � j�j”.

Proof .:.

It should be clear that g is a function by compatibility of G. By considering for each ˛ < � and n < !
D˛;n D ¹p 2 P W h˛; ni 2 dom.p/º,

which is clearly dense (recall each p 2 P is finite, so we can just add hh˛; ni; 1i to p if p … D˛;n and get an
extension inD˛;n), it should be clear that g W � � ! ! 2: f 2 D˛;n \G has h˛; ni 2 f � g.

It then suffices to show that g is injective, or rather the map ˛ 7! g˛ is injective, where g˛.n/ D g.n; ˛/. To do
this, for distinct ˛; ˇ < �, consider the set

E˛;ˇ D ¹p 2 P W 9n < !.h˛; ni; hˇ; ni 2 dom.p/ ^ p.˛; n/ ¤ p.ˇ; n//º.
So if p 2 E˛;ˇ \ G, then then g˛ and gˇ disagree somewhere. Note that each E˛;ˇ is dense, since each p 2 P
is finite: there are only finitely many n where h˛; ni; hˇ; ni 2 dom.p/. Hence some n beyond all of these yields
an extension p� D p [ ¹hh˛; ni; 1i; hhˇ; ni; 0iº 6 p with p� 2 E˛;ˇ . Therefore, G \ E˛;ˇ ¤ ; for each ˛; ˇ,
implying g˛ ¤ gˇ for each ˛ ¤ ˇ < �. So V ŒG� has an injection from � to .!2/VŒG�, and therefore to P .!/VŒG�.
So VŒG� � “jP .!/j � j�j”. a

This doesn’t tell us, however, that � is preserved. A priori, we could have VŒG� � “j�j D ℵ1” so that the above
theorem says VŒG� � “jP .!/j � ℵ1”, which we already know is true since VŒG� � ZFC. To show that � is preserved,
we basically need to show that there aren’t any bijections from smaller cardinals. This, in essence, amounts to showing
that there aren’t too many “choices” our preorder can allow, and this is related to the concept of antichains.

§32C. Antichains

Density has a close connection to antichains. Again, this is a general topological concept that one can prove is equiv-
alent to the definition below in the context of preorders. But we have no need for the general definition.

32C • 1. Definition
Let P be a preorder. A set A � P is an antichain iff any two distinct p; q 2 A have p ? q.

Maximal antichains also have some nice properties with forcing. One thing that will show this is the following result.

xfrequently read as “add to the powerset of ℵ0 �-many subsets”
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32C • 2. Lemma
Let P be a preorder. Let A � P be an antichain. Therefore A is �-maximal iff every p 2 P has some q 2 A where
p; q are compatible.

Proof .:.

Suppose A is maximal. Suppose p 2 P is incompatible with every element of A. Thus A [ ¹pº is an antichain
extending A, contradicting maximality.

So supposeA is not maximal. Hence there is some antichain A � P withA ¨ A. Any p 2 AnA has, since A is
an antichain, p ? q for each q 2 A. Thus there is an element of P with no q 2 A where p and q are compatible.
This is the contrapositive of the desired direction. a

Note that this has a similar flavor to density: a dense set D allows you to always extend to enter D. Similarly, a
maximal antichain A allows you to always find an incompatible element to enter A.

32C • 3. Result
Let P be a preorder. Suppose every p 2 P has an extension p� 2 P (meaning there are no bottom nodes).

• Let A � P be an antichain. Therefore P n A is dense.
• In fact, every dense set contains a �-maximal antichain.

Proof .:.

To show that P n A is dense, let p 2 P be arbitrary. If p 2 A, then an extension p� 6P p cannot be in A (as p�

and p are compatible with the obvious common extension p�). If p … A, then p 6P p has p 2 P n A. Hence
P n A is dense.

Now suppose D � P is open and dense. We will show that there is a �-maximal antichain A � D. We know
by Zorn’s lemma that there is a �-maximal element in the set of antichains ¹A � D W A is an antichain of Pº.
So it suffices to show that this maximal element A is a maximal antichain in the context of the rest of P . So let
p 2 P be arbitrary. As D is dense, there is some p� 2 D extending p. Now working in D the same reasoning
in Lemma 32C • 2 tells us that there is some element q 2 A compatible with p�. But then q is compatible with
p: there is an r 6P q and r 6P p� 6P p. a

So there is a nice interplay between dense sets, and maximal antichains. How does this help us? Well, antichains
represent choices: if G is P -generic over V with A 2 V a maximal antichain, then G \ A is a singleton. Moreover,
the above result tells us that for G to be generic, G must intersect all maximal antichains.

32C • 4. Corollary
Let V � ZFC be a transitive model we can force over and P 2 V be a preorder. Let A be a maximal antichain of V .
Let G be P -generic over V . Therefore, jG \ Aj D 1.

Proof .:.

Clearly as any two elements ofG are compatible while any two elements ofA 2 V are incompatible, jG\Aj � 1.
Consider the downward closure of A, A #, which is dense by Lemma 32C • 2: any p 2 P has some q 2 A where
p and q are compatible, and therefore there is some common extension q� 2 A #. By density, G \A #¤ ; and
so there is some q� 6 q 2 A where q� 2 G \A #. Since G is closed upward, q 2 G, showing jG \Aj � 1 and
so we have equality. a

In fact, this idea gives an alternative characterization of what it means to be generic.
32C • 5. Theorem

Let V � ZFC be a transitive model we can force over and P 2 V a preorder. Therefore G is P -generic over V iff G
is a filter over P such that jG \ Aj D 1 for every maximal antichain A 2 V .
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Proof .:.

We’ve shown the (!) direction with Corollary 32C • 4. So letG be a filter that intersects each maximal antichain
of V at exactly one point. Let D be dense so that D contains a maximal antichain A � D by Result 32C • 3. It
follows that ; ¤ G \ A � G \D, as desired. a

This is useful, because we can now talk about what kinds of antichains P has.
32C • 6. Definition

Let P be a preorder and � be a cardinal. P is �-cc (has the �-chain condition) iff every antichain A of P has size
jAj < � (in the ground model). We say P is ccc iff it is ℵ1-cc.

We introduce this, because �-cc preorders preserve cardinals and cofinalities � � for � regular. We show this only for
ccc preorders, but the proof generalizes. Again, it’s a good exercise to see how this changes for �-cc preorders when
� is singular.

32C • 7. Theorem
Let V � ZFC be a transitive model we can force over. Let P 2 V be ccc in V. Therefore, P preserves all cardinals
and cofinalities, meaning if V � “˛ D cof.ˇ/”, then VŒG� � “˛ D cof.ˇ/”, for any G that is P -generic over V .

Proof .:.

Suppose not. We have two possibilities.
• A cofinality cofV.ˇ/ is not preserved. Thus cofV.ˇ/—a regular cardinal in V—is not regular in V ŒG�.
• A cardinal � is not preserved. If � was a limit cardinal in V , then for VŒG� � “j�j D � < �” has .�C/V

a regular cardinal of V no longer regular in VŒG� � “j.�C/V j � j�j D �”. Similarly, if � is a successor
cardinal in V , then it’s no longer regular in V ŒG�.

So it suffices to show that every regular � 2 V is regular in V ŒG�. Let x 2 V ŒG� be a �-length sequence in �
with � < �. We will show this is bounded in V ŒG�. Let Px be a P -name for x, and let p 2 P force that Px is a
function from L� to L�. In V , we can consider the possible values of Px. L�/ for each � < �:

A� D ¹ˇ < � W 9p 2 P .p  “ Px is a function from L� to L� and Px. L�/ D Ľ”/º.

Note that this is the result of an antichain of p 2 P : no two compatible p; q can force different values of Px. L�/. In
other words, for each ˇ 2 A� , let pˇ 6P p have pˇ  “ Px. L�/ D Ľ”. Therefore, A� D ¹pˇ 2 P W ˇ < �º is an
antichain. Since P is ccc, A� is countable, and thus so is A� for each � < �. But then sup�<�A� is bounded in �
since � is regular, � < �, and each jA� j � ℵ0. Therefore for � > ˇ > sup�<� A� , each q 2 P forces “ Px. L�/ < Ľ”,
meaning PxG D x can’t be unbounded in �. a

The proof above actually gives a stronger result: if we force something to be bounded in an uncountable, regular
cardinal, then we can actually find a uniform bound in the ground model. We don’t just find some name � for an
ordinal (which might be forced to be different ordinals depending on the generic), we get one of the form L̨ for some
˛ < �.

32C • 8. Corollary
Let V � ZFC be a transitive model we can force over. Let P be ccc in V. Suppose p 2 P has p  “� � L� ^ j� j < L�”
for some P -name � and regular � > !. Therefore there is some ˛ < � where p  “� � L̨”.

Note that being ccc or �-cc is a statement about the ground model: V may have fewer antichains than V ŒG� does and
so a preorder P 2 V may be ccc in the ground model, but not ccc in the generic extension. We may generalizeTheorem
32C • 7 in that �-cc preorders preserves cardinals � �. Cofinality might still be changed, however, if the cofinality of
a cardinal � > � is below �: � > � > cof.�/.

§32D. Showing we actually did force :CH

Let’s return to Add.ℵ0; �/ where � is regular. We can pretty easily show that Add.ℵ0; �/ is ccc.
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32D • 1. Lemma
For every ordinal �, P D Add.ℵ0; �/ is ccc.
Proof .:.

Clearly if P is countable (e.g. if � is countable), then every antichain is countable. So letA � P be an uncountable
subset of P . Consider the set of domains of p 2 A: D D ¹dom.p/ W p 2 Aº. D must also be uncountable, since
each d 2 D has only countably many (in fact, finitely many) functions from d to 2, so ifD were countable, then
would A be too.

Claim 1 (The�-System Lemma)
There is an uncountable D0 � D and r 2 P such that any two distinct p; q 2 B have p \ q D r . In other
words,D0 forms a Δ-system.

Now we can lift this into A: A0 D ¹p 2 A W dom.p/ 2 D0º, another uncountable set, but this time, for any
two distinct p; q 2 A, dom.p/ \ dom.q/ is some fixed, finite X � � � !. Since there are only countably many
functions from X to 2, there must be some p W X ! 2 with uncountably many q; q0 2 A0 with q � X D q0 �
x D p.

Note that this implies any two p; q 2 A0 are compatible: p [ q is a function since p and q never disagree. p [ q
is still a finite partial function from � �! to 2, and thus A cannot be an antichain. So the only antichains of P are
countable. a

Proving the Δ-system lemma isn’t particularly interesting nor difficult, but it’s very useful when dealing with forcing.
It’s a common idea that can be found in most any standard, introductory reference for set theory, e.g. [20]. We include
its proof here merely for the sake of being thorough: combinatorics is mostly off-topic for this document.xi

32D • 2. Lemma (The ∆-System Lemma)
Let A be an uncountable family of finite sets. Therefore, there is an uncountable B � A (in particular, we can take
jBj to be any regular cardinal � jAj) where 9r 8p; q 2 B .p ¤ q ! p \ q D r/ (i.e. B forms a Δ-system).
Proof .:.

Without loss of generality, let jAj D � be regular (taking a subset of the original A if necessary). Enumerate
A D ¹A˛ W ˛ < �º. Since

S
A � ℵ0 � � D � , through a bijection we will assume without loss of generality

that A � P .�/. So consider S D ¹˛ < � W cof.˛/ D !º, a stationary subset of � . (To see this, any !-length,
increasing sequence Ex of elements of a club C � � has sup Ex < � with cofinality ! and is in C because C
is closed, and therefore sup Ex 2 S \ C ¤ ;.) We can then define f W S ! � by f .˛/ D sup.˛ \ A˛/ for
˛ 2 S . This f is is then regressive since jA˛j < cof.˛/. So by Fodor’s Lemma (11B • 5), there is some stationary
S0 � S where f "S0 D ¹ıº for some ı < � . This means that sup.˛ \ A˛/ D ı for stationarily many ˛.

Note also that C D ¹˛ < � W 8� < ˛ .supA� < ˛/º is club in � : closure is immediate; and for ˛0 < � arbitrary,
the !-length sequence given by ˛nC1 D sup.A˛n

/ yields an element of C that is� ˛0, meaning C is unbounded.
Note that for ˛ < ˇ 2 C , A˛ � ˇ.

As a result, S1 D C \ S0 is also stationary (the intersection of any club D with C is also a club and hence
; ¤ .D \ C/ \ S0 D D \ .C \ S0/). Note also that for ˛ 2 S1 and ˇ < ˛, A˛ \ Aˇ � ı. Now for ˛ 2 S1,
consider A˛ \ ı. There are only jŒı�<! j D jıj < � many finite subsets of ı. So since � is regular, there must be
someD � S1 of size jDj D � such that A˛ \ ı is the same for all ˛ 2 D.

We will show that the set B D ¹A˛ W ˛ 2 Dº a Δ-system. For ˛; ˇ 2 D, let ˛ < ˇ for the sake of definiteness
and note that Aˇ \Aˇ � ı. To see this, ˛ < ˇ has A˛ � ˇ and any  2 .Aˇ \A˛/ n ı then has ı �  < ˇ with

xiThe proof of The Δ-System Lemma (32D • 2) also generalizes to the so-called Generalized Δ-System Lemma where if we have uncountable
cardinals � < � with � regular such that j¹x � ˛ W jxj < �ºj < � for all ˛ 2 � , then any � -sized familyA of< �-sized sets has aB � A of size
� that forms a Δ-system. This combinatorial restriction is a bit odd, so we just work with � D ℵ0 below since there there< �-sized subsets are just
finite and so j¹x � ˛ W jxj < �ºj D j˛j < � for all ˛ 2 � . Under GCH, we can easily find examples of cardinals for which this restriction holds:
for any infinite cardinal �, � D �C and � D �CC work.
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 2 Aˇ meaning sup.ˇ \ Aˇ / ¤ ı, a contradiction. As a result, for any distinct ˛; ˇ;  2 D,
A˛ \ Aˇ � ı \ A˛ D ı \ A � A ,

meaning A˛ \ Aˇ � A \ A� for all ˛; ˇ; ; � 2 D and therefore equality. a

A result of all of this is the ability to confirm that we have forced :CH. In particular, we have also forced “V ¤ L”.
32D • 3. Corollary

Let � be an uncountable cardinal in V . Let G be Add.ℵ0; �/ D P -generic over V . Therefore � is not collapsed. In
particular, � D !2 has VŒG� � “jP .!/j � ℵ2”.
Proof .:.

By Lemma 32D • 1 Add.ℵ0; �/ is ccc. So byTheorem 32C • 7, � is still a cardinal in V ŒG�. For � D !V2 , we then
have � > !V1 D !

VŒG�
1 and thus VŒG� � “jP .!/j � � D !2” by Theorem 32B • 2. So VŒG� � ZFCC:CH. a

This just yields a lower bound on 2ℵ0 in V ŒG�. But how do we actually calculate .2ℵ0/VŒG�? The answer lies in counting
names for subsets of !. Note that for any particular x � ! in V ŒG�, there are a proper class of names for x just by
adding junk information that is thrown out by our particular G: e.g. for Px 2 V P a P -name for x, we can consider
Px [ ¹h L̨ ; piº for each ˛ 2 Ord and p … G as another name for x.

§32E. Nice names

A “nice name” is just a name that has the sort of properties you would want it to have as a subset of another name.
There are a variety of different kinds of names one can consider. Firstly, consider the following.

32E • 1. Definition
Let V � ZFC be a transitive model we can force over. Let P 2 V be a preorder. Let G be P -generic over V . Let
x 2 V ŒG� be arbitrary with name Px. Let y � x be in V ŒG�. A kinda nice name for y as a subset of x is a � 2 V P

such that �G D y and dom.�/ � dom. Px/.

32E • 2. Result
Let V � ZFC be a transitive model we can force over and P 2 V be a preorder. Let G be P -generic over V . Let
y � x 2 V ŒG� be arbitrary with y 2 V ŒG�. Therefore there is a kinda nice name for y as a subset of x.

Proof .:.

We know y has some name Py 2 V P . Consider
� D ¹h�; pi 2 dom. Px/ � P W p  “� 2 Py ^ � 2 Px”º.

Clearly �G � y, since any p 2 G with h�; pi 2 � has �G 2 PyG D y. Similarly, any �G 2 y has some
� 0 2 dom. Px/ with VŒG� � “�G D � 0

G”. This is forced by some p 2 P where then h� 0; pi 2 � and so � 0
G 2 � .

Thus y � �G , and so we have equality. a

The benefit of (kinda) nice names is that they allow us to consider just names of a certain form rather than all names,
which again form a proper class. In particular, we have the following result.

32E • 3. Result
Let V � ZFC be a transitive model we can force over. Let P 2 V be a preorder. For any P -name Px, there are at most�
2j dom. Px/�P j

�V kinda nice names for subsets of Px.

Proof .:.

Every kinda nice name for a subset of PxG (where G is generic) is in P .dom. Px/ � P/V . a

In particular, if P is countable, then 2ℵ0 D .2ℵ0/V in VŒG�. To see this, in V, there are at most 2j dom. L!/�P j D 2ℵ0
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kinda nice names for subsets of !. In particular, since P is ccc and so preserves cardinals, if V � CH, then VŒG� �
“2ℵ0 D .2ℵ0/V D ℵV1 D ℵ1” and so VŒG� � CH.

Another kind of nice name uses antichains in conjunction with chain conditions to do a better job at counting.
32E • 4. Definition

Let V � ZFC be a transitive model we can force over. Let P 2 V be a preorder. Let G be P -generic over V . Let
x 2 V ŒG� be arbitrary with name Px. Let y � x be in V ŒG�. A nice name for y as a subset of x is a Py 2 V P such
that

• dom. Py/ � dom. Px/, i.e. Py is a kinda nice name; and
• for each � 2 dom. Py/, ¹p 2 P W h�; pi 2 Pyº is an antichain.

Equivalently, Py is of the form
S
�2dom. Px/¹�º � A� where each A� is an antichain of P or else ;.

32E • 5. Result
Let V � ZFC be a transitive model we can force over. Let P 2 V be a preorder. Let G be P -generic over V . Let
y � x 2 V ŒG� be arbitrary with y 2 V ŒG�. Therefore there is a nice name for y.

Proof .:.

We know there is a kinda nice name Py 2 V P for y. For each � 2 dom. Py/ � dom. Px/, let A� D ¹p 2 P W p 
“� 2 Py”º. A� is non-empty, of course, since h�; pi 2 y implies p 2 A� . Of the antichains contained in this set,
let A� be maximal among the subsets of A� . Therefore, every p 2 P that forces “� 2 Py” is compatible with an
element of A� . So consider the name

� D
[

�2dom. Py/

¹�º �A� .

This is clearly a nice name, so it suffices to show �G D y.

To show y � �G , let �G 2 y have a p 2 G forcing � 2 Py, meaning p 2 A� . There must then be some
q 2 A� \G compatible with p and thus h�; qi 2 � , meaning q  “� 2 �” so �G 2 �G .

Similarly, for �G 2 �G , we have h�; pi 2 � for some p 2 G, meaning p 2 A� and thus p  “� 2 Py” so that
�G 2 y. Hence �G � y, and so we have equality: �G D y. This means � is a nice name for y. a

The above has been stated in a somewhat concrete way, but alternatively, we can say that for any two names Px; Py 2 V P ,
there is a nice name � 2 V P for a subset of Px such that p  “ Py � Px ! � D Py” for every p 2 P .

32E • 6. Corollary
Let V � ZFC be a transitive model we can force over. Let P 2 V be a �C-cc preorder of V, and let Px be a P -name.
Therefore, there are at most

�
jP j��j dom. Px/j

�V nice names for subsets of Px.

Proof .:.

Work in V. There are at most jP j� � �-sized subsets of P . Hence there are at most that many antichains. Since
each nice name is given by a function from dom. Px/ to antichains of P , there are at most jP j��j dom. Px/j many nice
names for subsets of Px. a

In particular, in V , there is a bijection between this ordinal
�
jP j��j dom. Px/j

�V and the nice names for subsets of Px. So
in V ŒG�, there is still this bijection that—with the help of G to interpret the P -names—yields a surjection from this
ordinal to P .x/. Hence we can say VŒG� � “jP .x/j �

ˇ̌̌�
jP j��j dom. Px/j

�V ˇ̌̌”. If P is ccc and thus preserves cardinals, this

simplies to VŒG� � “jP .x/j �
�
jP jj dom. Px/j

�V”.
32E • 7. Corollary

Let V � ZFC be a transitive model we can force over. Let � be a regular, uncountable cardinal of V such that
V � “�ℵ0 D �”. Let G be Add.ℵ0; �/-generic over V . Therefore VŒG� � “2ℵ0 D �”.
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Proof .:.

By Lemma 32D • 1, Add.ℵ0; �/ is ccc. We know from Theorem 32B • 2 that VŒG� � “2ℵ0 � j�j”, and VŒG� �
“j�j D �” by preservation of cardinals: Theorem 32C • 7. By counting nice names for subsets of L!—which has
j dom. L!/j D ℵ0—it follows by Corollary 32 E • 6 that V ŒG� has at most .�ℵ0/V D � subsets of !, meaning
VŒG� � “2ℵ0 � �”, and thus we have equality. a

In particular, if we can force over V D L or some other transitive model of GCH, then VŒG� � “2ℵ0 D �” whenever G
is Add.ℵ0; �/V-generic over V .

§32F. Forcing CH

We’ve seen that we can force:CH pretty easily, but it took some work to confirm that CH fails in the generic extension.
Similarly, we can pretty easily force that CH holds in the generic extension, but it will take some work to show this.
We will take the expected approach: add in some surjection from ℵ1 to P .!/ of the ground model. A worry one might
have is that both !1 and P .!/ might change in the generic extension: perhaps one of the following holds:

1. !VŒG�1 ¤ !V1 ; or
2. P .!/VŒG� ¤ P .!/V .

We will need to confirm that this doesn’t happen: !1 isn’t collapsed, and we don’t add too many subsets of !. Note
that P .!/V D P .!/VŒG� implies !V1 D !

VŒG�
1 .xii

We have seen that � !-closed preorders preserve ℵ1, but they also preserve P .!/.
32F • 1. Lemma

Let V � ZFC be a transitive model we can force over. Let � be a cardinal of V. Suppose P 2 V is a � �-closed
preorder in V. Suppose G is P -generic over V . Therefore, P .�/VŒG� D P .�/V .

Proof .:.

The basic idea is that P being � �-closed means that we can collect together �-much information in V already.
The motivating idea is as follows, although the real argument is in the next paragraph. In particular, for y � �
with y 2 V ŒG�, we have a kinda nice name Py 2 V P for y. For each ˛ < �, we either have VŒG� � “˛ 2 y”
or VŒG� � “˛ … y” and thus we have some element of the preorder p˛ that either forces “ L̨ 2 Py” for “ L̨ … Py”.
By continually expanding, we get a 6-decreasing sequence of elements in the preorder which continually decide
more and more of Py. Hence there is some p 2 P with p 6 p˛ for each ˛ < �. This p then decides whether any
˛ is in y: y D ¹˛ W p  “ L̨ 2 Py”º 2 V , implying P .�/VŒG� � P .�/V . The other containment is obvious since
V ŒG� � V .

As with Corollary 32A • 9, the above argument actually needs to be translated in terms of dense sets. A terse
argument in that style is given below: let Py be a kinda nice name for a subset of �. For each ˛, consider D˛ D
¹p 2 P W p  “ L̨ 2 Py” or p  “ L̨ … Py”º. Each D˛ 2 V is dense and open. By � �-closure,

T
˛<� D˛ D

D� 2 V is also dense and open. Any p 2 D� \ G yields that PyG D y D ¹˛ W p  “ L̨ 2 Py”º 2 V , meaning
P .�/VŒG� � P .�/V . a

32F • 2. Corollary
Let V � ZFC be a transitive model we can force over. Let P 2 V be a � !-closed preorder of V. Suppose G is
P -generic over V . Therefore !V1 D !

VŒG�
1 and P .!/V D P .!/VŒG�.

So we will consider the following preorder, sometimes written Col.ℵ1; 2ℵ0/, adding a bijection between ℵ1 and P .!/
of the ground model. To make this countably closed, we can’t work with finite functions as we have been doing before:

xiiRecall that we can code ˛ < !1 by relations on ! which can be coded by subsets of !, and hence agreeing on P .!/ entails agreeing on !1

as the least ordinal that can't be coded in this way. Indeed, this holds more generally: agreeing on P .�/ entails agreeing on what �C is.
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the countable union of finitely many functions isn’t necessarily finite. So we use the next best idea: countable partial
functions. Since these will still have relatively small domain compared to ℵ1, we have enough flexibility when using
them as approximations.

32F • 3. Definition
Define Fn<ℵ1

.!1;P .!// D hFn<ℵ1
.!1;P .!//;6i by

Fn<ℵ1
.!1;P .!// D ¹p W !1 * P .!/ W jpj < ℵ1º where p 6 q iff p � q.

It should be clear that Fn<ℵ1
.!1;P .!// is countably closed, since the union of any countable chain is still countable,

and is obviously still a partial function from !1 to P .!/.
32F • 4. Theorem

Let V � ZFC be a transitive model we can force over. Let G be P D Fn<ℵ1
.!1;P .!//V-generic over V . Therefore

VŒG� � CH.

Proof .:.

Really this just amounts to showing that
S
G D g is a surjection from !V1 to P .!/V . By countable closure,

Lemma 32 F • 1 tells us that P .!/VŒG� D P .!/V and !V1 D !
VŒG�
1 , meaning g would be a surjection from !

VŒG�
1

to P .!/VŒG� and so VŒG� � CH. Since the two interpretations are equal, we just write “P .!/” and “ℵ1”.

But that g W !1 ! P .!/ is a surjection is clear: for each ˛ < !1 and each x 2 P .!/, the following are dense
D˛ D ¹p 2 P W ˛ 2 dom.p/º and Ex D ¹p 2 P W x 2 im.p/º.

To see that D˛ is dense, just extend any p 2 P with h˛;;i. To see that Ex is dense, just note that p 2 P being
countable implies dom.p/ ¤ !1 and thus we can choose some ˛ 2 !1 n dom.p/ and extend p with h˛; xi. This
new (partial) function remains countable and so is in Ex .

But this means each x 2 P .!/ has a p 2 G \ Ex where then x 2 im.p/ � im.g/ so that P .!/ � im.g/ and g
is surjective. Given that dom.g/ D !1 (by the density of theD˛s), we get the result: VŒG� � “jP .!/j D ℵ1”. a

There are actually a great number of preorders that force CH. For example, Add.ℵ0; 1/ does this. In fact, Add.ℵ0; 1/
forces a princple known as ˙. It’s not a bad exercise (although moderately difficult) to show that this holds, assuming
the reader knows the definition of ˙.xiii

In general, we have many different options when it comes to adding a genericG with certain properties. This is in part
due to the vagueness of “approximation” when using a preorder of sets supposed to approximate G. Many of these
preorders turn out to be equivalent in the sense that a genericG � P yields a genericH � Qwhere V ŒG� D V ŒH�. For
example, the forcing we used with Add.ℵ0; �/—Cohen forcing—is equivalent to the subpreorder where all conditions
have domains that not only are finite subsets of !, but are actual natural numbers: dom.p/ D n for some n < !.

There are also many preorders that are not equivalent, but that can give similar generics. For example, forcing with
Col.�; �/ collapses j�j to �, but leaves j�j D � in the generic extension. If instead of conditions of size < � we
consider finite conditions, we still end up with a generic G with

S
G D g as a surjection from � to �, but we also end

up with a surjection from ! to �. This means � is (and so subsequently all cardinals � �, including �, are) collapsed
down to !.xiv

This is all just to say that it’s generally not difficult to come up with a preorder that adds some object serving whatever
purpose you want in the ground model. But it’s far more difficult to show it doesn’t muck things up in the generic
extension. This is the purpose of the discussion of antichains, nice names, and further ideas.

xiiiBecause I'm certainly not going to talk about it here.
xivTo see that we collapse � to ! if we consider the preorder P of finite partial functions from � to � (ordered by inclusion), just consider
g � ! D

S
G � !. Each p 2 P is finite, and so dom.p/ ¨ !. For each ˛ < �, there is some n 2 ! n dom.p/ where then p [ ¹hn; ˛iº 2

D˛ D ¹p 2 P W ˛ 2 im.p � !/º. This implies each D˛ is dense and so p 2 G \D˛ implies ˛ 2 im.p � !/ � im.g � !/ implying
� � im.g � !/ and therefore g � ! is a surjection onto �, meaning VŒG� � “j�j D ℵ0”. This argument doesn't work with Col.�; �/, since
conditions there can be infinite and so contain all of ! in their domains, preventing us from extending intoD˛ .
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Section 33. More General Topics and Theory

The above discussion has primarily focused on showing the independence of CH from ZFC using the posets Add.ℵ0; �/
and Fn<ℵ1

.!1;P .!//. In doing so, we’ve shown a lot of results in these restricted circumstances. Questions we have
not answered include:

• Can we generalize the above to change 2� just as we changed 2ℵ0?
• Did we need to use the posets above or would other, similar posets work?
• In what sense can two posets be the same for forcing, and (more importantly) how can we know in the ground
model?

• It’s possible to force twice to go from V to V ŒG� and then to V ŒG�ŒH�, but is it possible to go from V ŒG� to
some intermediate submodel V ¨ V ŒH� ¨ V ŒG�?

All of these questions and more will be investigated here.

§33A. Changing 2� for regular �

The above discussion has primarily focused on showing the independence of CH from ZFC using the posets Add.ℵ0; �/
and Fn<ℵ1

.!1;P .!//. In doing so, we’ve shown a lot of results in these restricted circumstances. For the sake of a
better, more general understanding, we state the generalizations of these. xv

33A • 1. Theorem
Let �; � > 0 be cardinals of V � ZFC a transitive model; I; J 2 V ; and P a preorder. Define Fn<�.I; J / D h¹p W
I * J W jpj < �º;�;;i. Therefore, all interpreted in V;

1. a �-cc preorder preserves cardinals and cofinalities � �;
2. a < �-closed preorder preserves cardinals and cofinalities � �;
3. a �C-cc preorder P and P -name � gives 1P  “jP .�/j � Lı” where ı D jP j��j dom.�/j is the number (in the

ground model) of nice names for subsets of � .
4. Fn<�.I; J / is < cof.�/-closed for any I; J ;
5. Fn<�.I; J / is �C-cc whenever � is regular, jJ j � �, and 2<� D �;
6. Col.�; �/ D Fn<�.�; �/ is < cof.�/-closed where � < �;
7. Add.�; �/ D Fn<�.� � �; 2/ is < �-closed and �C-cc whenever � D cof.�/ D 2<� ;

We also get a number of variants of The Δ-System Lemma (32D • 2).
33A • 2. Theorem (The Generalized ∆-System Lemma)

We say a family of sets B is or forms a Δ-system iff 9r 8p; q 2 B .p \ q D r/.
• (The Δ-System Lemma) if A is an uncountable family of finite sets, then there is an uncountable Δ-system
B � A.

• (The Not-As-Generalized Δ-System Lemma) if � D cof.�/ D 2<� and if A is a > �-sized family of sets of
size < �, then there is a Δ-system B � A with jBj > �.

• (The Generalized Δ-System Lemma) if ℵ0 � � < � D cof.�/ has j¹x � ˛ W jxj < �ºj < � for all ˛ < � and

xvAnother easy consequence from these notions is that if we have a transitive modelM we can force over, then V isn't a generic extension by any
preorder P 2 M , and in fact jM j � ℵ1. Ultimately these ideas are not relevant to our discussion, because they are a quirky result of being lazy
with very strong propositions. All these results don't need that we can force with every preorder of the ground model, but just the preorders used
in the statements. We will always be able to force with countable, transitive models, and indeed, if we can force over M, then every set inM is
countable, just because we can force with Col.!; �/ for each � 2 Ord \M . The converse of this—that if every set ofM is countable then we
can force over M—is easy by Corollary 31D • 3. Note thatM need not be countable for this to happen, e.g. if !1 D !V

1 is inaccessible in L, then
L!1

� ZFC and every set in L!1
is countable, but jL!1

j D ℵ1.
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if A is a jAj D � -sized family of sets of size < �, then there is a Δ-system B � A with jBj D jAj D � .

The proofs of all the results of Theorem 33A • 1 and The Generalized Δ-System Lemma (33A • 2) are almost identical
to the special cases given before in Section 32. One easy consequence of the above results is that we may easily force
almost any change to the continuum function � 7! 2� at a regular, infinite �.

33A • 3. Corollary
Let V � ZFC be a transitive model we can force over. Let �; � be infinite cardinals of V. Let P D Add.�; �/V 2 V
with G P -generic over V . Suppose further that

i. V � “� is regular”;
ii. V � “2<� D �”;
iii. V � “�� D �”.

Therefore VŒG� � “2� D �”, and all cardinals of V are cardinals of VŒG�.

Proof .:.

Argue in V. By Theorem 33A • 1 (7), (4), (2), and (i), P D Fn<�.� � �; 2/ is < cof.�/ D �-closed and so all
cardinals � � are preserved. Moreover by (7), (5), (ii), and (1), P D Fn<�.� � �; 2/ is �C-cc and so cardinals
� �C are preserved. P yields a generic coding an injection from � to �2 and hence VŒG� � “2� � �”. By
Theorem 33A • 1 (3) and (iii), since P is �C-cc, there are only

jP j��j dom. L�/j
� j¹x � � � � � 2 W jxj < �ºj� D j¹x � � W jxj < �ºj� � .��/� D �� D �

nice names for subsets of L� and therefore VŒG� � “2� � �” so that equality holds. a

33A • 4. Corollary
Let V � ZFCC GCH be a transitive model we can force over. Let cof.�/V D � < cof.�/V � � be infinite cardinals
of V. Therefore 1Add.�;�/

V  “2 L� D L�”.
Proof .:.

Argue in V. We have � is regular by hypothesis. As a model of GCH, any cardinal � < � has �C D 2� � �

and hence the supremum over these � yields 2<� � � and so obviously � � 2<� yields equality. Thus (i) and
(ii) of Corollary 33A • 3 are satisfied. To see that �� D �, we again use GCH with Theorem 5E • 6. Thus all the
hypothesis of Corollary 33A • 3 apply and so in any generic extension of V, 2� D � holds. a

Forcing changes to 2� for singular � is much more difficult in general. This is partly due to theorems like Silver’s
Theorem, which says that the first failure to GCH can’t be a singular cardinal of uncountable cofinality. More precisely,
if ¹� < � W 2� D �Cº is stationary in � > cof.�/ > !, then 2� D �C. The proof of this combinatorial result isn’t
covered here, and is included mostly to show that the theory of forcing can be quite difficult and subtle, if that wasn’t
already obvious.

§33B. Small topics

Returning to themore general theory of forcing, closure properties of preorders are nice for preserving sufficiently small
cardinals and cofinalities, but more generally they don’t add sufficiently short sequences. This concept is equivalent to
the following we quickly explore.

33B • 1. Definition
Let � be an infinite cardinal. A preorder P is < �-distributivexvi iff for every collection D of < �-many open dense
sets of P ,

T
D is open dense.

xviThis is also called “�-distributive” and “.�;1/-distributive” elsewhere.
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33B • 2. Corollary
Let � be an infinite cardinal. Let P be < �-closed. Therefore P is < �-distributive.
Proof .:.

Proceed by induction on �. Let D D ¹D˛ W ˛ < �º be a collection of � < �-many open dense sets of P . It’s
obvious

T
D is open, so we must show it’s dense. Let p 2 P be arbitrary. Choose inductively, for ˛;  < �,

p0 2 D0 \ P6p ,
p˛C1 2 D˛C1 \ P6p˛

, and

p 2
\

�<
P6p�

for  a limit ordinal.

So hp˛ W ˛ < �i is decreasing. At limit stages, such p exist by < �-closure and are in
T
�< D� since the

D�s are open. Also by < �-closure, there is some p� 6P p˛ for each ˛ < �, and the same idea as before gives
p� 2

T
˛<�D˛ with p� 6 p. Hence

T
D is dense. a

Distributivity is just what we need to ensure we don’t add small sequences by the same ideas as with Lemma 32A • 8.
33B • 3. Result
• Let V � ZFC be a transitive model we can force over.
• Suppose P 2 V is < �-distributive for some cardinal � of V.
• Let G be P -generic over V .
• Let f 2 V ŒG� be such that f W �! V for � < �.

Therefore f 2 V . In other words, P adds no new < �-length sequences of elements of V .

Proof .:.

We proceed similarly to Lemma 32A • 8. Note that imf � X D VV
� 2 V for some sufficiently large �. Let Pf

be a name for f and let p 2 G be such that p  “ Pf is a function from L� to LX”. For each ˛ < �, consider
D˛ D ¹q 6P p0 W 9x 2 X .q  “ Pf . L̨ / D Lx”/º

Since
T
˛<�D˛ is dense by < �-distributivity, let p� 2 G \

T
˛<�D˛ . It follows that

f D ¹h˛; xi W p�  “ Pf . L̨ / D Lx”º 2 V . a

We have a similar notion of “covering” with chain conditions. This is weaker than containing every relevant sequence,
but still quite useful.

33B • 4. Definition
Let V � W � ZFC be two transitive models with � a cardinal. We say V;W satisfy < �-covering iff every < �-sized
subset X � V in W can be covered by a < �-sized set X � Y 2 V in V. We similarly define � �-covering as
< �C-covering.

Generic extensions by � �-closed preorders then satisfy � �-covering (with the ground model) just by distributivity.
But chain conditions actually give much more covering as the following shows. Ultimately, covering is useful in
arguments as it shows that the extension isn’t too far off from the ground model in a precise way, and chain conditions
then tell us this closeness continues into the higher parts of the universes.

33B • 5. Result (Chain Condition Covering)

• Let V � ZFC be a transitive model we can force over.
• Let P 2 V be �-cc for some cardinal � of V.
• Let G be P -generic over V .

Therefore V;VŒG� satisfy � �-covering for every � � �.
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Proof .:.

Let � � � be arbitrary. Let X D ¹x˛ W ˛ < ıº 2 V ŒG� have X � V with size ı � �. Let PX be a nice name
for X meaning PX D

S
˛<ı¹ Px˛º � A˛ where each A˛ � P is a maximal antichain and each Px˛ is a name for x˛ .

Since P is �-cc, each A˛ has size < �. Since there are < �-many such A˛s, it follows that
Y D

[
˛<ı
¹x 2 V W 9p 2 A˛ .p  “ Lx D Px˛”/º 2 V

is the ı � �-sized union of < �-sized sets and thus has size � ı � � � �. Clearly X � Y , so this works. a

Chain conditions also preserve closure properties of inner models like ultrapowers.
33B • 6. Lemma

An inner model N of ZFC is closed under �-sequences iff it contains all �-sequences of ordinals: �Ord � N .

Proof .:.

The .!/ direction is clear. So suppose N conatins all �-sequences of ordinals. Let f W � ! N be a �-length
sequence. Note that f W � ! V N

�
for some �. Enumerate in N V N

�
D ¹g.˛/ W ˛ < jV�j

Nº by some bijection
g W jV�j

N ! V N
�
in N . It follows that g�1 ı f W � ! Ord must be in N by hypothesis. Since g 2 N , it follows

that g ı .g�1 ı f / D f 2 N . a

33B • 7. Result
• Let V � ZFC be a transitive model we can force over, and let � be a regular cardinal of V.
• Let M � V be an inner model closed under �-sequences of V : ¹f 2 V W f W � !M º �M .
• Let P 2 V \M be �-cc in V.
• Let G be P -generic over V .

Therefore G is P -generic overM , andMŒG� is closed under �-sequences of V ŒG�.

Proof .:.

That G is P -generic overM is immediate: M contains fewer dense sets than V and G intersects all of them. By
Lemma 33B • 6, it suffices to show VŒG� � “�Ord �MŒG�”. Let f W � ! � be a sequence in V ŒG� with name
Pf as forced by some p 2 G: p  “ Pf is a L�-length sequence of ordinals”. We must find a name for f inM . For
each ˛ < �, define

F˛ D ¹ˇ 2 Ord W 9p� 6 p .p�  “ Pf . L̨ / D Ľ”/º.
For each ˇ 2 F˛ , let pˇ 6 p witness this: pˇ  “ Pf . L̨ / D Ľ”. It follows that A˛ D ¹pˇ 2 P W ˇ 2 F˛º is
an antichain and so has size < � and thus so does F˛ . It follows that each A˛; F˛ 2 M and the maps ˛ 7! A˛ ,
˛ 7! F˛ are in M . More importantly, the map ˇ 2 F˛ 7! pˇ is also in M as F˛ is, through coding, just an
ordinal < � and each pˇ is inM . But then we can form a name Rf for f inM without direct reference to Pf :

Rf D
[
˛<�

°D
hh L̨ ; Ľii; pˇ

E
W p 2 A˛ ^ ˇ 2 F˛

±
.

It’s not hard to see that RfG D f and so f 2MŒG�. a

Moving on to a new topic, a very useful principle is the Maximum Principle. This principle strengthens Corollary
31D • 10 (4) in that we don’t need to extend from p to a p� 6 p to get a witness to existential statements. Note that
this relies highly on AC in the ground model. In fact, it holding for every preorder in the ground model is equivalent
to AC in the ground model.

33B • 8. Result (Maximum Principle)
Let P be a preorder with p 2 P . Let ' be a FOLp-formula with P -name parameters. Suppose p  “9x '.x/”.
Therefore there is some P -name � where p  “'.�/”.
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Proof .:.

Suppose p  “9x '.x/”. This meansD D ¹p� 6 p W 9� 2 V P .p�  “'.�/”/º is dense below p. So for each
q 2 D, let �q be such a name. There is an antichain A � D that is maximal by Result 32C • 3. Consider the
name

� D ¹h�; q�
i W 9r; q .q� 6 q 2 A ^ q� 6 r ^ h�; ri 2 �q/º.

It follows that p  “'.�/”. To see this, let G be P -generic over V with p 2 G.

jG \Aj D 1 by Theorem 32C • 5 so there is some a 2 G \A. Thus
�G D ¹h�; a

�
i W a� 6 a ^ 9r .a� 6 r ^ h�; ri 2 �a/ºG D ¹h�; ri 2 �a W r is compatible with aºG .

Since all r 2 G are already compatible with a, this is just ¹�G W 9r 2 G .h�; ri 2 �a/º D .�a/G . Since
a  “'.�a/”, we thus have VŒG� � “'.�G/”, and so p  “'.�/”. a

It’s not too difficult to show the equivalence with AC in the ground model as follows.
33B • 9. Result

Under ZF, AC is equivalent to MP where MP is the statement that for every preorder P , p 2 P , and FOLp-formula '
with P -name parameters, if p  “9x '.x/” then there is some P -name � where p  “'.�/”.

Proof .:.

Maximum Principle (33B • 8) shows AC ! MP. So let F be a non-empty family of non-empty sets. Consider
the preorder F D hF [ ¹;º; ¹hp; pi; hp;;i W p 2 F º;;i meaning p 6 q iff q D ; or p D q. The only two
dense sets are F [ ¹;º and F (which is an antichain). So any G P -generic must have jG \F j D 1 and therefore
G D ¹p;;º for some p 2 F implying G is in the ground model and so the generic extension is just the ground
model.

To construct a choice function for F , note that since p 2 F is non-empty, 1F  “9x .x 2 Lp/”. By MP, there is
some P -name � where 1F  “� 2 Lp”. So any p 2 F forces the same. But forcing with p determines the generic:
G D ¹;; pº and therefore we can evaluate �G 2 p. This means p  “� D Lx 2 Lp” for exactly one x 2 p. As a
result, C D ¹hp; xi W p 2 F ^ p  “� D Lx”º is a choice function for F . a

Part of why the properties we’ve been looking at so far have been nice is their ability to decide information. Although
Maximum Principle (33B • 8) says we can find names witnessing existential statements, it’s not often we can force
those names � to be of the form Lx for some x in the ground model even if 1  “� 2 Ly” for some y in the ground
model. This is mostly used for when we want a name for an ordinal: just because 1  “� < L�” doesn’t mean there’s
any ˇ < � where 1  “ Ľ < L�”. In the case of ccc preorders, we have Corollary 32C • 8 to give us this. As a side note,
it suffices in many cases to just consider nice names when counting names, even if we use some other kind of name
(and we will later).

33B • 10. Lemma
Let P be a preorder. Let � be a P -name. Therefore there is a nice-name � such that 1P  “� D �”.

Proof .:.

Use Result 32 E • 5. In particular, for each � 2 dom.�/, set A� to be a maximal antichain contained in ¹p 2 P W
p  “� 2 �”º. Define � D

S
�2dom.�/¹�º �A� which is a nice name for for � , the reasoning of Result 32 E • 5

tells us 1P  “� D �”. a

We will not use this result for now, as it just restates Result 32 E • 5 in a less concrete but more understandable way.

Another thing to consider is minimality in a different sense than the minimality of the generic extension compared to
the ground model. In particular, although there is no modelW with V � W � V ŒG� such that G 2 W , it may still be
possible that V � V ŒH� � V ŒG� for some other genericH over a poset in the ground model V (potentially the same
poset as with G). Alternatively, it may be that there is no such generic extension and so V ŒG� is truly minimal as a
generic extension. We give a negative example and a positive example, although we only prove the negative later in
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talking about product forcing.
33B • 11. Result

Cohen forcing generic extensions are never minimal. Let V � ZFC be a transitive model we can force over. Let
P D Add.ℵ0; 1/V with G P -generic over V . Therefore there is aH P -generic over V with V ¨ V ŒH� ¨ V ŒG�.

In particular, after forcing with Cohen forcing, we get an infinite descending chain of generic extensions V ¨ � � � ¨
V ŒG2� � V ŒG1� � V ŒG0�. The basic idea behind the proof is that when we add a real g, the even digits of g don’t
determine the odd digits and thus V ¨ V Œeven.g/� ¨ V Œg�.

A positive example for minimality is Sacks forcing where we force with perfect trees (cf. Theorem 15.34 of [17]).
33B • 12. Theorem

Sacks forcing extensions are minimal over the ground model in that for any generic extension VŒG� over the ground
model V, any set of ordinals X 2 V ŒG� has X 2 V or G 2 V ŒX�.

This shows that there is no intermediary model V � W � V ŒG� because inner models are determined by the sets of
ordinals they contain (just by appropriately coding things). So if W contained a set of ordinals X 2 V ŒG� n V then
V ŒG� � W implying V ŒG� D W . Such examples are rare, however, andmore commonly (although still rare) preorders
give generic extensions minimal with respect to some smaller class of objects like reals, saying that if x 2 V ŒG� n V
is a real then G 2 V Œx�. Cohen forcing doesn’t have this property in the slightest because Result 33B • 11 shows the
even entries of the new real are unable to define the odd entries.

§33C. Homomorphisms and forcing equivalence

Another important idea is how flexible some forcing notions are. There are a great number of posets that do essentially
the same thing when forcing with them. For example, we could have defined Add.ℵ0; 1/ D <!!, ensuring that our
partial functions have their domain a natural number rather than merely any finite subset of !. It seems pretty clear
that forcing with this new preorder this would do the same thing as Add.ℵ0; 1/ defined before. Certainly they both add
a new function g W ! ! !. But how do we show that these two preorders do everything else the same as well? Indeed,
there are many complicated forcings that add subsets of !, but also do other things. For example, Col.ℵ0;ℵ1/ adds a
subset of ! coding a countable well-order of order-type (the ground model’s) !1.

33C • 1. Definition
Let V � ZFC be a transitive model we can force over. Let P ;Q 2 V be preorders appropriate for forcing. We say P
and Q are forcing equivalent iff their generic extensions are the same: for every G P -generic over V , there is anH
Q-generic over V such that V ŒG� D V ŒH�, and vice versa.

Note that this can be reformulated in a first-order way: P is forcing equivalent to Q iff their boolean algebras of regular
open sets are isomorphic (which we will not investigate here).

Often the goal is to figure our when two preorders are forcing equivalent. One way to do this is with identifying one
as a dense set in the other. Some standard terminology is the following.xvii

33C • 2. Definition
Let P , Q be preorders. A function f W P ! Q is an incompatibility homomorphism iff it’s a homomorphism
preserving incompatibility, i.e.

• f .1P / D 1Q;
• for all p; p0 2 P , p 6P p0 implies f .p/ 6Q f .p0/;
• for all p; p0 2 P , p; p0 are incompatible in P implies f .p/; f .p0/ are incompatible in Q;

We also say that f is an incompatibility embedding iff f is injective and the above hold with “implies” replaced by
“iff”. In addition,

• f is a dense homomorphism iff f is an incompatibility homomorphism and f "P is dense in Q;

xviiMost sources just say “homomorphism” instead of “incompatibility homomorphism” used here, in defiance to preorders appropriate for forcing
merely being FOL.¹6;1º/-models and not FOL.¹6;1;?º/-models.
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• f is a complete homomorphism iff f is an incompatibility homomorphism and for all A � P , A is a maximal
antichain in P implies f "A is a maximal antichain in Q;

• P is a complete suborder of Q iff P � Q and id � P W P ! Q is a complete homomorphism.

Whenever there is a dense embedding from one preorder to another, they are forcing equivalent because the map allows
us to translate between the generics. A complete homomorphism allows us, however, to only go one way with this: all
generic extensions by Q yield generic extensions by P , but the reverse need not hold.

33C • 3. Lemma
Every dense homomorphism is a complete homomorphism.

Proof .:.

Let P andQ be preorders and f W P ! Q a dense homomorphism. Since f is an incompatibility homomorphism,
we need to show preservation of maximal antichains. Clearly by preservation of incompatibility, any antichain A

of P has f "A as an antichain of Q. Since f "P is dense, it contains a maximal antichain A0 with f "A � A0 �

f "P by Result 32C • 3. Moreover, if A0 n f "A ¤ ;, there is a q 2 f "P below an element of A0. Let p 2 P
witness f .p/ D q, and consider A [ ¹pº. This will be an antichain in P since if r 6P p; p0 for some p0 2 A,
r 2 P , then f .r/ 6Q f .p/; f .p0/ 2 A0, contradicting that A0 is an antichain. But this contradicts that A is
maximal in P . Hence A0 n f "A D ; so that f "A D A0 is maximal. a.

Complete homomorphisms (and complete suborders) are mostly used in building up a notion of forcing and showing
that we don’t muck up what we were trying to accomplish with previous stages. This not-mucking-things-up property
ensures that we still are able to get generics for the “smaller” preorders, i.e. the domains of complete homomorphisms.

33C • 4. Result
Let V � ZFC be a transitive model we can force over. Let P ;Q 2 V be preorders with f W P ! Q a complete
homomorphism in V . Let G be Q-generic over V . Therefore f �1"G is P -generic over V and V Œf �1"G� � V ŒG�.

Proof .:.

It’s easy to see that f �1"G is a filter: for upward closure, p� 6P p with p� 2 f �1"G yields f .p�/ 6Q

f .p/ 2 G and therefore p 2 f �1"G. For compatibility in f �1"G, if p; p0 2 f �1"G then p and p0 are at least
compatible (otherwise f .p/ ? f .p0/ 2 G). From here it suffices to show f �1"G intersects every dense set of
P since in particular, it needs to intersect .P�p \ P�p0/ [ ¹r 2 P W r ? p _ r ? p0º and by compatibility of its
members, must intersect P�p \ P�p0 .

Let D � P be dense so that there is a maximal antichain A � D by Result 32C • 3. It follows that f "A is
maximal in Q and so G \ .f "A/ ¤ ; by Theorem 32C • 5. Thus ; ¤ .f �1"G/ \ A � .f �1"G/ \ D, as
desired.

From here, f 2 V so that f;G 2 V ŒG� implies f �1"G 2 V ŒG� and hence V Œf �1"G� � V ŒG�. a

We also can prove the stronger statement that dense homomorphisms yield forcing equivalent preorders.
33C • 5. Theorem (Dense Forcing Equivalence)

Let V � ZFC be a transitive model we can force over. Let P ;Q 2 V be preorders with f W P ! Q a dense
homomorphism in V . Therefore P and Q are forcing equivalent.

More precisely, for G P -generic over V , andH Q-generic over V ,
1. f "G" D ¹q 2 Q W 9p 2 f "G .p 6Q q/º is Q-generic over V with V ŒG� D V Œf "G"�; and
2. f �1"H is P -generic over V with V Œf �1"H� D V ŒH�.

Proof .:.

For the sake of notation, write X" for the upward closure and X# for the downward closure (in the relevant
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preorder) of a set X : X# D ¹p W 9x 2 X .p 6 x/º, and similarly for X".
1. f "G" is clearly closed upward. For compatibility, if q; q0 2 f "G" then there arep; p0 2 G with f .p/ 6Q

q and f .p0/ 6Q q0. Sincep; p0 are compatible, there is a common extension which thenmaps to a common
extension of q; q0.

For genericity, letD � Q be dense and open. Consider f �1"D. This is dense in P , because if p 2 P then
f .p/ can be extended to an element q 2 D and then, since f "P is dense, we can extend to an element
f .p�/ 6Q q with therefore f .p�/ 2 D is compatible with f .p/. As an incompatibility homomorphism,
p� is therefore compatible with p. But any r 6P p�; p yields f .r/ 2 D since D is open and thus
r 2 f �1"D is below p, showing f �1"D is dense. As a result,G\f �1"D ¤ ; and this yields an element
of .f "G"/ \D.

To see that V ŒG� D V Œf "G"�, we have V Œf "G"� � V ŒG� just because we can construct f "G" from
G 2 V ŒG� and f 2 V � V ŒG�. To show V ŒG� � V Œf "G"�, note that f �1".f "G"/ is P -generic over
V by Result 33C • 4. It’s not too difficult to show f �1".f "G"/ D G because G � f �1".f "G"/ and
any element p 2 f �1".f "G"/ has f .p/ >Q f .p0/ for some p0 2 G and therefore p is compatible with
p0. If we consider P6p [ ¹q 2 P W q ? pº, this is dense in P and so G intersects it at some p�. We have
f .p�/ 6Q f .p0/ 6Q f .p/ so that p� 2 G \ .P6p [ ¹q 2 P W q ? pº/ is compatible with p and hence
below p, meaning p 2 G. As a result, G 2 V Œf "G"� and so V ŒG� D V Œf "G"�.

2. Lemma 33C • 3 and Result 33C • 4 implies f �1"H is P -generic over V with V Œf �1"H� � V ŒH�.
To see that V ŒH� � V Œf �1"H�, (1) implies f ".f �1"H/" is Q-generic over V with V Œf �1"H� D
V Œf ".f �1"H/"� and f ".f �1"H/" D H , because clearly f ".f �1"H/" � H and any element q 2 H
has ¹f .p/ 6Q q W p 2 Pº as dense so that it intersectsH giving an element p 2 f �1"H with f .p/ 6Q q

and therefore q 2 f ".f �1"H/". This shows f ".f �1"H/" D H and therefore H , being constructed
from f;Q 2 V and f �1"H 2 V Œf �1"H� has H 2 V Œf �1"H�. It follows that V ŒH� � V Œf �1"H� and
hence equality. a

It’s also not hard to see that if P � Q has P dense inQ then the identitymap id � P W P ! Q is a dense homomorphism.
This then yields a great number of preorders as forcing equivalent, just by showing one is dense in the other. A clear
example is two alternative definitions of Add.ℵ0; �/.

33C • 6. Example
By Dense Forcing Equivalence (33C • 5), the following preorders are forcing equivalent:

1. Add.ℵ0; 1/ D h¹p W ! * 2 W jpj < ℵ0º;�;;i;
2. h<!2;�;;i;
3. h<!!;�;;i;
4. h¹p W ! * ! W jpj < ℵ0º;�;;i; and
5. h<! Œ!�;B;;i (where B is end extension: p B q iff p � q and x 2 p n q has x > max q).

Proof .:.
(1,2) It should be clear that the universe of (2) is a dense subset of the universe of (1) and the identity map is

then easily check to be a dense homomorphism. Hence the two are forcing equivalent.
(2,3) Consider the incompatibility homomorphism f W <!! ! <!2 defined by f .;/ D ; and otherwise

f .p/ D code.p.0//_ code.p.1//_ code.p.2//_ � � �_ code.p.n//,
where n D dom.p/ � 1 and where code.x/ is just the string of 0s and 1s that is x 2 ! written in binary.
That f is preserves � should be clear. That f preserves incompatibility should also be clear since code is
injective. That f "<!! is dense follows from the fact that f is actually surjective. To see this, any p 2 <!2
without leading zeros (i.e. p.0/ ¤ 0) can be seen as the binary representation of a single natural number
n D

P
m2dom.p/ p.m/ � 2

m with then f .h0; ni/ D p. If p has m leading zeroes, we just take the previous
n and consider f ..const0 � m/_¹hm; niº/ D p. It follows from f being a dense homomorphism that (2)
and (3) are forcing equivalent.
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(3,4) It should be clear that (3) is dense subset of (4) and the identity map is easily a dense homomorphism.
Hence the two are forcing equivalent.

(2,5) We identify p 2 <! Œ!� with its characteristic function: for n � max.p/,

�.p/.n/ D

´
1 if n 2 p
0 if n … p

This map p 7! �.p/ � .max.p/ C 1/ is a surjective embedding, i.e. an isomorphism and thus a dense
homomorphism. a

Another example of this is our ability to merely use posets instead of preorders.
33C • 7. Theorem

Let P be a preorder. Define p � q iff p 6P q ^ q 6P p for p; q 2 P . Therefore� is an equivalence relation and
P=� D hP=�;6P=�; 1P=�

i D h¹Œp�� W p 2 Pº; ¹hŒp��; Œq��i W p 6P qº; Œ1P ��i

is a preorder and in fact a poset. Moreover, P and P=� are forcing equivalent.

Proof .:.

That � is transitive and reflexive follows from 6P being transitive and reflexive. That � is symmetric is trivial.
Thus � is an equivalence relation. Furthermore, 6P=� is well defined—i.e. its definition doesn’t depend on the
choice of representatives of the equivalence class—since if p � p0 and q � q0 with p 6 q then by transitivity,
p0 6 p 6 q 6 q0 implies p0 6 q0.

As a result, reflexivity and transitivity of 6P=� is immediate by the reflexivity and transitivity of 6P . Similarly,
Œ1P �� being themaximal element of P=� follows easily from 1P beingmaximal in P . For anti-symmetry, suppose
Œp�� 6P=� Œq�� 6P=� Œp��. It follows that p 6P q 6P p and therefore Œp�� D Œq��, as desired. This shows
P=� is a poset.

To see that P and P=� are forcing equivalent we use Dense Forcing Equivalence (33C • 5) with a choice function
for the equivalence classes: f W P=� ! P has f .Œp��/ � p. This will be a dense homomorphism. To see this,
it’s clearly an embedding by definition of 6P=� and 1P=�. To see that it preserves incompatibility, suppose
f .Œp��/; f .Œq��/ are compatible in P with r 6P f .Œp��/; f .Œq��/. Since r � f .Œr��/, we get

f .Œr��/ 6P f .Œp��/; f .Œq��/ iff Œr�� 6P=� Œp��; Œq��,
meaning Œp�� and Œq�� are compatible. Trivially, the image of p 7! Œp�� is dense in P=� because it’s surjective
by definition. Thus f is a dense homomorphism and so P is forcing equivalent to P=�. a

Another useful result in talking about forcing equivalent preorders is not only can we find names for the same object,
we can translate names in an effective way.

33C • 8. Theorem (Name Translation Theorem)
Let V � ZFC be a transitive model we can force over. Let f W P ! Q be an incompatibility homomorphism in V .
Therefore, there is a function T W V P ! V Q such that

1. for allH Q-generic over V and all � 2 V P , T .�/H D �f �1"H ;
2. If f is an embedding or dense homomorphism, then for all G P -generic over V and all � 2 V P , �G D
T .�/f "G";

3. If f is a dense homomorphism, then for allH Q-generic over V , V ŒH� D ¹T .�/H W � 2 V Pº.
In particular, if f is a dense homomorphism, for every formula ' and p 2 P , p  “'.�/” iff f .p/  “'.T .�//”.

Proof .:.

We define T .�/ by induction on P -name rank. Set T .;/ D ;. Now suppose T .�/ has been defined for all
� 2 dom.�/ � V P . Define

T .�/ D ¹hT .�/; f .p/i W h�; pi 2 �º.
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It’s clear that then T .�/ is a Q-name. Now let G be P -generic over V andH Q-generic over V so that if f is a
dense homomorphism,

• f "G" D ¹q 2 Q W 9p 2 G .f .p/ 6Q q/º is Q-generic over V by Dense Forcing Equivalence (33C • 5);
and

• f �1"H is P -generic over V by Result 33C • 4.
Showing this T works isn’t too difficult. Clearly T .;/ D ; has (2) and (1) hold, so we may assume the result
holds for elements of lower P or Q-name rank. Note that in showing (1), we don’t need f �1"H to be generic
over P .

1. To see T .�/H D �f �1"H , let �f �1"H 2 �f �1"H for some h�; pi 2 � and p 2 f �1"H . It follows that
f .p/ 2 H so that �f �1"H D T .�/H 2 T .�/H : �f �1"H � T .�/H . Similarly, if T .�/H 2 T .�/H for some
hT .�/; f .p/i 2 T .�/ for f .p/ 2 H , then p 2 f �1"H with h�; pi 2 � implying �f �1"H D T .�/H 2 �H :
T .�/H � �f �1"H .

2. Suppose f is dense. To see �G D T .�/f "G", we first show (�). Let �G 2 �G so that h�; pi 2 � for
some p 2 G. It follows that hT .�/; f .p/i 2 T .�/ with f .p/ 2 f "G" and therefore �G D T .�/f "G" 2

T .�/f "G" and hence �G � T .�/f "G".

Now suppose &f "G" 2 T .�/f "G" so that h&; f .p/i D hT .�/; f .p/i 2 T .�/ for some h�; pi 2 � . Our
goal is now to show p 2 G since then &f "G" D T .�/f "G" D �G 2 �G shows T .�/f "G" � �G , and hence
equality. Because f .p/ 2 f "G", f .p/ >Q f .q/ for some q 2 G.

• If f is an embedding, this implies p >P q 2 G so that p 2 G. As noted, this completes the proof of
T .�/f "G" � �G and hence T .�/f "G" D �G .

• If f is a dense homomorphism, f .p/ >Q f .q/ merely implies that p and q are compatible. So it’s
not immediate that p 2 G. But if we consider D D P6p [ ¹r 2 P W r ? pº, this will be open and
dense in P and so we have a p� 2 G \ D. Without loss of generality, we may take p� 6P q by
compatibility of G. Thus f .p�/ 6Q f .p/ so p� and p are compatible, and as p� 2 D, p� 6P p.
Hence p� 2 G gives p 2 G.

3. Suppose f is a dense homomorphism and let � 2 V Q be arbitrary. Consider the name
� D ¹h&; pi W f .p/ Q “T .&/ 2 �”º

It’s not difficult to see that T .�/H D �H since x 2 T .�/H iff x D T .&/H for some h&; pi 2 � and
f .p/ 2 H which therefore forces T .&/H 2 �H , meaning T .�/H � �H .

Similarly, x 2 �H iff x D &H for some h&; qi 2 � with q 2 H . Inductively, there is some � 0 2 V P where
&H D T .� 0/H and therefore a q� 6 q in H forcing their equivalence and therefore q�  “T .� 0/ 2 �”.
Since f is dense, f "P \H ¤ ; and therefore there is some q�� 6Q q� with q�� 2 f "P \G. This gives
q�� D f .p/ for some p 2 P and therefore f .p/  “T .� 0/ 2 �” meaning h� 0; pi 2 � with x D &H D

T .� 0/H 2 T .�/. This means �H � T .�/H and therefore equality holds.
We also can show that what’s forced gets translated too. Suppose f is a dense homomorphism.

• Suppose p  “'.�/”. Let H be Q-generic over V with f .p/ 2 H . We then have p 2 f �1"H and by
(1) and Dense Forcing Equivalence (33C • 5), VŒH � D VŒf �1"H� � “T .�/H D �f �1"H ^ '.�f �1"H /”. It
follows that VŒH � � “'.T .�/H /”, and sinceH was arbitrary with f .p/ 2 H , f .p/  “'.T .�//”.

• Suppose f .p/  “'.T .�//”. Let G be P -generic over V with p 2 G. Therefore have by (2) and Dense
Forcing Equivalence (33C • 5) VŒG� D VŒf "G"� � “T .�/f "G" D �G ^ '.T .�/f "G"/”, meaning VŒG� �
“'.�G/”. As G was arbitrary with p 2 G, p  “'.�/”. a

The idea is that (1) and (2) show T indeed translates names, and (3) shows that this T is “surjective” in the sense that
it covers all the names used by a generic extension by Q.
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§33D. A word on class forcing

Sometimes we want to force with a preorder that is not a set but is still easily definable. In doing so, we must be careful,
because the various theorems about forcing with sets need no longer apply. An easy example to show this would be
the preorder Col.ℵ0;Ord/ which collapses the class of ordinals to be countable:

Col.ℵ0;Ord/ D ¹p W ! * Ord W jpj < ℵ0º D <!Ord.
For anyCol.ℵ0;Ord/-genericG over the groundmodel V ,

S
G will be a surjection from ℵ0 toOrdV and therefore V ŒG�

has a bijection from ! to OrdV D OrdVŒG�. It follows by replacement that OrdVŒG� 2 V ŒG�, meaning VŒG� 6� ZFC.

So we need to be careful about what preorders we use if we want to preserve ZFC. Additionally, we also need to
be careful about what exactly we mean by “generic” since no set will be dense in Col.ℵ0;Ord/, for example, only
classes. To modify some definitions given earlier, a generic filter will need to intersect every dense class of the class
preorder.xviii Similarly we can define class antichains and so forth.

The way to show a generic extension by a class preorder still satisfies ZFC is to require that the preorder is “set-like”
in a certain sense. In particular, we may use the following, adopted from [11].

33D • 1. Definition
Let P be a (class) preorder. We call D � P predense (below p 2 P ) iff every q 2 P (below p) is compatible with
an element ofD.
We call P pretame iff for all p 2 P , and every set X , and class sequencexix hDx W x 2 Xi of dense classes Dx for
x 2 X , there is a set ¹dx � Dx W x 2 Xº of sets predense below some q 6P p.
We call P tame iff P is pretame and 1P  P, the powerset axiom.

We can phrase tame-ness without the use of the forcing relation, but showing this requires a great amount of effort
and additional technology for what is basically a long footnote. That said, we are still justified in using the forcing
relation because for class preorders, it’s definable when the preorder is pretame. In general with class forcing, there
isn’t a guarantee the forcing relation p  ' for any given formula ' is definable like with set preorders. Showing that
pretame class preorders do admit such a relation again requires too much effort to include here.

33D • 2. Theorem
Let V � ZFC be a transitive model we can force over. Let P ;6; ¹1º � V yield a class preorder P such that P is tame
over V . Therefore for any G P -generic over V has VŒG� � ZFC.

It turns out that basically all the preorders we would want to use have this property, partly because they are built up in
a natural way from smaller preorders, and to confirm pretame-ness, we just restrict our attention to some initial stages
of how the dense classes are built up. Confirming powerset is harder but can be done using complicated technology
similar to the definition of pretameness. We, of course, will not confirm any of this here and will instead work with
just with set preorders. For a more thorough treatment and discussion of class forcing, see [11], [1], or [25].

We can see for example that Col.ℵ0;Ord/ isn’t tame nor even pretame since each
Dn D ¹f W ! * Ord W n 2 dom.f /º

is a class dense in Col.ℵ0;Ord/ for n 2 ! (as slices of the definable class D D ¹hf; ni W n 2 ! ^ n 2 dom.f / ^ f W
! * Ordº). But for any p D ;, there is not a q 6 p and collection of sets ¹dn W n 2 !º such that each dn � Dn
is predense below q. To see this, let q W ! * Ord with dom.q/ � n and suppose ¹dm W m 2 !º has each dm � Dm
predense below q. As sets, we have a bound ˇn D sup

S
r2dn

r.n/ on what the predense set dn allows. In particular,
q [ ¹hn; ˇn C 1iº 6 q is incompatible with every element of dn so that dn isn’t predense.

xviiiThis is equivalent for set preorders since any such class will need to be a subset of the preorder and therefore be a set by comprehension.
xixNote that since each Dx is a class, hDx W x 2 Xi doesn't make much sense since it's a collection of classes (and really a collection of

ordered pairs of classes). So by hDx W x 2 Xi existing as a class, we really mean that a certain class D � V � X exists where each slice
Dx D ¹a W ha; xi 2 Dº is dense for x 2 X .
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Section 34. Iterated Forcing

We now move away from the more concrete examples and turn back to the general theory of forcing. The idea of
forcing allows us to expand a transitive model of set theory V to a generic extension VŒG� by some G … V . The
concept of iterated forcing is just doing this multiple times in a single step. More precisely, in the generic extension
VŒG� we might force with a preorder in VŒG� to another generic extension VŒG�ŒH� and again with a preorder now in
VŒG�ŒH� to VŒG�ŒH�ŒK�. The idea behind iterated forcing is to find a single preorder in V with generic G �H �K so
that VŒG �H �K� D VŒG�ŒH�ŒK�. And from here, we can continue to all sorts of longer iterations of arbitrary length
˛ 2 Ord.

First we work with two-step (and subsequently finite-step) iterations. Then we generalize this to iterations of arbitrary
length. While the idea behind two-step iterations is somewhat canonical, we have many choices of what to do at limit
stages in more general iterations. This yields a great number of topics in the subject of forcing trying to figure out how
to force a lot of things at once for the sake of consistency results.

§34A. Two-step iterations

We first note that any preorder we’re dealing with has a name that is always forced to be a preorder. Usually in the
generic extension, we only get truth forced by some element of the preorder. But actually we can often get a potentially
different name that is forced by 1P to have the property.

34A • 1. Lemma (Conditional Name Lemma)
Let V � ZFC be a transitive model we can force over. Let P 2 V be appropriate for forcing andG P -generic over V .
Suppose VŒG� � '.�G/ for some � 2 V P and formula '. Suppose ZFC ` “9x '.x/”. Therefore there is a � 2 V P

where �G D �G and in fact
1P  “'.�/ ^ .'.�/! � D �/”.

Proof .:.

LetH be P -generic over V . We have that
VŒH � � “9x .'.x/ ^ .'.�H /! �H D x/”. (�)

The reason is just that if VŒH � � “'.�H /”, then x D �H witnesses (�). And otherwise, we already know
VŒH � � ZFC so by hypothesis VŒH � � “9x '.x/”. Any such x also witnesses (�). SinceH was arbitrary,

1P  “9x .'.x/ ^ .'.�/! � D x/”.
By Maximum Principle (33B • 8), there is some P -name � where 1P  “'.�/ ^ .'.�/! � D �/”. a

So by considering e.g. the infinite binary tree h<!2;�i if our desired P -name isn’t actually appropriate for forcing, we
get the following.

34A • 2. Corollary
Let V � ZFC be a transitive model we can force over. Let P 2 V be appropriate for forcing and G P -generic over
V . Let Q 2 V ŒG� be appropriate for forcing. Therefore there is a P -name PQ 2 V P such that

1P  “ PQ is appropriate for forcing”.

This simplifies the situation because we don’t need to worry about whether the P -name for our preorder is only a
preorder when forcing below some p 2 P and otherwise is some other object entirely. The bottom line is that it suffices
to consider only certain kinds of P -names that allow us to simply assume basic properties of the preorder in the forcing
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relation.

The idea behind the definition of P � PQ is that as we go further down in P , we decide more and more of PQ and this
allows us to also go down in Q. The result is that dense sets can be separated in a natural way into a dense set in P and
a dense set of Q. Recall the notation hhx; yii for a P -name for hxG ; yGi.xx

34A • 3. Definition
Let P D hP ;6P i be appropriate for forcing.
PQ is a P -name for a preorder appropriate for forcing iff 1P  “ PQ is appropriate for forcing”.
For a P -name PQ D hh PQ;6 PQii, define P � PQ D hP �Q;6i by

P � PQ D ¹hp; Pqi W p 2 P ^ Pq 2 dom. PQ/ ^ p  “ Pq 2 PQ”º,
with hp�; Pq�i 6 hp; Pqi iff p� 6P p and p�  “ Pq� 6 PQ Pq”.

Given the definability of forcing in the ground model, the above yields that P � PQ is a preorder in the ground model
whereas Q is usually only in the generic extension. Of course, it’s not difficult to confirm that this is indeed a preorder.

34A • 4. Corollary

Let P D hP ;6P i be appropriate for forcing. Let PQ D hh PQ;6 PQii be a P -name for a preorder appropriate for forcing.
Therefore P � PQ is appropriate for forcing.

Proof .:.

Assuming P � PQ D hP �Q;6i is a preorder, it’s trivial to confirm that it’s appropriate for forcing: the maximal
element being h1P ; P1

PQi is immediate and the incompatibility follows from the incompatibility of P . So it suffices
to show that P � PQ is a preorder.

Reflexivity is immediate since it holds of P and 1P forces the reflexivity of 6 PQ. For transitivity, suppose
hp��; Pq��i 6 hp�; Pq�i 6 hp; Pqi, aiming to show hp��; Pq��i 6 hp; Pqi. By the transitivity of 6P , p�� 6P p. We
also have, being below p�� and 1P ,

p��  “ Pq�� 6 PQ
Pq� 6 PQ

Pq and 6 PQ is transitive”
and therefore p�  “ Pq�� 6 PQ Pq”. Hence hp��; Pq��i 6 hp; qi. a

We unfortunately don’t get generally that P � PQ is a poset even if P is and PQ is forced to be a poset. The issue is that we
might have p  “ Pq0 D Pq1” so that hp; Pq0i 6 hp; Pq1i 6 hp; Pq0i, but hp; Pq0i ¤ hp; Pq1i. This is why we have adopted
the convention here of using preorders rather than posets. Posets are nicer to work with, but this added nicety usually
doesn’t come up. Preorders work just as well.

Regardless, we are more interested in what the generic extensions of P � PQ look like. To do this, we will often be
translating dense sets into different contexts and sometimes reforming them. We also do the same for generics, and so
it’s useful to have a notation to express how generics are broken down and reformed.

34A • 5. Definition
Let P be a preorder and PQ a P -name for a preorder. For A � P and B � PQA, define

A � B D ¹hp; Pqi 2 P � PQ W p 2 A ^ PqA 2 Bº.

This doesn’t exactly mesh with the same use of “�” when defining P � PQ, but it’s quite useful and intuitive. Generally,
we will only define A � B when A is P -generic over the ground model. On the topic of dense sets, another corollary
of Conditional Name Lemma (34A • 1) is that if we want to consider a P -name for some particular dense set D of a
preorder Q in the generic extension, we can choose a name PD which is always forced to be dense. This allows us to
easily think about the dense sets of the two-step iteration.

xxSince hxG ; yGi D ¹¹xGº; ¹xG ; yGºº, an easy canonical example of such a name is

hhx; yii D

°D°
hx;1P i

±
;1P

E
;
D°

hx;1P i; hy;1P i

±
;1P

E±
.
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34A • 6. Theorem (Two-Step Iterated Forcing)
Let V � ZFC be a transitive model we can force over. Let P 2 V be appropriate for forcing and PQ 2 V P a P -name
for a preorder appropriate for forcing. Let G � P � PQ. Therefore,

1. G is P � PQ-generic over V iff G D GP � GQ for some GP that is P -generic over V and some GQ that is
PQGP -generic over V ŒGP �.

2. In fact, we can take
GP D pPG D ¹p 2 P W 9 Pq .hp; Pqi 2 G/º, and GQ D ¹PqGP W 9p 2 P .hp; Pqi 2 G/º.

3. Moreover, V ŒG� D V ŒGP �ŒGQ� for GP and GQ as in (2).

Proof .:.

1. The direction (!) will be shown in (2). For the ( ) direction, let GP be P -generic over V and GQ

Q D PQGP -generic over V ŒGP �. Write
G0
D GP �GQ D

®
hp; Pqi 2 P � PQ W p 2 P ^ PqGP 2 GQ

¯
.

LetD 2 V be dense in P � PQ. For each Pq 2 dom. PQ/, consider the conditions forcing an extension inD:

D Pq D

°
p 2 P W 9 Pq�

�
p  “ Pq� 6 PQ

Pq ^ hp; Pq�
iz2 LD”

�±
� P .

This is dense in P because any p 2 P has hp; Pqi 2 P � PQ with an extension hp�; Pq�i 2 D so that
p�  “ Pq� 6 PQ Pq” and hp�; Pq�i 2 D means that p� clearly forces this. In particular, p� 2 D Pq andD Pq 2 V

is dense in P . Now consider in the generic extension the corresponding qs from GP andD:
DQ D

®
PqGP W 9p 2 GP .hp; Pqi 2 D/

¯
� Q.

This is dense in Q since any PqGP 2 Q has a p forcing this and therefore an extension p� 2 D Pq\GP which
then forces an extension of PqGP intoDQ. As a result, there is some element PqGP 2 DQ \GQ which then
yields a p 2 GP with hp; Pqi 2 D \ .GP �GQ/ ¤ ;. Hence GP �GQ is P � PQ-generic over V .

2. It should be clear as defined that G D GP � GQ. Let D be dense in P . We can identify this with a subset
of the iterationD0 D ¹hp; Pqi 2 P � PQ W p 2 Dº which is dense in P � PQ. In particular, G \D0 ¤ ; which
yields an element of pP .G \D

0/ � pPG \ pPD
0 D GP \D. So GP is P -generic over V .

Similarly, if D is dense in Q D PQGP then we can choose a P -name PD with 1P  “ PD is dense in PQ” by
Conditional Name Lemma (34A • 1). In particular, D0 D ¹hp; Pqi 2 P � PQ W p  “ Pq 2 PD”º is dense in
P � PQ where thenG\D0 ¤ ;. An element hp; Pqi 2 G\D0 has p 2 GP with p  “ Pq 2 PD” and therefore
PqGP 2

PDGP D D. And by definition PqGP 2 GQ: GQ \D ¤ ;. So GQ is Q-generic over V ŒGP �.

3. Since both generic extensions are transitive models containing V and satisfying ZFC, the containments
follow from Theorem 31A • 6 (3) by showing that each generic extension contains G, GP and GQ. In
V ŒG�, from G, we can construct GP and GQ as in (2) so clearly V ŒGP �ŒGQ� � V ŒG�. But given GP and
GQ, we can construct G D GP �GQ. Hence V ŒG� � V ŒGP �ŒGQ� and so equality holds. a

This then allows us to start from a model of CH, force to a model of :CH, and then force CH again! The applications
are endless! But really the point is that this makes some constructions and arguments easier because we might know
what each preorder does individually. For instance, we might want to force 2ℵ0 D ℵ3 and 2ℵ1 D ℵ3, and this allows
us to do it in one step by first forcing the first and then forcing the other. Of course, there is some careful checking
to make sure we don’t screw up what we forced in the previous step. And this question becomes more complicated
and harder to answer with longer iterations. For now, we focus on the fact that iterating two ccc preorders yields a ccc
preorder. Recall the use of ccc preorders in preserving cardinals and cofinalities from Theorem 32C • 7 to motivate
why this might be useful.

34A • 7. Lemma
Let V � ZFC be a transitive model we can force over. Let P 2 V be a ccc preorder appropriate for forcing in V. Let
PQ be a P -name for a preorder appropriate for forcing such that 1P  “ PQ is ccc”. Therefore P � PQ is ccc.
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Proof .:.

Note that forcing with P yields that ℵ1 is still regular in the generic extension. In particular, for � 2 V P , if
� is forced to be a small subset of ℵV1 , i.e. 1P  “� � Lℵ1 ^ j� j < Lℵ1”, then there is some ˛ < !V1 such that
1P  “� � L̨”.

So suppose P � PQ is not ccc in V: let A D ¹hp˛; Pq˛i W ˛ < �º be an antichain witnessing this with � � ℵV1 .
Consider in V P the name � D ¹h L̨ ; p˛i W ˛ < �º so that �G D ¹� < � W p� 2 Gº � � whenever G � P . So let
G be P -generic over V , writing PQG D Q and . Pq˛/G D q˛ for ˛ < �.

The corresponding set ¹q˛ W ˛ 2 �Gº is an antichain of Q. To see this, for distinct ˛; ˇ 2 �G , if q˛ and qˇ
were compatible, then this would be forced by some element of G: p  “ Pr 6 PQ Pq˛; Pqˇ ” for some p 2 G and
Pr 2 dom. PQ/. As G is a filter, we may freely extend p and assume without loss of generality that p 6P p˛; pˇ .
But then hp; Pri extends both hp˛; Pq˛i; hpˇ ; Pqˇ i 2 A in P � PQ, contradicting that A is an antichain.

But 1P  “ PQ is ccc”, and so in particular, VŒG� � “j¹q˛ W ˛ 2 �Gºj < �”. As G was arbitrary, 1P 
“� � � ^ j� j < �” and thus � is forced to be bounded by some ˇ < �, meaning there are at most jˇj < �

elements of � in the ground model, contradicting construction. a

By the same proof above, Lemma 34A • 7 actually generalizes to �-cc preorders in that if P is �-cc and 1P 
“ PQ is L�-cc”, then P � PQ is �-cc. We don’t care as much about �-cc preorders in general because ccc preorders are often
much more useful as we’ll see in the next subsection.

Iterated forcing also can be called product forcing in the case that PQ D LQ for some Q in the ground model. In this
case, we actually get commutativity: P � LQ Š Q � LP—which we call P �Q—and so the same generic extensions.
Of course, one needs to be careful with using the above results: Q may be, for example, ccc in the ground model
but not in the generic extension by P .xxi As a result, the product of ccc preorders might not be ccc without additional
information about P . So really, one needs to understand the product forcing version of Lemma 34A • 7 as saying a
stronger statement: more than both P and Q being ccc in the ground model, if in addition Q is still ccc in the generic
extension by P , then P �Q is ccc.

§34B. Longer iterations

The ideas of the previous subsection allow us to pretty easily define iterations of finitely many preorders, and more
generally the successor stage in an iteration of potentially infinitely many preorders. The limit stage is where things
aren’t uniquely defined: do we take the !th stage to be the direct limit of all previous preorders? If successor stages act
like the product, do we just take the “product” of all of the previous preorders? This results in the “inverse limit” and is
basically the largest the limit stage could be whereas the direct limit is the smallest the limit stage could be, and there
are many different posets that fall somewhere in between. Ultimately, we have a large degree of freedom of coming up
with a limit preorder P! whose generic extensions contain generic extensions of previous preorders. In other words,
if the goal of iterated forcing is to get a chain of models V � V ŒG1� � V ŒG2� � � � �, what exactly V ŒG! � should be
isn’t determined by the previous preorders and generics. Answering these questions and nailing down the final generic
extension fundamentally requires us to think about what our conditions look like and what their support is.

Up until this point, adding a maximal element 1 to our preorders has been practically unecessary: 1P  ' can be
restated as 8p 2 P .p  '/ and instead of hx; 1P i in the name � we just need to have ¹hx; pi W p 2 Pº � � . So
most of the above results do not depend on 1 in an essential way. This changes now, since we require the ability to “do
nothing” with our conditions. How often we do something is considered the “support”.

To give some motivation for the very technical and lengthy definitions to follow, our current technology allows us
xxiFor example, a suslin tree (which hasn't been introduced in this document) P is ccc but P � P isn't [24]. In other words, P is ccc in the ground

model, but not in the generic extension, precisely because P adds an uncountable branch through P that can be used in the generic extension to form
an uncountable antichain.
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to start with P0 and iterate with a P0-name PQ0 to get P1 D P0 � PQ0 and then given a P1-name PQ1, we can define
P2 D P1 � PQ1. The general perspective is that h PQ˛ W ˛ < �i is the sequence of (names of) preorders we want to force
with. When forcing with them we get initial segments of our iteration: hP˛ W ˛ < �i has P˛ as the iteration of the first
˛-many PQs meaning P˛C1 D P˛ � PQ˛ .

For example, the series of iterations ..1� PQ0/� PQ1/� PQ2—where 1 is the trivial preorder with just one element—can
be thought of as the result of the sequence hP i W i < 4i given by the sequence h PQi W i < 3i where

P0 D 1 P2 D P1 � PQ1

P1 D P0 � PQ0 P3 D P2 � PQ2 D ..P0 � PQ0/ � PQ1/ � PQ2.
Formally, the elements of these will be pairs of pairs of pairs and so on, but we can instead view them as sequences of
elements or choice function into the names of conditions—meaning into the domains of the PQns. In this way, elements
of P3 will be choices function for ¹dom. PQ0/; dom. PQ1/; dom. PQ2/º, meaning elements of

Q
n<3 dom. PQn/. Sequences

in larger P˛s extend each other when the corresponding values in the PQ˛s (are forced to) extend each other.

Notationally, the conditions of PnC1 D PQ0 � PQ1 � : : : � PQn before would take the form hhhh;; Pq0i; Pq1i � � �i; Pqni. The
ordering would be defined by

hhhh;; Pq�
0 i; Pq

�
1 i � � �i; Pq

�
ni 6nC1 hhhh;; Pq0i; Pq1i � � �i; Pqni

iff hhh;; Pq�
0 i; Pq

�
1 i � � �i 6n hhh;; Pq0i; Pq1i � � �i and hhh;; Pq�

0 i; Pq
�
1 i � � �i  “ Pq�

n 6 PQn Pqn”.
Viewed a sequences, we identify hhhh;; Pq0i; Pq1i � � �i; Pqni with the map p D n 7! Pqn. In this way we can rephrase the
ordering as

p� 6nC1 p iff p� � n 6n p � n and p� � n  “p�.n/ 6 PQn p.n/”,
which basically says that we go down in each component in the only way that makes sense. One may note that this is
partly why we start with 1: we need p � 0 D ; 2 1 to force statements about elements of PQ0.

Under this sequence view, we have the following results or perhaps definition or characterization depending on how
the reader wants to think of it.

34B • 1. Result
Let h PQn W n < N i, N < !, be a sequence of names where

1. PQn is a Pn-name for a preorder for each n < N ;
2. we define P0 D 1, PnC1 D Pn � PQn for each n < N , and we view elements as sequences as above;

Therefore, for all n < N ,
3. Each p 2 Pn is a function p 2

Q
n<N dom. PQn/;

4. If p 2 Pn and m < n, then p � m 2 Pm;
5. p 2 PnC1 iff p � n 2 Pn and p.n/ 2 dom. PQn/ such that p � n  “p.n/ 2 PQn”;
6. p� 6PnC1 p iff p� � n 6n p � n and p� � n  “p�.n/ 6 PQn p.n/”.

This generalizes to larger iterations supposing we know what to do at limit stages. In the end, the limit stage ˛ will
be determined not by the order—which trivially has p� 6˛ p $ 8� < ˛ .p� � � 6� p � �/—but instead by what
sequences p 2

Q
�<˛ dom. PQ�/ we allow. Support is the way we restrict such conditions.

34B • 2. Definition
Let � be an ordinal. For ˛ < �, let P˛ be a preorder and let PQ˛ D hh PQ˛;60

˛;
P10
˛ii be a P˛-name for a preorder

with 1P˛  “P10
˛ is maximal in PQ˛”. Then the support of any p 2

Q
˛<� dom. PQ˛/ is sprt.p/ D ¹˛ < � W 1P˛ 6

“p.˛/ D P10
˛”º

And from here we can give the very technical and long definition of longer iterations. Note that really we’re defining
the iteration P˛s based on our choice of PQ˛s. So there are no real restrictions on the PQ˛s except that they are P˛-names
for preorders.
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34B • 3. Definition
Let � be an ordinal. Let I � P .�/ be some collection we will think of as allowed supports with ; 2 I . A �-stage
iterated forcing with supports in I is a pair of sequences hP˛ W ˛ � �i and h PQ˛ W ˛ < �i such that for all � � ˛ < �,

1. Each P˛ D hP˛;6˛; 1˛i is appropriate for forcing (or else trivial) with trivial P0 D 1 D h¹;º;D;;i.
2. Each PQ˛ D hh PQ˛;60

˛;
P10
˛ii is aP˛-name for preorder appropriate for forcing (or else trivial in that j dom. PQ˛/j D

1).
3. Each 1˛ D hP10

�
W � < ˛i.

4. Each element of P˛ is a function p 2
Q
�<˛ dom. PQ�/.

5. If p 2 P˛ , then p � � 2 P� .
6. For ˛ D � C 1 a successor, we essentially set P�C1 D P� � PQ� :

• P�C1 is defined by p 2 P�C1 iff p � � 2 P� , p.�/ 2 dom. PQ�/, and p � � P�
“p.�/ 2 PQ�”; and

• 6�C1 is defined by p� 6�C1 p iff p� � � 6� p � � and p� � �  “p�.�/ 60
�
p.�/”.

7. For ˛ a limit, we essentially require support in I with stronger conditions having stronger initial segments:
• P˛ is defined by p 2 P˛ iff p � � 2 P� for every � < ˛ and sprt.p/ 2 I ;
• 6˛ is defined by p� 6˛ p iff p� � � 6� p � � for every � < ˛.

Above, P˛
is just there to help disambiguate which preorder we’re forcing with, although the only preorder p � � is

in P� (and hence the only preorder the forcing relation makes sense for there is with P� ). The above notation is fairly
standard in the literature, but we may suggestively write

¨
˛<�
PQ˛ instead of P� . Of course, this notation doesn’t say

what happens at limit stages, so this must be described in the surrounding context.

Really all this means is that elements of P� D
¨
˛<�
PQ˛ are choice functions and the ordering is just forced pointwise

extension such that we don’t enlarge the support too much: for q a condition, p 6� q iff sprt.p/ 2 I and p � ˛ 
“p.˛/ 60

˛ q.˛/” for each ˛ < �.

It should also be clear that for a �-stage iteration hP˛ W ˛ � �i, h PQ˛ W ˛ < �i, if we cut off the iteration at some stage
˛, we get an ˛-stage iteration hP� W � � ˛i, h PQ� W � < ˛i.

For � D 2, this pretty clearly meshes with the previous definition from Definition 34A • 3: there P �Q would have to
be written as follows:

P0 D 1

PQ0 D LP P1 D 1 � PQ0

PQ1 D PQ P2 D 1 � PQ0 � PQ1 D 1 � LP � PQ Š P � PQ.
For longer iterations, in the case that I D ¹;º, then P˛ will simply be trivial for limit ˛, so the requirement that I isn’t
just this is necessary below. We also need ; 2 I to ensure that 1˛ D hP10

�
W � < ˛i—whose support is empty—is in

fact in P˛ for limit ˛.xxii

34B • 4. Corollary
Let � be an ordinal and ¹;º ¨ I � P .�/. Therefore a �-stage iterated forcing with supports in I , hP˛ W ˛ � �i with
h PQ˛ W ˛ < �i as in Definition 34B • 3, results in P� which is a trivial preorder (if all the PQ˛s are trivial for ˛ < �)
or a preorder appropriate for forcing. In fact, each P˛ has this property for ˛ < �.

Proof .:.

If all of the PQ˛s are P˛-names for trivial preorders—i.e. j dom. PQ˛/j D 1—then it’s not difficult to show each
P˛ is trivial by induction (because there is only ever one function in

Q
˛<� dom. PQ˛/).

Otherwise P� is trivial up to some � � ˛ < � but PQ˛ is a P˛-name for a preorder appropriate for forcing (and

xxiiAlternatively, one may say that according to our definitions, there simply are no iterations with support in I if ; … I since 1˛ as defined
wouldn't be in P˛ .
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thus nontrivial) in which case there is some preorder in the ground model Q˛ where 1˛  “ LQ˛ D PQ˛” and
hence P˛C1 Š P˛ � LQ˛ Š Q˛ is appropriate for forcing by Corollary 34A • 4. To see that hP10

�
W � < ˛ C 1i is

indeed maximal in P˛ , inductively, a D hP10
�
W � < ˛i is maximal in P˛ , and it’s not hard to see that a_hP10

˛i is
then maximal in P˛C1.

For the limit step P˛ , we first must show it’s a preorder and and that it’s appropriate for forcing. Transitivity
follows by transitivity of the previous P�s inductively. Reflexivity follows from the fact that p 6˛ p� 6˛ p
implies p � � 6� p� � � 6� p � � for every � < ˛. This implies p D p� by the reflexivity of each 6� :
p � � D p� � � for every � < ˛ implies p D

S
�<˛ p � � D

S
�<˛ p

� � � D p�.

P˛ has a maximal element hP10
�
W � < ˛i since inductively this restricted to � is the maximal element of P� . For

p 2 P˛ , to show there are always incompatible extensions of p, we must break into cases.
• If � 2 sprt.p/, then as PQ� is forced to be appropriate for forcing, choose two extensions p0.�/ and
p1.�/ forced to be incompatible: 1�  “p0.�/; p1.�/ 60

�
p.�/ ^ p0.�/ ? p1.�/”. Therefore p0 D p �

�_hp0.�/i
_p � .˛ n �/ and p1 � �_hp1.�/i_p � .˛ n �/ have sprt.p0/ D sprt.p1/ D sprt.p/ 2 I and

therefore p0; p1 2 P˛ are two incompatible extensions of p.
• If sprt.p/ D ;, then p D 1˛ . For a non-empty X 2 I , take � < ˛ arbitrarily and note that any two
incompatible extensions p0; p1 6� p � � in P� yields p0_p � .˛ n �/ and p1_p � .˛ n �/ as two
incompatible extensions of p. a

Note that for (7) and (5) in Definition 34B • 3 to make sense for � with lots of limit ordinals below it, we will want I
to be closed under subsets: ˛ < � with sprt.p � ˛/ � sprt.p/ 2 I with ˛ a limit requires sprt.p � ˛/ 2 I . In general,
we want I to be an ideal, the dual concept of a filter in that F � P .X/ is a filter iff ¹X n A W A 2 F º is an ideal.
The idea is that we usually want our supports to be “small” in some sense, and we use an ideal to make this concept
coherent.

34B • 5. Definition
Let X be a set and I � P .X/. ; ¨ I ¨ P .X/ is an ideal iff

• X � Y 2 I implies X 2 I ; and
• X; Y 2 I implies X [ Y 2 I .

P .�/ is sometimes called an improper ideal. We will not adopt this convention here to preserve the fact that every
ideal corresponds to a filter. Some natural examples of ideals are given from size:

34B • 6. Example
For � a cardinal and � � � another cardinal,

1. ¹X � � W jX j � �º is an ideal.
2. ¹X � � W jX j < �º is an ideal.
3. ¹X � � W X is bounded in �º is an ideal.

Some more trivial ways of getting ideals are as follows:
• ¹;º is an ideal.
• For any filter F � P .�/, ¹� nX W X 2 F º is an ideal.
• For any Y � X ¤ ;, P .Y / � P .X/ is an ideal.
• For any X ¤ ; and x 2 X , ¹Y � X W x … Y º � P .X/ is an ideal called a principal ideal, corresponding to
principal filters.

(7) and (5) of Definition 34B • 3 tells us that I should be closed under subsets. Definition 34B • 3 (6) tells us that
I should be non-principal in that at successor stages, we can always increase the support by one element and not
cause any problems. Of course, the definition doesn’t entail these exactly, but they provide motivation for focusing on
non-principal ideals.

Occasionally in our iterations we will talk of full support where we take support in P .�/, i.e. no restrictions. This is
not an ideal as defined in Definition 34B • 5, but this doesn’t matter much at all for our purposes. For the most part,
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the popular ideals for supports are bounded support as in Example 34B • 6 (3) (or (2) if � D � is regular), countable
support as in (1) with � D ℵ0, and finite support as in (2) with � D ℵ0. Other supports, such as easton support will be
composed of these, allowing for different supports depending on the stage of the iteration.

The primary goal of iterated forcing is the following, where we use the notation
¨
�<˛
PQ� for P˛ in iterations. One

downside to using this notation is that whereas P˛ is more like a parameter—a particular preorder from the ground
model—

¨
�<˛
PQ� is more like a defined notion which requires interpretation and therefore might differ when defined

in the ground model versus the generic extension in the same way that the preorder Col.ℵ0;ℵ2/ will have a different
interpretation in the ground model versus its generic extension. This is especially a problem for iterations since we
might be working with many different generic extensions. But the reader just has to know that below we are always
interpretting the preorder as defined in the ground model. It’s just that writing

�¨
�<˛
PQ�

�V
is a bit too much while P˛

is a bit less transparent. As such, we say
¨
˛<�
PQ˛ is a �-stage iterated forcing rather than the more formally correct

pair of sequences h
¨
�<˛
PQ� W ˛ � �i, h PQ˛ W ˛ < �i. The notation

¨
˛<�
PQ˛ makes it easy to see what the sequences

are anyway. In doing so, we let the support be defined by context rather than integrating it into the notation to further
clutter things.

34B • 7. Theorem (Iterated Forcing)
Assume the following:

• V � ZFC is a transitive model we can force over.
• � 2 Ord \ V
• I 2 V with ¹;º ¨ I � P .�/ be a non-principal ideal or P .�/ itself.
•
¨
˛<�
PQ˛ 2 V is a �-stage iterated forcing with supports in I of V.

• G is
¨
˛<�
PQ˛-generic over V .

Therefore for each ˛ < �,
1. G � ˛ D ¹p � ˛ W p 2 Gº is

¨
�<˛
PQ� -generic over V .

2. G˛C1 D ¹p.˛/G�˛ W p 2 Gº is . PQ˛/G�˛-generic over V ŒG � ˛�.

Proof .:.

1. Since G is a filter, and p� 6� p implying p� � ˛ 6˛ p � ˛, it follows that any two elements of G � ˛
have a common extensions inG � ˛. G � ˛ is also pretty easily closed upward (since every r 2

¨
�<˛
PQ�

has an extension in
¨
�<�
PQ� and thus in G just by adding a tail of P10

�
s). Hence G � ˛ is always a filter.

To show genericity, let D �
¨
�<˛
PQ� be dense in V . We can take D0 D ¹q 2

¨
�<�
PQ� W q � ˛ 2 Dº.

Note that ifD0\G ¤ ;, thenD\ .G � ˛/ ¤ ; by restricting to elements to be in
¨
�<˛
PQ� . So it suffices

to show D0 is dense in
¨
�<�
PQ� . To see this, let p 2

¨
�<�
PQ� be arbitrary. Consider that p � ˛ has an

extension p� 2 D. Note that sprt.p�_.p � .� n ˛/// � sprt.p/ [ sprt.p�/ and therefore is in I . Hence
p�_.p � .� n ˛// is a condition of

¨
�<�
PQ� which extends p and is inD0. Therefore G \D0 ¤ ; and so

.G � ˛/ \D ¤ ;.

2. Write Q˛ D hQ˛;60
˛; 1

0
˛i for . PQ˛/G�˛ where ˛ < �. First we show that G˛ is a filter and then that it’s

generic. That any two elements of G˛ are can be extended to an element of G˛ follows immediately from
the fact that all elements of G have this property: a common extension r 6� p; q 2 G with r 2 G yields
r � .˛ C 1/ 6˛C1 p � .˛ C 1/; q � .˛ C 1/ and therefore r � ˛  “r.˛/ 60

˛ p.˛/; q.˛/”. In particular,
r.˛/G�˛ 2 G˛ as a common extension to p.˛/G�˛ and q.˛/G�˛ in Q˛ .

To show the upward closure of G˛ , let p�.˛/G�˛ 60
˛ p D PpG�˛ with p� 2 G and Pp 2 dom. PQ˛/.

Change p� to q D .p� n ¹h˛; p�.˛/iº/ [ ¹h˛; Ppiº. This only (potentially) decreases the support by one
element and is therefore a condition since I is an ideal. Moreover, p� 6 q and therefore q 2 G and so
q.˛/G�˛ D p 2 G˛ . Hence G˛ is a filter.
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To show genericity of G˛ , let D � Q˛ be dense in V ŒG � ˛�. There is some condition pD 2 G with
pD � ˛ 2 G � ˛ forcing this: pD � ˛  “ PD is dense in PQ˛”. It’s not hard to see that

D0
D ¹q 6� pD W pD � ˛  “q.˛/ 2 PD”º

is dense below pD in
¨
�<�
PQ� . To see this, any q 6 pD has q � ˛  “9x .x 60

˛ q.˛/ ^ x 2 D/”. We
can then extend q � ˛ to q� � ˛ to get a name � 2 dom. PQ˛/ where q� � ˛  “� 60

˛ q.˛/ ^ � 2
PD”. It

follows that q� D q� � ˛_h�i_q � .� n .˛ C 1// has sprt.q�/ � sprt.q� � ˛/ [ ¹˛º [ sprt.p/ 2 I with
q 2 D0. HenceD0 is dense below pD in

¨
�<�
PQ� .

So by genericity of G, there is some element q 2 G \ D0 with then q.˛/G�˛ 2 G˛ \ D. Hence G˛ is
Q˛-generic over V ŒG � ˛�. a

Unfortunately, a converse to the above isn’t possible in the sense that wemay have
¨
˛<�
PQ˛ with sequences of generics

hG˛ W ˛ < �i and hG � ˛ W ˛ < �i where
• G � ˛ D

Q
�<˛ G˛ \

¨
�<˛
PQ˛ that is

¨
�<˛
PQ˛-generic over V ; and

• .G˛C1/G�˛ is . PQ˛/G�˛-generic over V ŒG � ˛�;
but there is no genericG having these sections as above.xxiii Put another way, there may be a chain of generic extensions
V � V ŒG0� � V ŒG1� � � � � with no V ŒG� containing ¹Gn W n < !º such that G is generic over the iteration in V ,
because G may code something nasty.xxiv If we want to have a better idea of what these limit generics will look like
when they do exist, we need to look further into the supports of iteration. These are obviously important because they
shape the limit iterations.

§34C. A diversion into model theory and support

Let us now investigate why supports are important by considering what their iterations look like. Then we can look at
their generic extensions.

34C • 1. Definition
Let � be an ordinal and I � P .�/. Let

¨
˛<�
PQ˛ be a �-stage iterated forcing with supports in I . We say this is a

• finite support iteration iff I D ¹X � � W jX j < ℵ0º;
• bounded support iteration iff I D ¹X � � W X is bounded in �º D ¹X � � W supX < �º;
• full support iteration iff I D P .�/.

These three kinds of support are not the only important ones in the subject of iterated forcing: countable support and
revised countable support are both very important for technical arguments regarding preorders that preserve certain
kinds of stationary sets, also called “proper forcings”, motivating the proper forcing axiom (PFA). But such topics will
not be covered here. Instead, we will focus on the above three because the resulting iterations have a simple form to
describe in terms of the initial segments of the iteration.

Recall that the direct limit dir limF A of a directed system of models hA;F i (A is the set of models and F is the set
of embeddings) is the “least” model that A embeds into dir limF A for each A 2 A and if A embeds into M for each
A 2 A, then dir limF A embeds into M too as in Figure 6A • 8, reproduced below:
xxiiiTo see this, let V � ZFC be a countable transitive model. Hence there is some real r 2 !2 coding the countable ordinal hOrd \ V;2i. We
may consider Q0 D Add.ℵ0; 1/ with generic G0 over V , Q1 D Add.ℵ0; 1/

VŒG0� with generic G1 over V ŒG0�, Q2 D Add.ℵ0; 1/
VŒG0�G1�

with generic G1 over V ŒG0 � G1�, and so on, continually adding a subset of ! in the generic extension. Taking names for these preorders, the
result is a preorder

¨
n<!

PQn. It's not too difficult to show that we may modify the genericsGn to G0
n so that their members' first value is r.n/.

If there were a resulting genericG0 to
¨

n<!
PQn that works with theseG0

ns, we could reconstruct r and get r 2 V ŒG0�, which would show that
VŒG0� � “Ord \ V D Ord \ V ŒG0� is countable”, contradicting VŒG0� � ZFC.
xxivOne may trivially show this just by taking a countable, cofinal sequence of ordinals h˛n W n < !i in a countable, transitive model V � ZFC
and then iteratively collapsing these ordinals down to be countable with Qn D Col.ℵ0; ˛n/

VŒG0�:::�Gn�1�. We then get V � V ŒG0� �

V ŒG0 �G1� � � � � with no generic extension of the iteration V ŒG� because such aG codes the countability of V and V ŒG�'s ordinals. The issue,
of course, is that this sequence of ordinals h˛n W n < !i isn't in the ground model, and hence the iteration

¨
n<!

PQn isn't even definable over the
ground model V. So the construction in the previous footnote is a more substantive example.
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A

C dir limF A M

B

34C • 2. Figure: The direct limit embeddings

It turns out that with finite support iterations,
¨
˛<�
PQ˛ D dir lim˛<�

¨
�<˛
PQ� , that is the iteration is the direct limit

of the previous iterations. We always have embeddings from the initial segments into the final iteration. Here we
use “embedding” to be the usual meaning between models, and here preorders are FOL.6; 1/-structures. Elsewhere
in the literature, frequently homomorphisms and embeddings between preorders regard preorders instead as FOL.6
;?; 1/-structures, meaning the homomorphism and embedding must preserve incompatibility. This restricted sense is
unnecessary although it can clean-up some theorem statements.

34C • 3. Lemma
Let � be an ordinal, I � P .�/, and

¨
˛<�
PQ˛ a �-stage iteration with support in a non-principal ideal I or P .�/

itself.xxv Therefore for each ˛ < ˇ � �, there is an incompatibility embedding �˛;ˇ from
¨
�<˛
PQ� to

¨
�<ˇ
PQ�

defined by �˛;ˇ .p/ D p_hP10
�
W ˛ � � < ˇi.

Proof .:.

We have �˛;ˇ .p/ 2
¨
�<ˇ
PQ� since sprt.�˛;ˇ .p// D sprt.p/ 2 I . It’s also not difficult to see that if p� 6˛ p

then �˛;ˇ .p�/ 6ˇ �˛;ˇ .p/, and the converse clearly holds since restricting to ˛ yields p� D �˛;ˇ .p
�/ � ˛ 6˛

�˛;ˇ .p/ � ˛ D p. It should also be clear that �˛;ˇ is injective and hence is an embedding. That the embedding is
complete is obvious in that a common extension r 6ˇ �˛;ˇ .p/; �˛;ˇ .q/ yields r � ˛ 6˛ p; q and the converse is
already established since �˛;ˇ is an embedding. a

Note that by Name Translation Theorem (33C • 8), we can then “easily” translate names over previous iterations into
names over later iterations.

Really this tells us what the direct limit should look like since it should be composed of as little as possible. This makes
sense since any non-principal ideal will contain the ideal of finite sets. Put in another way, the iteration is composed
only of the values of these embeddings:

¨
˛<�
PQ˛ D

S
˛<� �˛;�"

¨
�<˛
PQ� . Equivalently, p 2

¨
˛<�
PQ˛ iff there is

some ˛ < � where p D �˛;�.p � ˛/. This is the main idea behind why the resulting model is the direct limit. We also
then do away with specifying the embeddings, as they will always be these �˛;ˇ s which just add a tail of P10s which then
obviously commute: �˛; D �ˇ; ı �˛;ˇ for ˛ < ˇ <  .

34C • 4. Definition
Let � be an ordinal and

¨
˛<�
PQ˛ a �-stage iteration with support in some I � P .�/. We say

¨
˛<�
PQ˛ is the direct

limit of the previous iterations iff it’s the direct limit of the system of embeddings h¹
¨
�<˛
PQ� W ˛ < �º; ¹�˛;ˇ W ˛ �

ˇ < �ºi where �˛;ˇ W
¨
�<˛
PQ� !

¨
�<ˇ
PQ� is defined by �˛;ˇ .p/ D p_hP10

�
W ˛ � � < ˇi.

With this simplification, we can state when we take direct limits generally. Note that I \P .˛/ � ¹x � ˛ W sup x < ˛º
is the same as saying I \ P .˛/ D

S
ˇ<˛ I \ P .ˇ/, meaning that we don’t allow any new supports at stage ˛.

xxvWe want I to be a non-principal ideal here because we need �˛;ˇ.p/ to be an element of
¨

�<ˇ
PQ� even when ˛ is a successor. As we've set

things up, successor stages always allow us to increase the support by one element. So when we restrict the support in the limit stage, we need the
previous successor supports to be in I .
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34C • 5. Theorem (Support of Direct Limits)
Let � be an ordinal and

¨
˛<�
PQ˛ a non-trivial, �-stage iteration with support in a non-principal ideal I � P .�/ or

P .�/ itself. Therefore, for limit ˛,
¨
�<˛
PQ� is the direct limit of previous iterations iff I \P .˛/ D

S
ˇ<˛ I \P .ˇ/,

i.e.
I \ P .˛/ � ¹x � ˛ W sup x < ˛º.

Proof .:.

( ) Let P be such that there is an embedding �0
ˇ
W
¨
�<ˇ
PQ� ! P for each ˇ < ˛ and these commute with

the �ˇ; s: �0ˇ D �0 ı �ˇ; . We must show that there is an embedding from
¨
�<˛
PQ� to P . Since each

condition’s support in the ˛th iteration is bounded, define p̌ D sup¹� C 1 W � 2 sprt.p/º < ˛. It follows
that p � p̌ contains all of the “content” of p in that �ˇp ;˛.p � p̌/ D p. In particular, we can define
�0˛ W

¨
�<˛
PQ� ! P by �0˛.p/ D �0ˇp

.p � p̌/.

To see that �0˛ is an embedding, it’s clear that p� 6˛ p implies sprt.p�/ � sprt.p/ and therefore p̌� � p̌ .
In particular,

p� � p̌� 6ˇp� p � p̌� D �ˇp ;ˇp� .p � p̌/

and therefore applying the embedding �0
ˇp�

, we get

�˛0.p�/ D �0ˇp�
.p� � p̌�/ 6P �0ˇp�

.�ˇp ;ˇp� .p � p̌// D �
0
ˇp
.p � p̌/ D �˛0.p/.

We get injectivity similarly: if p ¤ q, let p̌ � ˇq for the sake of definiteness so by injectivity of the �0ˇ s,

�0˛.p/ D �
0
ˇp
.p � p̌/ ¤ �

0
ˇp
.q � p̌/ D �

0
ˇp
.�ˇq ;ˇp

.q � ˇq// D �0ˇq
.q � ˇq/ D �0˛.q/.

(!) Any p 2
¨
�<˛
PQ� with unbounded support is not in the image of any �ˇ;˛ for a ˇ < ˛ and hence¨

�<˛
PQ� ¤

S
ˇ<˛ �ˇ;˛"

¨
�<ˇ
PQ� which is necessary for being the direct limit. a

This tells us that finite support takes limits at every stage since finite support is always bounded. This idea also allows
us to mix things together, taking bounded support and hence direct limits just at certain stages. More generally, finite
support iterations take direct limits at every limit stage, and are in fact the only kind of support that does this.

34C • 6. Corollary
Let � be an ordinal and

¨
˛<�
PQ˛ a �-stage, finite support iteration. Therefore

¨
�<˛
PQ� is the direct limit of the

previous iterations for each limit ˛. Moreover, any non-trivial �-length iteration that takes direct limits at every limit
stage has finite support.

Proof .:.

Clearly finite support is bounded in every limit, so we always take the direct limit by Support of Direct Limits
(34C • 5). To see that finite support iterations are the only ones with this property, we proceed by induction on
limit ˛ < � to show that all elements of

¨
�<˛
PQ� have finite support.

For ˛ D !, this is clear: as the direct limit, support is bounded and therefore finite. Inductively, if every limit
ˇ < ˛ takes finite support and support at the ˛the-stage is bounded, then support at the ˛th stage is finite. To
see this, any p 2

¨
�<˛
PQ� has p D �ˇ;˛.p � ˇ/ for some ˇ < ˛. But then the support of both is inductively

finite (even if ˇ is a successor, it’s only finitely many iterations above a limit and so can only add at most finitely
many non-P10s to p restricted to the largest limit below ˇ): for I the support of the iteration, sprt.p/ D sprt.p �
ˇ/ 2 I \ P .ˇ/ � ¹x � ˇ W x is finiteº. Additionally, we must have I \ P .ˇ/ � ¹x � ˇ W x is finiteº because
at successor stages of the iteration, we allow ourselves to extend the support by one element which eventually
yields any finite number of elements. a

In contrast to direct limits, we also have inverse limits, which is kind of the reverse of the direct limit in that we have
projections from

¨
˛<�
PQ˛ to previous iterations and this is the “least” such in that any other model with this property
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also has a “projection” onto
¨
˛<�
PQ˛ . In model theoretic terms, we have the following definition. Recall that a

homomorphism is just an embedding without the requirement of injectivity, i.e. f W A! B has RA.Ex/! RB.f .Ex//

and f .gA.Ex// D gB.f .Ex// for any relation symbol ‘R’ and function symbol ‘g’.
34C • 7. Definition

Let A be a set of FOL.�/-models for some signature � . Let F be a set of homomorphisms between models of A.
hA;F i is a projective system of homomorphisms iff

• for each A;B 2 A, there is at most one f W A! B in F , denoted fA;B with fA;A D id � A;
• for each A;B 2 A, there is some C 2 A with fC;A; fC;B 2 F ; and
• if fA;B; fB;C 2 F , then there is a homomorphism fA;C 2 F with fB;C ı fA;B D fA;C.

For hA;F i a projective system of homomorphisms, the inverse limit is the FOL.�/-model inv limF A such that
1. there is a homomorphism f1;A W inv limF A! A such that fA;B ı f1;A D f1;B whenever fA;B exists; and
2. for every M satisfying (1) in place of inv limF A with homomorphisms fM;A W M ! A for A 2 A, there is a

unique homomorphism fM;1 WM ! inv limF A such that f1;A ı fM;1 D fM;A for all A 2 A;

The idea can be illustrated with a similar figure as with Figure 34C • 2 just given by reversing the arrows. And similarly
to the direct limit, we may view F as instead the result of a relation where A R B iff fA;B 2 F . The result for projective
systems is that R must be directed from below as in any two A;B have an R-lower bound C. The difference from the
direct limit is then merely in the direction of the arrows: the inverse limit is what everything going to the models of
A must go through first. In our case, the R is linear and in fact is just > on the length of the iteration: ˛ > ˇ implies
there is a projection (a homomorphism) from

¨
�<˛
PQ� to

¨
�<ˇ
PQ� .

A

M inv limF A C

B

34C • 8. Figure: The inverse limit homomorphisms

Another thing to keep in mind is that while the direct limit is the result of embeddings, the inverse limit merely has
homomorphisms which need not be injective. This allows the inverse limit to be “bigger” while still having these maps
into the “smaller” models (and hence why these maps are frequently called “projections”). Like the direct limit, the
inverse limit always exists:xxvi Ensuring that the characteristic property holds is similar to forming the completion of
a metric space: we take the product of all of the models, restrict to sequences we care about, and can project down by
looking at the relevant value.

34C • 9. Theorem
Let hA;F i be a projective system of homomorphisms. Therefore the inverse limit inv limF A exists and both the
inverse limit and the homomorphisms f1;A W inv limF A! A for A 2 A are unique up to isomorphism.

Proof .:.

Remember that any element of
Q

A2AA is a function from A to
S

A2AA and thus has models as its inputs.
Consider the model with universe

N D
°
x 2

Y
A2A

A W 8A;B 2 A .fA;B 2 F ! fA;B.x.A// D x.B//
±
.

Relations, functions, and so forth are evaluated pointwise: for a relation symbol ‘R’, RN.Ex/ iff for every A 2 A,

xxviOf course, in many situations, the inverse limit won't be like the constituent models which is why in many category theory contexts they must
state “if it exists” since the inverse limit may not be in the relevant category.
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RA.Ex.A//, and similarly f N.Ex/ is the function where each input A 2 A has the value f A.Ex.A//.

We pretty clearly have projections just as evaluations: fN;A.x/ D x.A/ for any x 2 N . This is easily seen to
be a homomorphism by definition of the relation and function interpretations of N. Similarly this works with the
homomorphisms of F by definition of N . Thus it suffices to show the “maximality” of N.

Let M be arbitrary such that there are homorphisms fM;A W M ! A for each A 2 A and these satisfy fM;A D
fB;A ı fM;B whenever fB;A 2 F . We may define fM;N W M ! N as follows: fM;N.x/ is the map A 7! fM;A.x/.
This is pretty clearly a homomorphism since if RM.Ex/ then for each A 2 A, RA.fM;A.Ex// iff RN.fM;N.Ex//, and
similarly for evalutating functions.

To show the uniqueness of fM;N, let gM;N W M ! N also work with the fN;As. For any x 2 M , gM;N.x/ 2 N is
thus a function from A. But for all A 2 A, since fN;A ı gM;N D fM;A,

gM;N.x/.A/ D fN;A.gM;N.x// D fM;A.x/ D .A 7! fM;A.x//.A/ D fM;N.x/.A/.
Hence gM;N.x/ D fM;N.x/ for all x 2 M and so fM;N is unique. This establishes N as an inverse limit and thus
the existence of inverse limits.

For uniqueness up to isomorphism, if M, N both satisfy the definition of being the inverse limit, then there are
unique homomorphisms fN;M W N !M and fM;N WM ! N that both work with the other projections. But then
fN;M ı fM;N WM !M and fM;N ı fN;M W N ! N both work with the other projections:

fN;A ı .fM;N ı fN;M/ D fM;A ı fN;M D fN;A,
and similarly for M. Since the identity id � N W N ! N is also a homomorphism from N to itself with
this property, by the uniqueness of the homomorphism, it follows that fM;N ı fN;M D id � N and similarly
fN;M ı fM;N D id � M implying that fN;M D f �1

M;N are isomorphisms. a

Returning to iterated forcing, this is brought up merely because full support iterations give the inverse limit at every
limit stage. More generally, we get the following as a kind of complement to bounded support with Support of Direct
Limits (34C • 5): if we take all unbounded sets as allowable support at a limit stage ˛, then we get the inverse limit.

34C • 10. Lemma
Let � be an ordinal, I � P .�/, and

¨
˛<�
PQ˛ a �-stage iteration with support in I . Therefore for each ˛ < ˇ � �,

restriction �ˇ;˛ D p 7! p � ˛ is a homomorphism from
¨
�<ˇ
PQ� to

¨
�<˛
PQ� .

Proof .:.

�ˇ;˛ is well-defined by Definition 34B • 3 (5) and is a homomorphism by Definition 34B • 3 (7) and (3). a

Again, we simplify the terminology since we’re only dealing with preorders here.
34C • 11. Definition

Let � be an ordinal and
¨
�<˛
PQ� a �-stage iteration of preorders appropriate for forcing. We say

¨
˛<�
PQ˛ is

the inverse limit of the previous iterations iff it’s the inverse limit of the projective system of homomorphisms
h¹
¨
�<˛
PQ� W ˛ < �º; ¹�ˇ;˛ W ˛ � ˇ < �ºi where �ˇ;˛ W

¨
�<ˇ
PQ� !

¨
�<˛
PQ� is defined by �ˇ;˛.p/ D p � ˛.

In the spirit of Theorem 34C • 9, for iterations we identify the universe of the inverse limit not as (writing P˛ for¨
�<˛
PQ� to save space)

N D
°
x 2

Y
˛<�

P˛ W 8�; ˛ < � .� � ˛ ! x.P˛/ � � D x.P�//
±

but instead as
N 0
D

°
x 2

Y
˛<�

dom. PQ˛/ W 8˛ < � .x � ˛ 2 P˛/
±
.

Here we basically identify x 2
Q
˛<� P˛ with the initial segments of a single function since they’re all �-comparable

anyway: p D
S
˛<� x.P˛/ has x D hp � ˛ W ˛ < �i. It’s also not hard to see that any x 2

Q
˛<� P˛ is the result of

such a p 2
Q
˛<� dom. PQ˛/. In particular, if we want our iteration to be the inverse limit of previous iterations, we

require the support to allow all of these kinds of limits.
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34C • 12. Theorem (Support of Inverse Limits)
Let � be an ordinal, I � P .�/, and

¨
˛<�
PQ˛ a non-trivial �-stage iteration with support in I . Let ˛ < � be a limit

and I a non-principal ideal or P .�/ itself. Therefore,
¨
�<˛
PQ� is the inverse limit of previous iterations iff

¹x 2 I \ P .˛/ W sup x D ˛º D ¹x 2 P .˛/ W sup x D ˛ ^ 8ˇ < ˛ .x \ ˇ 2 I /º.

Proof .:.
( ) Let P be such that there is a homomorphism � 0

ˇ
W P !

¨
�<ˇ
PQ� for each ˇ < ˛ and these commute with

the �ˇ; s: for  � ˇ < ˛, � 0
 D �ˇ; ı �ˇ , meaning � 0

ˇ
.p/ �  D � 0

 .p/. We must show that there is a
homomorphism � 0

˛ from P to
¨
�<˛
PQ� . Since the � 0

ˇ
s play nicely with the �ˇ; s, for each p 2 P , define

� 0
˛ D

[
ˇ<˛

� 0
ˇ .p/.

Claim 1
For each p 2 P , � 0

˛.p/ 2
¨
�<˛
PQ� . Moreover, � 0

˛.p/ � ˇ D � 0
ˇ
.p/ for ˇ � ˛, meaning �˛;ˇ ı � 0

˛ D

� 0
ˇ
.

Proof .:.

That
S
ˇ<˛ �

0
ˇ
.p/ is a relation with domain ˛ is immediate. Suppose hˇ; y0i; hˇ; y1i 2 � 0

˛.p/ for
some ˇ < ˛, so there are ˇ < ˇ0 � ˇ1 with hˇ; y0i 2 � 0

ˇ0
.p/ and hˇ; y1i 2 � 0

ˇ1
.p/. Thus

hˇ; y0i; hˇ; y1i 2 �
0
ˇ0
.p/ [ � 0

ˇ1
.p/ � ˇ0 D � 0

ˇ0
.p/ [ � 0

ˇ0
.p/ D � 0

ˇ0
.p/.

Since both � 0
ˇ0
.p/ is a function, y0 D y1 and therefore � 0

˛.p/ 2
Q
�<˛ dom. PQ�/. Similar arguments

also show that �˛;ˇ .� 0
˛.p// D �

0
ˇ
.p/.

So to see that � 0
˛.p/ 2

¨
�<˛
PQ� , we need sprt.� 0

˛.p// 2 I . If I D P .�/ or sprt.� 0
˛.p// is un-

bounded in ˛, this is clear. Otherwise sprt.� 0
˛.p// � ˇ for some ˇ < ˛, so ˇ D ˇ�Cn for some limit

ordinal ˇ� and n 2 !. In particular, sprt.� 0
˛.p/ � ˇ�/ 2 I and sprt.� 0

˛.p/ � ˇ/ n sprt.� 0
˛.p/ � ˇ�/

is finite and therefore sprt.� 0
˛.p// D sprt.� 0

˛.p/ � ˇ/ 2 I as a non-principal ideal. a

Because each � 0
ˇ
is a homomorphism, we get that � 0

˛ is too:

� 0
˛.1

P / D
[
ˇ<˛

� 0
ˇ .1

P / D
[
ˇ<˛

hP10
� W � < ˇi D h

P10
� W � < ˛i D 1˛

p 6P q ! 8ˇ < ˛
�
� 0
˛.p/ � ˇ D � 0

ˇ .p/ 6ˇ � 0
ˇ .q/ D �

0
˛.q/ � ˇ

�
! � 0

˛.p/ 6˛ � 0
˛.q/.

It’s also not difficult to see that � 0
˛ is the unique homomorphism in working with these � 0

�
for � < ˛,

precisely because as the restrictions of � 0
˛ , it needs to agree with all of them anyway.

(!) Clearly any unbounded subset x 2 I \ P .˛/ has x \ ˇ 2 I for each ˇ < ˛. So suppose x \ ˇ 2 I for
each ˇ < ˛. We construct a p 2

Q
�<˛ dom. PQ�/ by transfintie recursion. Set p0 D ;.

• For ˇ C 1 < ˛, if ˇ 2 x then pˇC1 D pˇ [ ¹hˇ; Pqiº for any Pq 2 dom. PQˇ / where 1ˇ 6 “ Pq D P10
ˇ
”.

Otherwise set pˇC1 D pˇ [ ¹hˇ; P1
0
ˇ
iº.

• At limit stage ˇ < ˛, since x \ ˇ 2 I , we can take pˇ D
S
�<ˇ p� .

It follows that p D
S
ˇ<˛ pˇ has p � ˇ 2

¨
�<ˇ
PQ� for each ˇ < ˛. In particular, p must be in the

inverse limit (as in the remark above the theorem statement) and therefore have its support in I . a

As full support obviously has this property, we get inverse limits at every limit stage. And this is more-or-less the only
support with this property (certainly the only non-principal ideal with this property).
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34C • 13. Corollary
Let � be an ordinal and

¨
˛<�
PQ˛ a �-stage, full support iteration. Therefore

¨
�<˛
PQ� is the inverse limit of the

previous iterations for each limit ˛. Moreover, any non-trivial �-length iteration with support I satisfying
• ¹˛º 2 I for every ˛ < �; and
• x; y 2 I implies x [ y 2 I ;

that takes inverse limits at every limit stage has full support.

Proof .:.

Full support has this property by Support of Inverse Limits (34C • 12). So suppose we have an iteration as in the
statement taking inverse limits at every limit stage. Since I is closed under finite unions and ¹˛º 2 I for every
˛ < �, all finite subsets of � are in I . It follows that

¹x 2 I \ P .!/ W sup x D !º D ¹x 2 P .!/ W sup x D ! ^ 8n < ! .x \ n 2 I /º,
meaning that all infinite subsets of ! are in I in addition to all the finite subsets: I \P .!/ D P .!/. Inductively,
suppose we have full support at all previous limit stages < ˛, i.e. I \ P .ˇ/ D P .ˇ/ for all limit ˇ < ˛. It
follows that I \ P .ˇ/ D P .ˇ/ for all ˇ < ˛ including successors, since any successor is at most finitely many
ordinals away from a limit: ˇ D ˇ� C n for some n < ! and limit ˇ� where then, since I is closed under finite
unions and contains every finite subset of �, P .ˇ/ D ¹x [ y W x � ˇ� ^ y � ˇ � � is finiteº � I . Since we
take the inverse limit at stage ˛ � � and all bounded subsets of ˛ are in I , it follows as with ! that all bounded
and unbounded subsets of ˛ are in I : I \ P .˛/ D P .˛/ and therefore I \ P .�/ D P .�/. a

It’s still possible to take the inverse limit at every stage without full support if we allow trivial PQ˛s at certain stages
˛ < � and remove elements of I that contain ˛. But these are somewhat ad hoc. Natural examples will have I be a
non-principal ideal or P .�/ itself and such sets are forced to be P .�/ when taking inverse limits at every stage.

The main idea behind this subsection is partly to motivate more complicated supports. Elsewhere in the literature,
supports might be defined by where direct limits or inverse limits are taken. Support of Inverse Limits (34C • 12)
and Support of Direct Limits (34C • 5) tell us how to translate this in terms of support. This translation is more-or-
less unnecessary, and it’s more intuitive to think of the preorders in terms of their structure and how they relate to
previous iterations. The more important translation is the reverse: taking things in terms of support and translating this
to understand the iterations.

For example, easton support (sometimes called reverse easton support) is usually defined by
I D ¹X � � W 8ı � � .cof.ı/ D ı D ℵı ! jX \ ıj < ı/º.

This is hard to unpack on its surface, but if we think about what’s happening at each limit stage, we’re essentially just
taking bounded support at regular, limit cardinal (i.e. weakly inaccessible) stages and full support elsewhere.xxvii In
other words, to define the iteration preorder, we take direct limits of previous iterations at weakly inaccessible stages
and inverse limits everywhere else. This characterization is much more intelligible when trying to gain an intuition.xxviii

Now we can think about what happens with the generic extensions depending on their support. One might expect that
if we take the direct limit of previous iterations, then the generic extension is the direct limit of the previous generic
extensions. This is actually always false (if we’re iterating non-trivial preorders): if G is

¨
˛<�
PQ˛-generic over V

and
¨
˛<�
PQ˛ is the direct limit of the previous iterations, then ¹G � ˛ W ˛ < �º is in V ŒG� but isn’t in any of the

V ŒG � ˛�s and hence isn’t in their direct limit. So what good is it to know whether an iteration is the direct or inverse
limit of previous iterations? Mostly we will be concerned about what properties are preserved by iterations and not
about the generic extension so directly.

For example, finite support iterations of ccc preorders are themselves ccc and hence preserve cardinals and cofinalities,
and this is mostly a result of The Δ-System Lemma (32D • 2), which is often used in iterated forcing to work with
xxviiTypically, one forces with trivial preorders at non-regular cardinal stages, so often in the literature we just consider subsets consisting of regular
cardinals.
xxviiiEaston support is useful in many ways, usually in showing that the continuum function � 7! 2� for regular � can be any function that is
�-increasing and obeys � < cof.2�/, although this is done with product forcing.
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supports.
34C • 14. Result

Let � be an ordinal. Let
¨
˛<�
PQ˛ be a �-stage, finite support iteration such that for all � < ˛ � �, 1˛  “ PQ� is ccc”.

Therefore
¨
�<˛
PQ� is ccc for every ˛ � �.

Proof .:.

Proceed by induction on ˛ � �. Clearly for ˛ D 0,
¨
�<0
PQ� D 1 is ccc. Inductively, the successor case

follows by Lemma 34A • 7:
¨
�<˛C1

PQ� Š
�¨

�<˛
PQ�

�
� PQ˛ where

¨
�<˛
PQ� is inductively ccc, a finite support

iteration, and 1˛  “ PQ˛ is ccc”.

So suppose ˛ is a limit but the result fails: A �
¨
�<˛
PQ� is an uncountable antichain. ByThe Δ-System Lemma

(32D • 2), since all supports are finite, we may assume all the conditions of A have the same intersection: for
p; q 2 A, sprt.p/\ sprt.q/ D r for some finite r � ˛. Since any two elements of A are incompatible, they must
disagree somewhere in their shared support r . But then restricting to this area yields ¹p � .1Cmax r/ W p 2 Aº

as an uncountable antichain of
¨
�<1Cmax r

PQ� , contradicting the inductive hypothesis. a

This proof also generalizes to finite support iterations of (names for) �-cc preorders. Now although finite support
iterations, which take direct limits at every limit stage, have this property, we can actually weaken this hypothesis quite
a bit. The only restriction we actually need is when the entire length of the iteration has cofinality �, in which case we
only require the direct limit to be taken stationarily many times.

34C • 15. Theorem (Direct Limit Chain Conditions)
Let � be a limit ordinal and � a cardinal. Let

¨
˛<�
PQ� be a �-length iteration with support in some I � P .�/ an

ideal or P .�/ itself. Suppose
1.
¨
˛<�
PQ˛ is the direct limit of previous iterations;

2.
¨
�<˛
PQ� is �-cc for each ˛ < �; and

3. cof.�/ D � implies ¹˛ < � W
¨
�<˛
PQ� is the direct limit of previous iterationsº is stationary in �.

Therefore
¨
˛<�
PQ˛ is �-cc.

Proof .:.

Let A �
¨
˛<�
PQ˛ be an antichain and assume without loss of generality for the sake of contradiction that

jAj D �. If cof.�/ ¤ �, we may proceed in much the same way: note that
A D

[
˛<�

¹p 2 A W sprt.p/ � ˛º D
[

˛<cof.�/

¹p 2 A W sprt.p/ � ˛º,

where h˛ W ˛ < cof.�/i is a cofinal sequence in �.
• If cof.�/ < �, then one of these sets must have size jAj D �, meaning for some  < �, ¹p 2 A W sprt.p/ �
º has size�. But then ¹p �  W p 2 A^sprt.p/ � º is a�-sized antichain of

¨
˛<
PQ˛ , contradicting (2).

One may check that this is an antichain by the almost-complete embedding �;� W
¨
�<
PQ� !

¨
˛<�
PQ˛

as per Lemma 34C • 3.
• Similarly, if cof.�/ > �, then sup¹sup sprt.p/ W p 2 Aº < �. To see this, as the direct limit of previous
iterations, all support is bounded in �. Since there are only � < cof.�/-many such supports given from
elements of A, sup¹sup sprt.p/ W p 2 Aº is also bounded above by some  < � and hence we again have
¹p �  W p 2 A ^ sprt.p/ � º as a �-sized antichain of

¨
˛<
PQ˛ , contradicting (2).

So suppose cof.�/ D � as witnessed by a sequence E , and enumerate A D ¹p˛ W ˛ < �º. Assume E D h˛ W
˛ < �i is continuous in the sense that sup�<˛ � D ˛ for any limit ˛ < �. As a result, ¹˛ W ˛ < �º is club in
�. By hypothesis, S D ¹˛ < � W

¨
�<˛
PQ� is the direct limit of previous iterationsº is stationary and hence

S \ E D
°
˛ < � W

©
�<˛

PQ� is the direct limit of previous iterations
±

is stationary. It’s not hard to see that then S0 D ¹˛ < � W ˛ 2 S \ Eº is stationary in � (any club of � is
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transformed to one of � via ˛ 7! ˛ and hence intersects S \ E so the pull-back intersects S0). This is nice
because � is regular and we can then use Fodor’s Lemma (11B • 5). In particular, define f W S0 ! � by taking

f .˛/ D the least � where sprt.p˛ � ˛/ � � .
This is regressive on S0 since any ˛ 2 S0 has p˛ � ˛ 2

¨
�<˛

PQ˛
which is the direct limit, meaning its

support is bounded in ˛ . Therefore, there is some ˛� < � and stationary S1 � S0 where f "S1 D ¹˛�º. Since
� is regular, the ˛s are cofinal in �, and all supports are bounded in � anyway, we take another �-sized subset
S2—not caring whether it’s stationary or not—where sprt.p˛/ � ˇ whenever ˛ < ˇ and ˛; ˇ 2 S2. Since¨
�<˛�

PQ� is �-cc, ¹pˇ � ˛� W 2 S2º is not an antichain. And so p�0
� ˛� and p�1

� ˛� are compatible for
some �0; �1 2 S2 as witnessed by some p� 6˛� p�0

� ˛� ; p�1
� ˛� . But then we can extend to an extension

of p�0
and p�1

. Explicitly, assume for the sake of definiteness �0 < �1 so that sprt.p�0
/ � �1

. Now consider
p��
D p�_.p�0

� .�1
n ˛�//_.p�1

� .� n �1
//.

It follows that sprt.p��/ 2 I as I is closed under finite unions. Moreover, p�� 6� p�0
; p�1

, contradicting that
p�0

; p�1
2 A and A is an antichain. a

This can be quite useful when used in conjunction with combinatorial properties of certain large cardinals. For example,
this gives the following, which is a nice result useful in certain contexts, basically showing that we don’t collapse
cardinals � � (�-cc preorders have this property) when using long iterations of small forcings.

34C • 16. Corollary
Let � be a cardinal and

¨
˛<�
PQ˛ a �-stage iteration taking direct limits at strongly inaccessible stages. Suppose

j
¨
�<˛
PQ� j < � whenever ˛ < � and ¹� < � W � is strongly inaccessibleº is stationary (i.e. � is mahlo). Therefore¨

˛<�
PQ˛ is �-cc.

Inverse limits do not perserve the ccc-ness of previous iterations. The idea why is the same reason why !2—the
inverse limit of hn2; �n;m W m � n < !i (with �n;m.�/ D � � m)—is uncountable but <!2—the direct limit of
hn2; �n;m W n � m < !i (with �n;m.�/ D .�_ const 0/ � m)—is countable. More explicitly, for any infinite support
sprt.p/ 2 I with sup.p/ D ˛ a limit, we can continually extend ��;˛.p � �/ in sprt.p/ n � to incompatible elements
and so embed the infinite binary tree into the iteration. The branches of these incompatible elements yield an antichain
in the inverse limit, and since we can identify these elements as branches of <!2, we get 2ℵ0 -many elements in our
antichain.

§34D. Canonical names

Moving on from Direct Limit Chain Conditions (34C • 15) and Result 34C • 14, we would like to establish similar
results for < �-closed preorders: that the iteration of < �-closed preorders is < �-closed. The issue with this occurs
even at two-stage iterations, but it was not brought up there in order to avoid overloading the already very technical
definitions earlier in Subsection 34B.

In particular, even if P is < �-closed and 1P  “ PQ is < L�-closed”, we may not have that P � PQ is < �-closed. To
see the issue, if we have a  < �-length sequence of pairs hhp˛; Pq˛i W ˛ < i, we have some condition p� 6P p˛

for every ˛ <  , and we know p�  “9q 8˛ < L .q 6 PQ Pq˛/”. So ostensibly there is some P -name Pq� witnessing
this and therefore hp�; Pq�i 6 hp˛; Pq˛i for each ˛ <  . The issue is that Pq� may not be in dom. PQ/ and hence hp�; Pq�i

may not be in P � PQ.xxix To remedy this issue, we need to ensure that anything forced to be a member of PQ is actually
forced to be equal to a particular member of PQ. This amounts to choosing the names in dom. PQ/ more carefully and
one common way to do this is with so-called canonical names.

xxixThat said, we can get an extension p�� 6P p� and � 2 dom. PQ/ where p��  “� D Pq�” and so hp��; �i 2 P � PQ. To see this, in any
generic extension V ŒG� with p 2 G, V ŒG� � “9q 2 PQG below every . Pq˛/G” and therefore some �G witnesses this for � 2 dom. PQ/. Some
p�� 2 G then forces this and we may take p�� 6 p� by compatibility and arrive at hp��; �i as desired. This idea certainly works in this case,
but the added argumentation may not hold in general if we require 1P to force something, and problems may occur with longer iterations with
potentially infinite supports.
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34D • 1. Definition
Let P be a preorder. Let � be a P -name. We say � is canonical iff it has minimal j trcl.�/j in the sense that for every
P -name � , if 1P  “� D �” then j trcl.�/j � j trcl.�/j.

If PQ D hh PQ;6 PQ; P1
PQii is a P -name for a preorder, we redefine P � PQ to be the preporder with universe

¹hp; Pqi W p 2 P ^ Pq is a canonical name ^ 1P  “ Pq 2 PQ”º
with the same ordering and maximal element definitions as before:

hp�; Pq�
i 6 hp; Pqi iff p� 6P p and p�  “ Pq�

D ��
^ Pq D � ^ �� 6 PQ �”.

Note that this is in line with the original notion of a canonical name for an element of the groundmodel as per Definition
31A • 4. There is a slight caveat that 1P must have small rank, but this poses little difficulty since we really only care
about the structure of P , and we can easily take an isomorphism to reduce the rank of 1P . For iterations this will pose
no problem since we can just take the maximal element of each preorder to have minimal rank to get that the maximal
element of the iteration has minimal rank.

34D • 2. Corollary
For P a preorder appropriate for forcing, and assume that 1P has minimal transitive closure cardinality among the
elements of P . Therefore, for any x, the check-name defined iteratively by Lx D ¹h Ly; 1P i W y 2 xº is canonical, and
in fact j trcl. Lx/j is minimal among all � where 9p 2 P .p  “ Lx � �”/.

Proof .:.

For any � , j trcl.�/j D
P
y2� j trcl.¹yº/j D j� j � sup¹j trcl.y/j C 1 W y 2 �º. It suffices to show

j trcl. Lx/j is minimal among P -names forced by any element of P to contain Lx. (�)
Proceed by induction on rank. For x D ;, L; D ; is clearly satisfies (�). Suppose Ly satisfies (�) in place of Lx for
each y 2 x. Suppose p  “ Lx � �” for some P -name � and p 2 P . Consider

� 0
D ¹h&; qi 2 � W 9p� 6P p 9y 2 x .p�  “& D Ly”/º,

which basically consists of everything in � which might be in x when looking below p. By (�) for each Ly and
the minimality of j trcl.1P /j, we have j trcl.h Ly; 1P i/j � j trcl.h&; qi/j whenever there’s a p� 6P p such that
p�  “& D Ly”. In particular, as every y 2 x has such a & 2 dom.� 0/, it follows that j Lxj D jxj � j� 0j � j� j and

j trcl. Lx/j D j Lxj � sup¹j trcl. Ly; 1P /j C 1y 2 xº � j� 0
j � sup¹j trcl.h&; qi/j C 1 W h&; qi 2 � 0

º � j trcl.�/j.
By induction the result holds. a

Again, this was just a motivating result. The important property of canonical names is that they are (in principle) easy
to find. In particular, if we have a (name for) a non-empty set, we can find a canonical name forced to be in it. This
is useful in iterations P � PQ because properties of elements of PQ can be translated to names forced to have those
properties.

34D • 3. Lemma (Canonical Name Search)
Let P be a preorder. Let � , PQ be P -names such that p  “� 2 PQ” for some p 2 P . Therefore there is a canonical
name � such that p  “� D �” and 1P  “ PQ ¤ ; ! � 2 PQ”.

Proof .:.

Using the technique of Conditional Name Lemma (34A • 1), we know that there is some & such that
1P  “ PQ ¤ ; ! & 2 PQ”. (�)

Taking such a name & , let & 0 be a nice name for & . Explicitly, for each � 2 dom.&/, take A� to be a maximal
antichain contained in ¹q ? p W q  “� 2 &”º. Then we set

& 0
D ¹h�; qi W q 6 p ^ q  “� 2 �”º [

[
�2dom.&/

¹�º �A�.

Clearly p  “& 0 D �” and it’s not hard to see that (�) holds of & 0 in place of & . But all of this is just to say that
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the following set is non-empty:°
j trcl.�/j W � 2 Hj trcl.�/jC ^ p  “� D �” ^ 1P  “ PQ ¤ ; ! � 2 PQ”

±
.

So if we take � witnessing the minimum value of this, we get � as canonical. a

In particular, since we’ll be dealing with non-empty sets, assuming the hypotheses above, we get a canonical name �
which is always forced to be in PQ and p  “� D �”. This lemma basically says that it suffices to use canonical names
when searching for elements in iterated forcing.

34D • 4. Definition
For � an ordinal, I � P .�/, we redefine a �-stage iteration with supports in I to be two sequences hP˛ W ˛ � �i,
h PQ˛ W ˛ < �i that satsify all the requirements as before but where elements of P˛ are instead sequences of canonical
names: p 2 P˛ has p.�/ as a canonical name with 1  “p.�/ 2 PQ�”.

Making these changes doesn’t actually change any of the above results, since if PQ is a P -name for a preorder, then we
can form another preorder PQ0 such that P � PQ0 in the old sense is both P � PQ0 and P � PQ in the new sense, and a similar
result holds for longer iterations.

34D • 5. Result
Let P D hP ;6; 1i be a preorder and PQ0 D hh PQ0;60; P10ii a P -name for a preorder. Therefore there is a P -name for
a preorder PQ1 such that

1. P � PQ0 D P � PQ1; and
2. P � PQ1 is the same as P � PQ1 as in the old sense.
3. P � PQ0 in the old sense is forcing equivalent to P � PQ1.

Proof .:.

1. We merely collect the canonical names together, taking
PQ1 D ¹h�; 1

P
i W � is canonical ^ 1P  “� 2 PQ0”º,

with order 61D60 To show that the two iterations (in the new sense) are the same, we must show their
underlying sets are the same and that their orderings are the same. To show that P � PQ1 D P � PQ0, we
really just need that

dom. PQ1/ D ¹� W � is canonical ^ 1P  “� 2 PQ1”º.

(�) If � 2 dom. PQ1/ then h�; 1P i 2 PQ1 with � canonical and hence 1P  “� 2 PQ1”.
(�) Suppose � is canonical with 1P  “� 2 PQ1” but 1P 6 “� 2 PQ0”. Therefore there is somep 2 P with

p  “� 2 PQ1 n PQ0”. But for somep� 6 p and � 2 dom. PQ1/, we havep�  “� D �” and therefore
p�  “� … PQ0” despite the fact that � 2 dom. PQ1/ implies 1P  “� 2 PQ0”, a contradiction.

It’s immediate that 61 and 60 give the same orderings for P � PQ1 and P � PQ0.

2. This gives that P � PQ1 is the same as in the old sense because the old sense of the iteration has domain, as
in Definition 34A • 3,

¹hp; Pqi W p 2 P ^ Pq 2 dom. PQ1/ ^ p  “ Pq 2 PQ1”º,
and the new sense has domain, by the above results,

¹hp; Pqi W p 2 P ^ Pq is canonical ^ 1P  “ Pq 2 PQ1”º.
This is because (�) every element of dom. PQ1/ is already canonical and forced by every p 2 P to be an
element of PQ1; and (�) every canonical element forced by 1P is already in dom. PQ1/. From this it’s easy to
see that the ordering is the same as well because we have included all of the canonical names into dom.61/.

3. Write ? for iterations in the old sense. To show forcing equivalence, we give a dense homomorphism.
Specifically, for each � 2 dom. PQ0/, let f .�/ 2 dom. PQ1/ be a canonical name with 1P  “� D f .�/”,
and remember that we have 1P  “f .�/ 2 PQ0 D PQ1”. Define F W P ? PQ0 ! P � PQ1 by F.hp; Pqi/ D
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hp; f . Pq/i. This is pretty clearly a homomorphism.

F preserves incompatibility since if hp; f .�/i; hp0; f .� 0/i 2 P � PQ1 are compatible, then there is some
hp00; Pqi where p00 6P p; p0 and p00  “ Pq 60 f .�/; f .�/”. As 1P  “ Pq 2 PQ0”, there is a name �� 2

dom. PQ0/ and extension p� 6 p00 where p�  “�� D q 60 f .�/; f .� 0/ ^ f .�/ D � ^ f .� 0/ D � 0” so
that hp�; ��i is a common extension of hp; �i; hp0; � 0i 2 P ? PQ0.

The image F "P ? PQ0 is dense in P � PQ1 since any hp; Pqi 2 P � PQ1 has p  “ Pq 2 PQ0” and we can therefore
extend to a p� 2 P where some � 2 dom. PQ0/ has p�  “ Pq D �” and so F.hp�; �i/ D hp�; f .�/i 6
hp; Pqi as desired. By Dense Forcing Equivalence (33C • 5), the two are forcing equivalent. a

This easily (although even more tediously) generalizes to longer iterations to show we don’t lose any of the results
related to those either. The reason the analogous result for longer iterations is so technical is that while the general
idea is simple—just transforming PQ˛ to the PQ0

˛ as PQ0 is transformed to PQ1 is above—implementing this idea requires
transforming names of the old iteration into names of the new iteration in a way that works at every stage via Name
Translation Theorem (33C • 8). The details of this are then left to any extremely dedicated reader.

For us, the main benefit of canonical names is the ability to easily prove things one would expect like that the iteration
of < �-closed preorders is < �-closed. Whereas before the issue was we could get a name for something below the
relevant chain, we had no guarantee that such a name was in the domain of the preorder. With canonical names and
Canonical Name Search (34D • 3), we get actual elements.

34D • 6. Lemma
Let � > 0 be an ordinal. Let P be a < �-closed preorder and PQ a P -name for a preorder such that 1P  “ PQ is
< L�-closed”. Therefore P � PQ is < �-closed.

Proof .:.

Write P � PQ D hP � PQ;6; 1i. Let  < � and hhp˛; Pq˛i W ˛ < i be a  -length, 6-decreasing sequence. Since
P is < �-closed, there is some p� 6 p˛ for every ˛ <  and this p�  “8˛ � ˇ < L . Pqˇ 6 PQ Pq˛/”. Since
1P  “ PQ is < L�-closed”,

p�  “9 Pq�
8˛ < L .q�

2 PQ ^ q� 6 PQ
Pq˛/”

and therefore there is some name Pq� that p� forces with this property. In fact, by Canonical Name Search
(34D • 3), there is a canonical name � with 1P  “� 2 PQ” and p�  “ Pq� D �” and therefore p� 
“8˛ < L .� 6 PQ Pq˛/”. Hence hp�; �i 2 P � PQ witnesses the result. a

For longer iterations, full support always preserves this property, but we can do a bit better than this analogous to Direct
Limit Chain Conditions (34C • 15) with bounded supports.

34D • 7. Theorem (Inverse Limit Closure)
Let �; � be ordinals. Let

¨
˛<�
PQ˛ be a �-stage iteration with support in I � P .�/, an ideal or P .�/ itself, such that

• inverse limits are taken at every limit stage ˛ � � with cof.˛/ < �;
• we take either direct or inverse limits at all other limit stages;
• 1˛  “ PQ˛ is < L�-closed” for each ˛ < �

Therefore
¨
˛<�
PQ˛ is < �-closed.

Proof .:.

Proceed by induction on �. � D 0 is trivial as the only sequences are constant 1 sequences. Successors were
shown with Lemma 34D • 6. So let � be a limit.

Let hp� W � < �i be a 6�-decreasing sequence of length � < �, meaning hp� � ˛ W � < �i is 6˛-decreasing for
each ˛ < � . Firstly, define p � 0 D ;, as expected. Suppose ˛ < �, and thus far we have defined p � ˛ such
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that
p � ˛ 2

©
�<˛

PQ� and p � ˛ 6˛ p� � ˛ for all � < � . (�)

We define p.˛/ as follows. Since
p � ˛  “8� � � < L� .p�.˛/ 60

˛ p�.˛// ^
L� < L� ^ PQ˛ is < L�-closed”,

it follows that p � ˛ forces some name below all of the p�.˛/s. And by Canonical Name Search (34D • 3), there
is some canonical

¨
�<˛
PQ� -name � with 1˛  “� 2 PQ˛” and p � ˛  “� 60

˛ p�.˛/” for all � < � . Hence
setting p.˛/ D � yields (�) for ˛ C 1 in place of ˛. Note that we may take � D P10

˛ if we don’t need to extend:
p.˛/ D P10

˛ iff 8� < � .p�.˛/ D P1
0
˛/. (†)

For limit ˛, p � ˛ D
S
�<˛ p � � so that it’s clear p � ˛ 6˛ p� � ˛ for every � < � assuming p � ˛ 2¨

�<˛
PQ� . To show this, we must examine the support of p � ˛. Note that we have both

1. sprt.p � ˛/ D
S
�<˛ sprt.p � �/; and

2. by (†), sprt.p � ˛/ D
S
�<� sprt.p� � ˛/.

If we are taking the inverse limit at stage ˛, we’re done: (�) holds of � < ˛ inductively with sprt.p � �/ 2 I for
� < ˛ and so (1) and Support of Inverse Limits (34C • 12) implies sprt.p � ˛/ 2 I hence (*).

So suppose we’re taking the direct limit at stage ˛ and therefore � < � � cof.˛/. Thus p� � ˛ 2
¨
�<˛
PQ� has

bounded support for each � < � . Again because � < cof.˛/, this implies
S
�<� sup sprt.p� � ˛/ D sup sprt.p �

˛/ is bounded and therefore p � ˛ 2
¨
�<˛
PQ� by Support of Direct Limits (34C • 5) and hence (�) holds.

It follows that p D p � � 2
¨
˛<�
PQ˛ with p 6� p� for each � < � , witnessing the result. a

Note that this uses canonical namesxxx in an essential way compared to the previous way of defining iterations. To
explain a little, we don’t need canonical names to show the two-step iteration P � PQ is < �-closed whenever P is and
1P  “ PQ is < �-closed”. The reason is that if p  “9 Pq '. Pq/” for any formula ', it follows that there is then an
extension p� 6 p where p�  “'.�/” for some � 2 dom. PQ/ and therefore we can consider hp�; �i 2 P � PQ. The
issue with longer iterations is that the move from p to p� is needed to ensure we can find such a � , but this might screw
with the support if we build up p as in Inverse Limit Closure (34D • 7).

34D • 8. Corollary
Let �; � be ordinals and

¨
˛<�
PQ˛ a full support �-stage iteration. Suppose 1˛  “ PQ˛ is < L�-closed” for each

˛ < �. Therefore
¨
˛<�
PQ˛ is < �-closed.

The above also generalizes to other properties not described here like being < �-strategically closed, < �-directed
closed, and so on.

§34E. Breaking up an iteration

The general intuition behind an iteration
¨
˛<�
PQ˛ is that we have a sequence of generic extensions of the ground

model V . It would then seem that we could break this process in the middle and consider the rest of the process as its
own iteration: go from V to V ŒG � ˛� and then from V ŒG � ˛� to V ŒG � �� through its own iteration, effectively
thinking of V ŒG � �� D V ŒG � ˛�ŒG � Œ˛; �/�. In other words, we would like to say something along the lines of¨
˛<�
PQ˛ Š

¨
�<˛
PQ� �

¨
˛��<�

PQ˛ . It turns out that this intuition is more or less correct. The best way to do this is
just to restrict the domains of the elements.

34E • 1. Definition
Let � be an ordinal, ˛ < �, and

¨
�<�
PQ� a �-stage iteration. Define the

¨
�<˛
PQ� -name for*˛��<�

PQ� by

*˛��<�

PQ� D

°
.p � Œ˛; �//z W p 2©

�<�
PQ�

±
xxxor any sort of collection of names with a result similar to Canonical Name Search (34D • 3)
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We order these elements with the
¨
�<˛
PQ� -name

P4�˛ D
°
hhhq; rii; pi W q; r 2 dom

�
*˛��<�

PQ�

�
^ p 2

©
�<˛
PQ� ^ p

_q 6� p_r
±

In essence, for G � ˛
¨
�<˛
PQ� -generic over V ,

�
*˛��<�

PQ�

�
G�˛ is ordered by q 4�˛ r iff p_q 6� p_r for some

p 2 G � ˛. The maximal element here is clearly 1� � Œ˛; �/. It’s not difficult to see that this is indeed a name for a
preorder.

34E • 2. Corollary
Let � be an ordinal, ˛ < �, and

¨
�<�
PQ� a �-stage iteration. Therefore 1˛  “*˛��<�

PQ� is a preorder”.

More important for us is that the full iteration is forcing equivalent to forcing with
¨
�<˛
PQ� �*˛��<�

PQ� .

34E • 3. Result
Let � be an ordinal, ˛ < �, and

¨
�<�
PQ� a �-stage iteration with support in I � P .�/ an ideal or P .�/ itself.

Therefore
¨
�<˛
PQ� �*˛��<�

PQ� is forcing equivalent to
¨
�<�
PQ� .

Proof .:.

Write 6 for the order on
¨
�<˛
PQ� �*˛��<�

PQ� . For each p, let p˛;� be a canonical name for p � Œ˛; �/z.
Consider the map f W

¨
�<�
PQ� !

¨
�<˛
PQ� �*˛��<�

PQ� defined by f .p/ D hp � ˛; p˛;�i. This will turn
out to be a dense embedding.

This will clearly preserve 1. Moreover, if p� 6� p then p� � ˛ 6˛ p � ˛ and as I is an ideal, p� D p� �
˛_p� � Œ˛; �/ 6� p� � ˛_p � Œ˛; �/ and therefore p� � ˛  “.p� � Œ˛; �//z P4�˛ .p � Œ˛; �//z” meaning

f .p�/ D hp� � ˛; p�
˛;�i 6 hp � ˛; p˛;�i D f .p/.

Thus f is a homomorphism. In fact, if f .p�/ 6 f .p/ then p� � ˛ 6˛ p � ˛ with p� � ˛ 
“p�
˛;� D .p

� � Œ˛; �//z P4�˛ .p � Œ˛; �//zD p˛;�”, meaning
p�
D p� � ˛_p� � Œ˛; �/ 6� p� � ˛_p � Œ˛; �/ 6� p � ˛_p � Œ˛; �/ D p.

So we’ve shown p� 6� p iff f .p�/ 6 f .p/ telling us that f is an embedding.

We haven’t yet shown that f is an incompatibility embedding, but this will follow when we show that
f "
¨
�<�
PQ� is dense. (Any common extension r 6 f .p/; f .q/ would have another extension f .r�/ 6 r

with then f .r�/ 6 f .p/; f .q/ iff r� 6� p; q by the above argument.) So let hp; Pqi 2
¨
�<˛
PQ� �*˛��<�

PQ�

be arbitrary. There is an extension p� and � 2 dom.*˛��<�
PQ�/ where p�  “ Pq D �”. But any such � has

the form � D .r � Œ˛; �//z where r 2
¨
�<�
PQ� . Since I is an ideal, s D p�_r � Œ˛; �/ 2

¨
�<�
PQ� with

f .s/ D hp�; r˛;�i 6 hp; Pqi as desired. Thus f is a dense embedding and the result follows by Dense Forcing
Equivalence (33C • 5). a

This is all just the setup for viewing properties of
¨
�<�
PQ� through forced properties of the tails*˛��<�

PQ� . Often we
can prove results about this by using previous results about iterations, but to do that, we must actually show that 1˛ 
“*˛��<�

PQ� is an iteration”. Doing this is unfortunately technical, requiring us to translate names since technically
these PQ�s are

¨
�<�
PQ� -names whereas we want to consider what happens when we break up that iteration. In the end,

we can translate PQ˛C� to (what is forced by 1˛ to be) a*˛��<˛C�
PQ� -name for a preorder PQ0

� . Conceptually this is
basically trivial, but formally this is quite involved.

34E • 4. Result
Let V � ZFC be a transitive model we can force over. Let � 2 Ord \ V , ˛ < �, and

¨
�<�
PQ� a �-stage iteration

with support in some I 2 V being an ideal or P .�/ \ V itself. Let G � ˛ be
¨
�<˛
PQ� -generic over V . Therefore

V ŒG � ˛� � “*˛��<�
PQ� is isomorphic to a .� � ˛/-stage iteration

©
�<��˛

PQı
�”.

Moreover, the support of
¨
�<��˛

PQı
� is the shifted support of I : ¹X � � � ˛ W ¹˛ C ˇ W ˇ 2 Xº 2 I º.

354



ITERATED FORCING CH VI §34E

Proof .:.

We will work in V ŒG � ˛� so that*˛��<�
PQ� is indeed a preorder, ordered by 4�˛ . We will inductively define

PQı
� D hh

PQı
�
;6ı

�
; 1ı
�
ii that’s supposed to be the translation of PQ˛C� . In doing so, we will get isomorphisms

' W*˛��<˛C
PQ� !

¨
�<
PQı
�
for  � .� � ˛/ that work nicely with projections:

for all ı <  and p 2*˛��<˛Cı
PQı
� , we have that ' .p/ � ı D 'ı.p/. (�)

So to actually get started with the proof, proceed by induction on  � � � ˛ to define
¨
�<
PQı
� and show that

such an isomorphism ' satisfying (�) exists. For  D 0, both *˛��<˛
PQ� and

¨
�<
PQı
� are trivial: 1. So

suppose the result holds for all ı <  .

For  a limit ordinal, we just take support allowed by the normal iteration at stage ˛ C  : for all appropriate p,
p 2

©
�<
PQı
� iff there is a p0

2*˛��<˛C
PQ˛ where 8ı <  .'ı.p0 � ˛ C ı/ D p � ı/.

Claim 1
For limit  , ' W*˛��<˛C

PQ� !
¨
�<
PQı
˛ defined by ' .p/ D

S
ı< 'ı.p � ˛ C ı/ is an isomorphism.

Proof .:.

It should be clear that ' is injective by the inductive hypothesis. Surjectivity follows by definition of
the limit iteration

¨
�<
PQı
� above. That ' maps maximal elements to maximal elements is trivial by the

inductive hypothesis. That ' .p�/ 6 ' .p/ iff p� 4˛C
˛ p follows inductively:  being a limit means

˛ C  is a limit and it should be clear that
p� 4˛C

˛ p iff 8ı <  .p� � ˛ C ı 4˛Cı
˛ p � ˛ C ı/

iff 8ı <  .'ı.p
� � ˛ C ı/ 6ı 'ı.p � ˛ C ı//

iff ' .p
�/ D

[
ı<

'ı.p
� � ˛ C ı/ 6

[
ı<

'ı.p � ˛ C ı/ D ' .p/. a

With the limit case out of the way, we can start thinking about the more difficult successor case, which basically
consists in finding a

¨
�<
PQı
�
-name for PQ˛C . The issue is that PQ˛C is a

¨
�<˛C

PQ� -name. Nevertheless,
Name Translation Theorem (33C • 8) and Result 34 E • 3 tell us we can translate the

¨
�<˛C

PQ� -name PQ˛C to
a
¨
�<˛
PQ� �*˛��<˛C

PQ� -name RQ˛C which then gives a*˛��<˛C
PQ� -name «Q˛C in V ŒG � ˛�.

Since ' is a dense embedding, by Name Translation Theorem (33C • 8) there is a translation T a function
from V ŒG � ˛�*˛��<˛C

PQ� to V ŒG � ˛�
¨

�<
PQı

 where for any formula  , and names �0; � � � ; �n 2 V ŒG �
˛�*˛��<˛C

PQ� ,

1
¨

�<
PQı

�  “ .T .�0/; � � � ; T .�n//” iff 1*˛��<˛C
PQ�  “ .�0; � � � ; �n/”,

and also in any generic extension V ŒG � ˛�ŒH� by
¨
˛��<˛C

PQı
� , T .�i /H D .�i /'�1

 "H . So let PQı
 be a

canonical name for T .«Q /. This then defines
¨
�<C1

PQı
 . To define 'C1 W *˛��<˛CC1

PQ� !
¨
�<C1

PQı
�
,

we just set 'C1.p/ D ' .p � ˛ C /_h�i where � is a canonical name for T .p.//, and here we take p./
to be a canonical name for an element of «Q˛C� . It’s not difficult to see that 'C1 is an embedding so we merely
need to show it’s surjective. But this follows by Name Translation Theorem (33C • 8) (3) since every name is
forced to be equivalent to one in the image of T . This establishes the successor case and thus the result. The
support being the same but shifted is immediate. a

All of this is essentially just to say*˛��<�
PQ� should be thought of as an iteration and the names for preorders we

force with shouldn’t be thought of too much since they can be translated into the relevant contexts. Now we can start
showing legitimate results of these tail iterations*˛��<�

PQ� .
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34E • 5. Result
Let

¨
�<�
PQ� be a �-stage iteration which is the direct limit of previous iterations. Therefore for each ˛ < �,

1˛  “*˛��<�
PQ� is the direct limit of previous iterations”, by which we mean the direct limit of*˛��<˛C

PQ�

for each  < � � ˛.

Proof .:.

As the direct limit of previous iterations, the support of each element of
¨
�<�
PQ� is bounded in �, and cutting

off an initial segment to get*˛��<�
PQ� clearly still preserves this property. a

Amore difficult result to establish is*˛��<�
PQ� being the inverse limit of the previous iterations whenever

¨
˛<�
PQ˛

is the inverse limit. Part of the reason it’s difficult is because it’s false in general. It’s possible to get some partial
results, but these involve more technology.

34E • 6. Definition
Let

¨
�<�
PQ� is a �-stage iteration with support in some I � P .�/. For ˛ < �, write

K˛ D
®
ˇ 2 .˛; �� W

©
�<ˇ
PQ� is the direct limit of previous iterations

¯
.

For X � � and ˛ < �, we say X is K˛-thin iff 8ˇ 2 K˛ .sup.X \ ˇ/ < ˇ/.

Basically, X is K˛-thin iff it’s close to being an allowed support: the support at direct limit stages requires bounded
support there, which X satisfies, but X may not work at the other stages (especially if X isn’t in the ground model).
In particular, for ideals or full support, if p 2

¨
�<�
PQ� , then sprt.p/ is K˛-thin for every ˛ < �.

34E • 7. Result
Let

¨
�<�
PQ� be a �-stage iteration with support in some I � P .�/—a non-principal ideal or P .�/ itself—such that

• inverse limits or direct limits are taken at every limit stage; and
•
¨
�<�
PQ� is the inverse limit of previous iterations.

Suppose further that there is an ˛ < � where
1. If 1˛  “8X .X is LK˛-thin! 9Y 2 LV .X � Y ^ Y is K˛-thin//”.xxxi

Therefore 1˛  “*˛��<�
PQ� is (forcing equivalent to) the inverse limit of previous iterations”.

Proof .:.

For the sake of notation, work with a transitive model we can force over V, which is where the result’s statement
is interpreted. Let G be

¨
�<�
PQ� -generic over V . Work in VŒG � ˛�. Suppose pi 2 V ŒG � ˛� should be in the

inverse limit of previous iterations, i.e. dom.pi / D Œ˛; �/ and

pi �  2
�
*˛��<

PQ�

�
G�˛
D

°
p � Œ˛; / 2 V W p 2

©
�<
PQ�

±
for every  < �. We’d like to have

pi 2
�
*˛��<�

PQ�

�
G�˛
D

°
p � Œ˛; �/ 2 V W p 2

©
�<�
PQ�

±
.

Note that sprt.pi / (which might not be in V ) isK˛-thin in VŒG � ˛� so there is aK˛-thin Y 2 V with sprt.pi / �
Y . We now attempt to define a q 2

¨
�<�
PQ� (so in V ) where pi � q � Œ˛; �/ in the sense that the two are forced

to be equal everywhere (and hence in the poset version of the preorders, their equivalence classes are equal).

For each ˇ 2 � nY , let q.ˇ/ D P10
ˇ
so that sprt.q/ � Y . For ˇ 2 Y , we know ˇ > ˛ and pi .ˇ/ D � 2 V

¨
�<ˇ

PQ�

is canonical in V and V � “1ˇ  “� 2 PQˇ ””. Of course, because pi isn’t in V , we a priori don’t know what
pi .ˇ/ is. Instead, note that the statement

pi �  2
°
p � Œ˛; / 2 V W p 2

©
�<
PQ�

±
xxxiThis implicitly assumes the non-trivial fact that the generic extension can tell whether any given set is actually in the ground model. In other
words, whether it makes sense to use “� 2 LV” in forcing. Although this is true, its proof is non-trivial and we do not prove it here since it's used
merely for simplicity.
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is upward absolute (fixing our interpretation of the iteration from V). Note also that we have a incompatibil-
ity homomorphisms from earlier iterations into later ones. In particular, for  < � � �, let T;� translate¨
�<
PQ� -names to

¨
�<�
PQ� -names as per Name TranslationTheorem (33C • 8) (2). We then have some canon-

ical
¨
�<ˇ
PQ� -name � where

1ˇ  “T˛;ˇ . Ppi /. Ľ/ D � ^ � 2 PQˇ ”.
So define q.ˇ/ D � which defines q on all of �.

To see that q 2
¨
�<�
PQ� , it’s clear by definition each q.�/ is forced to be in PQ� . So we just need to confirm

sprt.q � ˇ/ 2 I for every limit ˇ � �. But Y is K˛-thin: if ˇ < � is a limit and we take a direct limit there,
sprt.q � ˇ/ � Y \ ˇ (which is empty if ˇ < ˛) is bounded in ˇ and hence inductively in I . If ˇ < � is a limit
and we take an inverse limit there, then inductively, sprt.q � ˇ/ D

S
�<ˇ sprt.q � �/ 2 I . Since we always take

inverse or direct limits, sprt.q � ˇ/ 2 I for every ˇ � �.

Now for ˇ > ˛, if ˇ … Y then ˇ … sprt.q/ [ sprt.pi / and hence q.ˇ/ and pi .ˇ/ are forced to be equal
(although perhaps aren’t literally equal). If ˇ 2 Y , then in V ŒG � ˇ�, we get q.ˇ/ D .T˛;ˇ . Ppi . Ľ///G�ˇ D
. Ppi /G�˛.ˇ/ D pi .ˇ/ and hence pi �  and q � Œ˛; / extend each other for each  < �. In particular, if we
instead consider the forcing equivalent posets

�
*˛��<

PQ�

�
G�˛ =� (where p � p0 iff p 6 p0 6 p) of

the iteration preorders, we get Œpi � ��
D Œq � Œ˛; /��

and hence in the inverse limit (as caclulated in
VŒG � ˛�), Œpi � D Œq � Œ˛; �/�. This means the inverse limit of VŒG � ˛� is isomorphic to the inverse limit in V,
which is forcing equivalent to the original

¨
�<˛
PQ� . a

Mostly the benefit of breaking up iterations is when considering elementary embeddings where an initial segment of
our iteration is preserved (being below H� for � the critical point) and the tail has some nice properties. Breaking
up iterations also allows us to reason as with two-step iterations. For example, if we don’t screw up support too
badly,

¨
�<�
PQ� is < �-closed iff for some (equivalently for every) ˛ < �,

¨
�<˛
PQ� is < �-closed and 1˛ 

“*˛��<�
PQ� is < �-closed”.

34E • 8. Result
Let

¨
�<�
PQ� be a �-stage iteration with support in some I � P .�/—a non-principal ideal or P .�/ itself—such that

there is some ˛ < � and some � 2 Ord where
• inverse limits or direct limits are taken at every limit stage;
• inverse limits are taken at every limit stage � ˛ of cofinality < �;
• 1˛  “ PQ˛ is < �-closed” for every ˛ � � < �; and
•
¨
�<˛
PQ� is �-cc.

Therefore 1˛  “*˛��<�
PQ� is < �-closed”.

Proof .:.

Again for the sake of notation, work with a transitive model we can force over V, which is where the result’s
statement is interpreted. Let G be

¨
�<�
PQ� -generic over V . Work in VŒG � ˛�. By Result 34 E • 4, P D�

*˛��<�
PQ�

�
G�˛ is isomorphic to an iteration with shifted support. In particular, we still take inverse limits or

direct limits at every limit stage, and inverse limits at now at all limit stages of cofinality < �. The last condition
ensures that we indeed take inverse limits at those stages by Result 34 E • 7 and haven’t added any stages with
cofinality < �. By Inverse Limit Closure (34D • 7), the iteration, isomorphic to P , is < �-closed. a

§34F. Martin's Axiom

No overview of iterated forcing is complete without some discussion of forcing axioms like Martin’s Axiomxxxii (MA)
or the Proper Forcing Axiom (PFA) among many others. These forcing axioms state the closure of V under forcing in
xxxiiNamed after Donald “Tony” Martin
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the sense of a strengthening ofTheorem 31D • 1: for certain kinds of preorders and for certain collections of dense sets,
we can find a generic in V. When moving from the ground model to a generic extension, often establishing properties
of the new set we are attempting to add only uses a few dense sets. Essentially, these force axioms say that we already
have generics for those dense sets and hence we may use the technique of forcing while staying entirely in the ground
model.

34F • 1. Definition
Let � be an ordinal. MA.�/ is the statement “for every ccc preorder P and family D of open, dense sets of P , if
jD j � � then there is a G P -generic over D”. MA is the statement 8� < 2ℵ0 MA.�/.

Theorem 31D • 1 then says ZFC ` MA.ℵ0/. So under CH, MA trivially holds because � < 2ℵ0 implies � is countable
and thus MA.�/ $ MA.ℵ0/. So MA is easily consistent relative to ZFC. But this is really just to say that MA isn’t
interesting under CH. The true interest in the axiom is withMAC:CH.xxxiii Note thatMA is also maximal in the sense
that MA.2ℵ0/ is provably false.

34F • 2. Result
ZFC ` “MA.ℵ0/ ^ :MA.2ℵ0/”.

Proof .:.

We already have ZFC ` “MA.ℵ0/” by Theorem 31D • 1. To see thatMA.2ℵ0/ is false, consider Add.ℵ0; 1/ which
is ccc and therefore there are only jAdd.ℵ0; 1/jℵ0 D 2ℵ0 -many dense sets of Add.ℵ0; 1/ in V. MA.2ℵ0/ would
imply there is a G 2 V Add.ℵ0; 1/-generic over V. But as a preorder appropriate for forcing, Theorem 31D • 5
implies G … V, a contradiction. a

The general idea behind showing the consistency of MA is just to continually force with all ccc preorders below a
certain regular cardinal �. When we do so, we end up forcingMA.�/ for every � < � and that 2ℵ0 D � and henceMA.
Assuming � > ℵ1, we would then have MAC:CH. The technical details of this require a lot of work. Let’s first start
with an application of MA which helps establish why we need to go with a regular cardinal �.

34F • 3. Theorem
ZFCCMA ` “2ℵ0 is regular”.

To do this, we will basically show 2� D 2ℵ0 for every infinite � < 2ℵ0 . This would show cof.2ℵ0/ D cof.2�/ > � for
each � < 2ℵ0 by König’s Cofinality Theorem (5D • 21) and therefore cof.2ℵ0/ � 2ℵ0 giving equailty. To show this,
we will add a function associating subsets of � to subsets of !.

34F • 4. Definition
Let � be a cardinal. A subset A � P .�/ is an almost disjoint family of subsets of � iff for any two A;B 2 A,
jA \ Bj < �.

We will be focused on � D ℵ0 because for regular �, we can always find an almost disjoint family of size 2� . We show
this just in the case of � D ℵ0.

34F • 5. Result
There is an almost disjoint family of subsets of ! of size 2ℵ0 .

Proof .:.

Consider <!! so that j<!!j D ℵ0 and we may instead find an almost disjoint family of subsets of <!! rather
than of ℵ0. To do this, we just note that for x 2 N , Sx D ¹p 2 <!! W p 6 xº � <!!. Moreover, for
distinct x; y 2 N , jSx \ Sy j < ℵ0 because any disagreement is carried ever afterword: x.n/ ¤ y.n/ implies
x � m ¤ y � m for all m � n. As a result, ¹Sx W x 2 N º � P .<!!/ is an almost disjoint family of size 2ℵ0 .
And of course, by passing to a bijection b W <!! ! !, we can transform this to an almost disjoint family of

xxxiiiMA C :CH has many applications, one of which is to imply suslin's hypothesis of the non-existence of suslin trees, also known as ccc ℵ1-
aronszajn trees, by building an uncountable branch through them. If we allow MA to talk about non-ccc preorders, then :CH would allow us to
also kill the non-ccc ℵ1-aronszajn trees in the same way, which is a contradiction with the fact that ℵ1-aronszajn trees provably exist. In this way,
relaxing MA to include all ccc and non-ccc preorders yields a statement equivalent to CH.
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subsets of !. a

As a result, to show 2� D 2ℵ0 for � < ℵ0, we just need to identify subsets a �-sized almost disjoint family with subsets
of !. We do this one subset X at a time with the preorder Adp.A; X/ which says that X can be coded by a subset of
!. In particular, we add a set almost disjoint from all members of X , but not almost disjoint from the other members
of A: we can characterizeX D ¹A 2 A W jg\Aj D ℵ0º where g is coded by the generic. Hence we need to code both
what is in g and what is not in g, and this means we really need to decide the characteristic funtion in !2. To build up
to this characteristic function, we need to make sure we only have finitely many 1s in common with the elements of
X . We may do this as follows.

34F • 6. Definition
Let A � P .!/ be an almost disjoint family of sets with X � A. The preorder Adp.A; X/—the almost disjoint
preorder on A given by X—is defined by p 6 q iff p � q, 1 D ;, and

Adp.A; X/ D ¹p W ! * 2 W p�1"¹1º < ℵ0 ^ 8A 2 X .jA \ dom.p/j < ℵ0/º.

Note that the elements of Adp.A; X/ need not be finite like with Add.ℵ0; �/: we just need their domain to be almost
disjoint from the elements ofX .xxxiv To be able to do anything with this preorder withMA, we need to confirm it’s ccc.

34F • 7. Lemma
Let A � P .!/ be an almost disjoint family of sets with X � A. Therefore Adp.A; X/ is ccc.

Proof .:.

Let W � Adp.A; X/ be an antichain. Let U D ¹p�1"¹1º W p 2 W º. It follows that jU j D jW j because for
p; q 2 Adp.A; X/ to be incompatible, they must disagree on some n 2 ! and therefore p�1"¹1º ¤ q�1"¹1º. By
definition of Adp.A; X/, jp�1"¹1ºj < ℵ0 for each p 2 W and therefore jW j D jU j � ℵ<ℵ0

0 D ℵ0. a

With this, we can continually force with Adp.A; X/ and get the regularity of 2ℵ0 from MA, i.e. Theorem 34 F • 3.
34F • 8. Theorem

For any infinite � < 2ℵ0 , MA.�/ implies 2� D 2ℵ0 and cof.2ℵ0/ > �.

Proof .:.

Let � < 2ℵ0 be arbitrary. Since there is an almost disjoint family of subsets of ! of size 2ℵ0 , we take take a subset
of this family of size �. So assume A is an almost disjoint family of size � enumerated as A D ¹A˛ W ˛ < �º.
Let X � A be arbitrary.

Claim 1
There is a collection D of jAj � ℵ0-many dense sets in V such that any G Adp.A; X/-generic over D has

X D ¹A 2 A W jg \ Aj D ℵ0º,
where g D .

S
G/�1"¹1º � !.

xxxivNote that there might be almost disjoint families that are maximal in the sense that there is no subset of ! almost disjoint from any of their
members. This means that there may not be infinite elements of Adp.A;X/ in the ground model for X D A (which is partly the point in forcing
there to be one). In fact, it's consistent for there to be maximal almost disjoint families of size < 2ℵ0 ! The least size of such a family is frequently
denoted a and is one of many so-called cardinal characteristics of the continuum in that one can fairly easily show ℵ0 < a � 2ℵ0 so that
ZFC C CH ` “a D 2ℵ0”. MA and other similar forcing axioms often force these characteristics to actually be 2ℵ0 , and this is no different for a:
ZFC C MA ` “a D 2ℵ0”. Nevertheless, it's consistent for ℵ0 < a < 2ℵ0 to hold.
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Proof .:.

Write Y D ¹˛ < � W A˛ 2 Xº the subset of � that X codes. For each n 2 !, ˛ 2 Y , and ˇ 2 � n Y ,
consider the sets

Dˇ D ¹p 2 Adp.A; X/ W Aˇ � dom.p/º,
En˛ D ¹p 2 Adp.A; X/ W n � jA˛ \ p�1"¹1ºjº.

Each of these will be dense in Adp.A; X/. To see this, each Dˇ is dense since we can freely add 0s while
staying a condition: for p 2 Adp.A; X/, p� D p [ ..Aˇ n dom.p// � ¹0º/ 2 Dˇ is below p. Each En˛ is
dense in Adp.A; X/ because each A˛ 2 A is infinite, and we are only adding finitely many 1s to bump up
the size to at least n. Since we only add finitely many, we stay a condition.

Take D D ¹Dˇ ; E
n
˛ W n 2 ! ^ ˛ 2 Y ^ ˇ 2 � n Y º so that jD j D � � ℵ0. For G Adp.A; X/-generic over

D , it’s easy to see
S
G will be a partial function from ! to 2. So g D .

S
G/�1"¹1º makes sense. So now

we merely need to check that A 2 X iff jA \ gj D ℵ0. For ˛; ˇ < �,
(!) Suppose A˛ 2 X so that ˛ 2 Y and G \ En˛ ¤ ; for every n < !. This means jg \ A˛j � n for

every n < ! and therefore jg \ A˛j D ℵ0.
( ) Suppose Aˇ … X so that ˇ 2 � n Y and G \ Dˇ ¤ ;. Any p 2 G \ Dˇ has already decided all

values of
S
G (the characteristic function of g) onAˇ and hence has decided the intersection g\Aˇ .

Yet as a condition in Adp.A; X/, jp�1"¹1ºj < ℵ0 meaning g \ Aˇ must be finite. a

This shows MA.�/! 2� D 2ℵ0 if � � ℵ0. This is because each Y � � yields a ccc preorder Adp.A; ¹A˛ W ˛ 2
Y º/ by Lemma 34 F • 7. ByMA.�/, there is a GY generic over the jAj � ℵ0 D �-many dense sets of D described
in Claim 1 and therefore a gY � ! where then Y D ¹˛ < � W jgY \A˛j D ℵ0º. Hence we get an injection from
P .�/ to P .!/ by mapping Y to such a gY . Clearly 2ℵ0 � 2� so this gives equality.

But as � < 2ℵ0 is arbitrary andMA.�/ holds for all such �, we get 2� D 2ℵ0 for all � < 2ℵ0 . By König’s Cofinality
Theorem (5D • 21), � < cof.2�/ D cof.2ℵ0/ for each � < 2ℵ0 . Therefore cof.2ℵ0/ � 2ℵ0 and hence equality. a

This is actually necessary for showing the consistency of MAC :CH because we need to not only force MA but also
:CH, and in doing so, we need to stop the iteration at some regular cardinal stage. Firstly, we need to show that we
can bound the size of the preorders we’re working with.

34F • 9. Lemma
Let � < 2ℵ0 be an infinite ordinal. Therefore MA.�/ is equivalent to MA.j�j/ restricted to preorders of size � �.

Proof .:.

ClearlyMA.�/$ MA.j�j/ so we can assume � is an infinite cardinal. Clearly fullMA.�/ impliesMA.�/ restricted
to preorders of size � �. So suppose MA.�/ holds for preorders of size � �. Let P be a ccc preorder of arbitrary
size with D � �-sized family of dense subsets of P . Consider D regarded as a signature for first order logic.
Regarding P as a FOL.D/-model (interpretting D 2 D by DP D D), we can take a skolem hull HullP .;/. By
Taking a Skolem Hull (6A • 2), jHullP .;/j � � and HullP .;/ 4 P . In particular,

1. HullP .;/ satisfies all the axioms of preorders and is therefore a preorder.
2. HullP .;/ � “:9r .r 6 p; q/” iff P � “:9r .r 6 p; q/” for all p; q 2 HullP .;/,

so that the identity map from HullP .;/ to P is an incompatibility homomorphism. Similarly,
3. HullP .;/ � “D.p/” iff P � “D.p/” for everyD 2 D and p 2 HullP .;/.
4. HullP .;/ � “8p 9x .D.x/ ^ x 6 p/” iff P � “8p 9x .D.x/ ^ x 6 p/” for everyD 2 D .

This means thatDHullP .;/ D D \ HullP .;/ is dense in HullP .;/ for eachD 2 D .
5. HullP .;/ is ccc since P is and the identity is an incompatibility homomorphism (an antichainA � HullP .;/

is also an antichain of P ).
It follows by MA.�/ that there is a G HullP .;/-generic over D . Thus G" D ¹p 2 P W 9q 2 G .q 6 p/º is
P -generic over D . Since P was arbitrary, this tells us MA.�/ holds. a
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Now we may prove the consistency ofMAC:CH. We will do this by forcing with a finite support iteration, preserving
cardinals and cofinalities. As a result, we need to be slightly careful about what cardinal we choose to make 2ℵ0 :
Theorem 34 F • 8 tells us that � D 2ℵ0 is regular, and since finite support iterations of (what are forced to be) ccc
preorders is itself ccc, this means � needs to be regular in the ground model. Moverover, Theorem 34 F • 8 also tells us
that 2<� D 2ℵ0 D � so that a form of CH should hold for �. To get this, it suffices to just assume GCH for simplicity.

The general idea of the proof is to one-by-one add generics to ccc preorders of size < �. Since 2<� D �, we can
ensure there are only �-many such preorders up to isomorphism (take every preorder of size � < � to have domain � )
throughout the procedure. And so we go through them all until we reach the end. The rest of the proof is confirming
that this works: any � -sized preorder for � < � and � -sized family of dense sets in the generic extension is contained
in some prior stage, and thus is given a generic at the next stage. And through some combinatorial results about nice
names, we get 2ℵ0 D �, yielding MA.

34F • 10. Theorem (The Consistency ofMA without CH)
Let V � ZFCCGCH be a transitive model we can force over. Let � be a regular, uncountable cardinal of V. Therefore
there is a preorder P 2 V where 1P  “MAC 2ℵ0 D �”. In particular, any generic extension of V by P models
ZFCCMAC:CH.

Proof .:.

Work in V. We will define a finite support iteration P D
¨
˛<�
PQ˛ , giving a ccc preorder in V by Result 34C • 14

because we will require for each � < �,
1�  “ PQ� is ccc ^ j PQ� j < L�”. (�)

Without loss of generality, work with preorders Q that are “standard” in the sense that Q D jQj is an ordinal, and
1Q D 0. First we need the following combinatorial result showing that we don’t destroy the fact that 2<� D �.
Doing this will allow us to ensure we don’t add too many ccc preorders later.

Claim 1
Let P be a ccc preorder in V with jP j � �. Therefore 1P  “2< L� � L�” and thus 1P  “2ℵ0 � L�”.

Proof .:.

By Corollary 32 E • 6, there are at most .jP jℵ0�� /V-many nice names in V for subsets of L� for any cardinal
� < �. Since � is regular, �<� D 2<� D �. Thus there at most �-many nice names for subsets of � for each
� < �. Hence 1P  “8� < L� .2� � �/”, giving the result. a

This will apply to us given that (�) inductively holds.
Claim 2

Suppose
¨
�<˛
PQ� is a finite support iteration and (�) holds for every � < ˛. Therefore

¨
�<˛
PQ� is ccc of size

� �, and so 1˛  “2< L� D L�”.

Proof .:.

By Result 34C • 14, we get that
¨
�<˛
PQ� is ccc. Proceed by induction on ˛ to show

¨
�<˛
PQ� has size

< �. For ˛ D 0, this is obvious. For limit ˛, as the direct limit, the cardinality is the supremum of previous
stages all of which have size < �. As � is regular, this implies the limit iteration also has size < �. For
˛C 1, since

¨
�<˛
PQ� is ccc and � is regular, Corollary 32C • 8 implies 1˛  “j PQ˛j �

L�” for some � < �.
Identifying PQ˛ with L� , Lemma 33B • 10 tells us that every name for an element of PQ˛ is forced by 1˛ to be
equivalent to a nice name which is determined by a � -length sequence of antichains. But since

¨
�<˛
PQ� is

ccc, these antichains are countable and so there are �ℵ0 -many nice names and therefore at most �ℵ0 D �-
many canonical names for elements of PQ˛ . Hence

¨
�<˛C1

PQ� has size less than � � � D �. a

So suppose
¨
�<˛
PQ� has been defined for ˛ < �. For each � < �, there are at most 2� < � non-isomorphic
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preorders over � (since each corresponds to a subset of � � � ). Since 1˛  “2< L� D L�”, it follows that
1˛  “there are at most L�-many ccc standard preorders of size < L�”.

In particular, for each ˛ < �, let Pc˛ be a canonical name for a �-length list of all standard preorders of size < �.
For ˇ < �, by PP˛;ˇ we mean a canonical name for the ˇth entry in this list: 1˛  “ PP˛;ˇ D Pc˛. Ľ/”. We will then
force with all of these PP˛;ˇ at some point. To make things precise, we can take a surjection f W � ! � � � such
that f .˛/0 � ˛ for all ˛ < �, which means that at stage ˛, PPf .˛/0;f .˛/1 D PPf .˛/ has indeed been defined. (Note
that we have used choice quite a lot for this, but in well-ordering H� for sufficiently large �, we only need to use
choice once, just choosing the least such name each time.)

Now unfortunately, if we want to force with PPf .˛/ at stage ˛, we need to translate the name. This is because
although f .˛/0 � ˛ so PPf .˛/ was defined at a previous stage, PPf .˛/ is merely a

¨
�<f .˛/0

PQ� -name, not a¨
�<˛
PQ� -name. So we must be able to freely translate names from earlier stages to later stages. We do this as

in Name Translation Theorem (33C • 8) with the incompatibility homomorphisms �ˇ;˛ for ˇ < ˛ as in Lemma
34C • 3: just adding a bunch of 1s to the end. This is just to say we have a map Tˇ;˛ W V

¨
�<ˇ

PQ� ! V
¨

�<˛
PQ�

by setting Tˇ;˛.;/ D ;, and inductively,
Tˇ;˛.�/ D ¹hTˇ;˛.�/; �ˇ;˛.p/i W h�; pi 2 �º.

In pushing these names up to later iterations, we don’t change the interpretations by Name Translation Theorem
(33C • 8).

Claim 3
Let

¨
�<˛
PQ� be a finite support ˛-stage iteration for some ordinal ˛. Let G � ˛ be

¨
�<˛
PQ� -generic over V

and ˇ < ˛. Therefore Tˇ;˛.�/G�˛ D �G�ˇ .

Again, suppose
¨
�<˛
PQ� has been defined. To define PQ˛ (and therefore

¨
�<˛C1

PQ� ), consider Tf .˛/0;˛. PPf .˛//.
It may be that this is no longer ccc, which is fine, as we just let PQ˛ be a canonical name such that

1˛  “ PQ˛ is a standard, ccc preorder of size < L� ^
�
Tf .˛/0;˛.

PPf .˛// is too! PQ˛ D Tf .˛/0;˛.
PPf .˛//

�
”.

Taking finite supports, this procedure defines
¨
�<˛
PQ˛ for all ˛ � � and we have defined P D

¨
�<�
PQ˛ . Note

that Claim 2 and Claim 1 imply 1P  “2ℵ0 � L�”. To show 1P  “2ℵ0 � L�”, we must show the more difficult
result that 1P  “MA. L�/” for every � < �.

Let G be P -generic over V . Let Q 2 V ŒG� be a standard, ccc preorder of size < � in VŒG� and let D 2 V ŒG� be
a collection of dense subsets of Q of size < �.

Claim 4
There is some ˛ < � where Q;D 2 V ŒG � ˛�.

Proof .:.

Let PQ be a
¨
�<�
PQ� -name for Q. The idea is that as the direct limit of previous iterations, the supports of

all elements in ran. PQ/ are bounded in � which is still regular in VŒG� since P is ccc. Moreover, since there
are only � < � many elements, the supremum of all of these is some � 0 < � which then has Q 2 V ŒG � � 0�.

More explicitly, for each hq�; qi 2 6Q, let ˛hq�;qi D sup sprt.p/ be minimal among the p such that
p  “ Pq� 6 PQ Pq” for canonical names Pq�, Pq. Let ˛ D supq�6q ˛hq�;qi. Since j6 PQj D � < � and � is
regular, ˛ < �. But then in V ŒG � ˛�,

6Q
D ¹hq�; qi 2 � � � W 9p 2 G � ˛ .�˛;�.p/  “ Lq� 6 PQ

Lq”/º 2 V ŒG � ˛�.
The same idea works for D by considering the graph ¹h˛;Di W ˛ 2 D 2 Dº � jQj � jQj. a

As a result, Q;D appears in our long list of standard, ccc preorders. In particular, Q D P˛;ˇ for some ˇ < �

and ˛ as in Claim 4. But then as f W � ! � � � was surjective, there is some ˛0 � ˛ where
1˛0  “ PQ˛0 is a standard, ccc preorder of size < L� ^

�
T˛;˛0. PP˛;ˇ / is too! PQ˛0 D T˛;˛0. PP˛;ˇ /

�
”.
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By Claim 3, T˛;˛0. PP˛;ˇ /G�˛0 D . PP˛;ˇ /G�˛ D Q which is indeed a standard, ccc preorder of size < � (because
this is true in VŒG� and being ccc is downward absolute between transitive models of ZFC). As a result,

VŒG � ˛0
C 1� � “G � ˛0

C 1 is Q-generic over D � ¹D 2 V ŒG � ˛0� W D is dense in Qº”.
V ŒG� then models the same as being generic over D is upward absolute. As Q and D were arbitrary of size< �,
it follows that VŒG� � “MA.�/” for every � < � and hence VŒG� � “2� D 2ℵ0 � 2<� D �” and by Claim 1,
VŒG� � “2ℵ0 D �” so that VŒG� � MAC “2ℵ0 D �”. As G was arbitrary, 1P forces this. a

There are an enormous amount of applications of MA (C:CH) that are interesting to set theorists. There are actually
entire books on the subject [12]. We are not so interested in MA here for its ability to show the consistency of things
but instead as a way of showing how long iterated forcing can be useful. There are many generalizations ofMA stating
the existence of generics for different kinds of preorders, and all of them use the same over-simplified procedure to
show their consistency: force with all of those preorders and do some proper book keeping. Of course, there is very
often more to their proofs than that since frequently these axioms require large cardinals to construct the iteration. But
MA serves as a nice introduction to that field.

§34G. Product forcing, homogeneity, and the failure of AC

Another application of iterated forcing is with forcing the failure of AC, which is really done with product forcing, i.e.
iterated forcing where we use names for preorders already in the ground model. Now, as stated, that isn’t quite right:
we know from Theorem 31D • 12 that forcing over a model of ZFC gives a model of ZFC. So we aren’t forcing :AC,
but instead we’re forcing that an inner model of the generic extension satisfies ZFC :AC. In particular, HODVŒG� �
ZFC:AC for some generic extension VŒG� of V.

First we should introduce the notion of a product forcing, as mentioned earlier.
34G • 1. Definition

Let P be a family of preorders. Let I � P .P /.
• For x 2

Q
P2P P , the cartesian product, define sprt.x/ D ¹P 2 P W x.P/ ¤ 1Pº.

• Define h
Q

P ;6i, the product of P with support in I , by
Q

P D ¹x 2
Q

P2P P W sprt.x/ 2 I º, ordered
entry-wise: x 6 y iff for every P 2 P , x.P/ 6P y.P/.

We also write
Q
˛<� P˛ for

Q
¹P˛ W ˛ < �º and P�Q for

Q
¹P ;Qº. It’s not difficult to see that products are isomorphic

to iterations, but where the preorders are in the ground model. Note that this tells us the product is indeed a preorder,
given that iterations are preorders.

34G • 2. Lemma
Let � 2 Ord and P˛ D hP˛;60

˛; 1
0
˛i be a preorder for ˛ < �. Let I � � be closed under X 7! X [ Y where Y is

any finite subset of �.

Therefore,
Q
˛<� P˛ with support in some I is isomorphic to the iteration

¨
˛<�
LP˛ with support in I , where each

LP˛ is the canonical
¨
�<˛
LP� -name for P˛ .

Proof .:.

Recall that the
¨
�<˛
PP� -name LP˛ D ¹h Lp; 1˛i W p 2 P˛º. Proceed by induction on � to show the map '

defined by hp˛ 2 P˛ W ˛ < �i 7! h Lp˛ W ˛ < �i is an isomorphism from
Q
˛<� P˛ to

¨
˛<�
PP˛ . Note that

'. Ep/.˛/ D P10
˛ D

L1P˛ iff Ep.˛/ D 1P˛ . In particular, sprt.'. Ep// D sprt. Ep/ and therefore '. Ep/ is a condition of
the iteration iff Ep is a condition of the product.

By Corollary 34D • 2, elements of
¨
˛<�
PP˛ take the form h Lp˛ W ˛ < �i for hp˛ W ˛ < �i 2

Q
˛<� P˛ , the

cartesian product. This means ' is surjective. ' is clearly injective since x ¤ y implies Lx ¤ Ly.

To see that '. Ep/ 6� '. Ep�/ iff Ep 6� Ep� (writing 6K as the product order on
Q
˛<� P˛). This is the only place
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where we use induction. For � D 0, this is trivial. For � C 1,
Ep_hp�i 6�C1

Ep�_
hp�
� i iff 8˛ < � C 1 .p˛ 60

˛ p
�
˛/ iff Ep 6� Ep�

^ p� 60
� p

�
�

iff '. Ep/ 6� '. Ep�/ ^ 1�  “ Lp� 60
� Lp

�
� ”

iff '. Ep/_h Lp�i 6�C1 '. Ep
�/_h Lp�

� i iff '. Ep_hp�i/ 6�C1 '. Ep
�_
hp�
� i/.

For limit �, the result follows immediately by induction. a

The nice thing about Lemma 34G • 2 is that we can use all of our theorems about iterations when talking about products.
In fact, several theorems become much easier to show for products, like factoring.

34G • 3. Result (Factoring Product Forcing)
Let P be a collection of preorders. Let I � P .P / be an ideal or P .P / itself. Therefore, for any X � P ,Y

P Š
Y

X �
Y
.P nX/,

where
Q
X has support in ¹x \ X W x 2 I º and

Q
.P n X/ has support in ¹x n X W x 2 I º. In particular,Q

�<� P� Š
Q
�<˛ P� �

Q
˛��<� P� for any ˛ < � and preorders P˛ for ˛ < �.

Proof .:.

If x; y 2 I then .x \ ˛/ [ .y n ˛/ 2 I since I is closed under subsets and unions. So if p 2
Q

P2X P and
q 2

Q
P2P nX P , then p [ q is in

Q
P , and vice versa: if p is in the full product, p � X 2

Q
P2X P and

p � .P nX/ 2
Q

P2P nX P . Because the order is entry-wise, this shows the map '.p/ 7! hp � X;p � .P nX/i
is an isomorphism. a

Another nice property of product preorders is that order doesn’t matter as much compared with iterations, where
changing the order is largely unintelligible: P � Q Š Q � P since the order on the product is entry-wise. This
tells us that generics for the product are mutually generic in the following sense, as a corollary of Two-Step Iterated
Forcing (34A • 6). Ostensibly, a G being P �Q-generic is weaker: the first-components, GP should be generic over
the ground model V , and the second-components GQ should be generic over V ŒGP �. The ability to reverse the order
allows us to say that GP is actually generic over V ŒGQ�.

34G • 4. Corollary (Finite Product Forcing)
Let V � ZFC be a transitive model we can force over. Let P ;Q 2 V be appropriate for forcing. Let G � P �Q.
Therefore, G is P �Q-generic over V iff G D GP �GQ where

• GP is P -generic over V ŒGQ�; and
• GQ is Q-generic over V ŒGP �.

In this case, GP D ¹p 2 P W hp; 1Qi 2 Gº, and similarly for GQ.

Proof .:.

(!) Let G be generic. Therefore, for any hp; qi 2 G, by upward closure, hp; 1Qi 2 G. So define GP D ¹p 2

P W hp; 1Qi 2 Gº. We now want to show G D GP � GQ. The argument above tells us G � GP � GQ. So
suppose p 2 GP and q 2 GQ, i.e. hp; 1Qi; h1P ; qi 2 G. Since G is a filter, there is a hp�; q�i 2 G extending
both, which means p� 6P p and q� 6Q q. By upward closure, hp�; q�i 6 hp; qi 2 G. Thus G D GP �GQ.

It’s easy to see that G�1 is Q � P -generic over V assuming G is P � Q-generic over V . Moreover, Lemma
34G • 2 tells us we have an isomorphism ' W P �Q! P � LQ where '.hp; qi/ D hp; Lqi. Hence '"G is P � LQ-
generic over V . We know that dom.'"G/ D dom.G/ D GP . Two-Step Iterated Forcing (34A • 6) tells us that
¹ LqGP W Lq 2 Gº D GQ is LQGP D Q-generic over V ŒGP �. The same argument applies to G�1 to yield that GP is
Q-generic over V ŒGQ�.

( ) By Two-Step Iterated Forcing (34A • 6), GP �GQ D ¹hp; Lqi W p 2 GP ^ LqGP D q 2 GQº is P � LQ-generic
over V . In other words, G0 D ¹hp; Lqi W hp; qi 2 GP � GQº is P � LQ-generic over V . Again, we have an
isomorphism defined by '.hp; qi/ D hp; Lqi so that '�1"G0 D G is P �Q-generic over V . a
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As discussed before, it’s important to realize that not all properties of Q are retained in the generic extension by P : Q
being a preorder is absolute, but it being, say, ccc isn’t absolute. So we cannot, for example, say that the product of
ccc preorders is ccc in general, because P may add an uncountable antichain to Q. The results of Lemma 34A • 7 and
others like it still hold, it’s just that one must be careful about the context for the hypotheses about Q.

Note that Add.ℵ0; 1/ can be factored as a product of two copies of Add.ℵ0; 1/, which has the interesting consequence
that adding just one cohen real adds infinitely many which are mutually generic over each other.

34G • 5. Result
Add.ℵ0; 1/ Š Add.ℵ0; 1/� Add.ℵ0; 1/. As a result, if G is Add.ℵ0; 1/-generic over a transitive model V � ZFC we
can force over, there is an intermediate extension: someH Add.ℵ0; 1/-generic over V has V ¨ V ŒH� ¨ V ŒG�.

Proof .:.

Note that Add.ℵ0; 1/ D hAdd.ℵ0; 1/;60;;i may be regarded as h¹p W ! * ! W j dom.p/j < ℵ0º;�;;i. As a
result, if we interlace p; q 2 Add.ℵ0; 1/, we get an element of Add.ℵ0; 1/:

'.p; q/ D ¹h2n; p.n/i W n 2 dom.p/º [ ¹h2nC 1; q.n/i W n 2 dom.q/º.
It’s easy to see that ' W Add.ℵ0; 1/ � Add.ℵ0; 1/ ! Add.ℵ0; 1/ is a bijection. Moreover, hp�; q�i 6 hp; qi iff
'.p�; q�/ � '.p; q/, meaning ' is an isomorphism.

Thus ifG is Add.ℵ0; 1/-generic over V , we get '�1"G D G0 D G0�G1 for someG0 Add.ℵ0; 1/-generic over V
andG1 Add.ℵ0; 1/-generic over V ŒG0� by Finite Product Forcing (34G • 4) where therefore V ŒG� D V ŒG0�ŒG1�.
HenceH D G0 yieldsH 2 V ŒG�nV butG … V ŒH� since this would meanG1 2 V ŒG0�, contradicting generics
aren’t in the ground model by Theorem 31D • 5. a

More generally, we have that Add.ℵ0; �/ is isomorphic to the finite support product
Q
�<� Add.ℵ0; 1/, which meshes

with the intuition that Add.ℵ0; �/ adds �-many cohen reals.
34G • 6. Theorem

For any � 2 Ord, Add.ℵ0; �/ is isomorphic to the finite support product
Q
�<� Add.ℵ0; 1/.

Proof .:.

Write P for
Q
�<� Add.ℵ0; 1/. Conditions in Add.ℵ0; �/ take the form p W ��! * 2 where jpj < ℵ0. For � < �

and p 2 Add.ℵ0; �/, write p� D ¹hn; yi W h�; n; yi 2 pº (which might be ;). Conditions in the finite support
product P may be regarded are p W � ! Add.ℵ0; 1/ such that p.�/ D ; for all but finitely many �. So consider
the map f W Add.ℵ0; �/! P defined by f .p/.�/ D p� for � < � and p 2 Add.ℵ0; �/.

This map f will clearly be injective. Since jpj < ℵ0, p� D ; D 1Add.ℵ0;1/ for all but finitely many � < �,
meaning f .p/ has finite support and so is indeed a condition in P . f is also surjective, since for any p 2 P ,
we can define q D ¹h�; n; yi W hn; yi 2 p.�/º where then f .q/ D p. It should be clear that this f maps
1Add.ℵ0;�/ D ; to 1P D const; � �, and p 6Add.ℵ0;�/ q iff f .p/ 6P f .q/, meaning f is an isomorphism. a

We also get a similar result for the lévy collapse, Col.�;< �/, which we define here. Recall Col.�; �/ is defined as
Fn<�.�; �/, i.e. all partial functions from � to � of size < �.

34G • 7. Definition
For � a regular cardinal and � an ordinal, define the preorder Col.�; < �/ D hCol.�;< �/;�;;i by

Col.�; < �/ D
®
p 2 Fn<�.� � �; �/ W 8h˛; �i 2 dom.p/ .p.˛; �/ < ˛/

¯
.

34G • 8. Theorem
For � a regular cardinal and � an ordinal, Col.�;< �/ is isomorphic to the product

Q
˛<� Col.�; ˛/ with support in

I D ¹X � � W jX j < �º.
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Proof .:.

Write P for
Q
˛<� Col.�; ˛/. Conditions in P take the form hp˛ W ˛ < �i such that p˛.�/ < ˛ for each

� < � in dom.p˛/ and ˛ 2 � n �. This may be regarded instead as a single function p W � � � * � where
p.˛; �/ D p˛.�/ < ˛ whenever � 2 dom.p˛/. So define

f . Ep/ D ¹h˛; �; i 2 � � � � � W h�; i 2 Ep.˛/º.
We have that f indeed is a map from P to Col.�; < �/: since our support has size < �, Ep.˛/ D ; for all but
< �-many ˛ < � and therefore jf . Ep/j, as the union of < �-many sets each of size < �, has size < � by the
regularity of �.

To see that f is an isomorphism, it’s clearly injective. Surjectivity is also easy: if q 2 Col.�; < �/, then take
Ep D

�
˛ 7!

®
h�; i W h˛; �; i 2 q

¯�
,

and it’s easily seen that f . Ep/ D q. We also have f .;/ D ;, and Ep� � Ep iff f . Ep�/ � f . Ep/, meaning f W P !
Col.�;< �/ is an isomorphism. a

The main point of the lévy collapse is to have slightly more control over how things are collapsed in that we preserve
that j�j D � is regular and j�j D � while ensuring � � �C in the extension, rather than merely j�j D �C < � if we
had forced merely with Col.�C; �/. In fact, if � is regular and � is strongly inaccessible, then forcing with Col.�; < �/
yields �C D � in the generic extension.

Getting back to Cohen forcing, Result 34G • 5 tells us Add.ℵ0; n/ Š Add.ℵ0; 1/ for any n < !. Because we take finite
support, the direct limit of these, Add.ℵ0;ℵ0/, is then isomorphic to Add.ℵ0; 1/. In a sort of converse way, even if we
consider Add.ℵ0; �/ for large �, any new real added could have been added just by Add.ℵ0; 1/.

34G • 9. Corollary
Suppose the following:

• V � ZFC is a transitive model.
• G is Add.ℵ0; �/V-generic over V for some � 2 Ord \ V .
• x 2 N VŒG� nN V .

Therefore there’s anH Add.ℵ0; 1/V-generic over V such that x 2 V ŒH�.
If in addition � is uncountable in V , then V ŒG� D V ŒH�ŒK� for some K Add.ℵ0; �/V-generic over V ŒH�.
Proof .:.

Work in V. Let Px be an Add.ℵ0; �/-name for x. Without loss of generality, by Result 32 E • 5, Px is a nice name
in that it takes the form

S
n;m<!¹hh Ln; Lmiiº �An;m where each An;m is either ; or an antichain. Since Add.ℵ0; �/

is ccc, each An;m is countable in V. As a result,

A D
[

p2ran. Px/

sprt.p/ D
[

n;m<!

[
p2An;m

sprt.p/

is countable (since sprt.p/ is finite). By Factoring Product Forcing (34G • 3), Add.ℵ0; �/ Š
Q
˛<� Add.ℵ0; 1/

can be factored into the product
Add.ℵ0; �/ Š

Y
˛2A

Add.ℵ0; 1/ �
Y
˛2�nA

Add.ℵ0; 1/.

But since jAj � ℵ0,
Q
˛2A Add.ℵ0; 1/ Š Add.ℵ0;ℵ0/ Š Add.ℵ0; 1/ by the remark above the statement. Hence

we can view V ŒG� D V ŒH�ŒK� where H is Add.ℵ0; 1/-generic over V , and K is
Q
˛2�nA Add.ℵ0; 1/-generic

over V ŒH�.
• Note that by definition of A, Px is actually a

Q
˛2A Add.ℵ0; 1/-name which can then be translated into a

Add.ℵ0; 1/-name � such that PxG D �H by Name Translation Theorem (33C • 8). This yields x 2 V ŒH�.
• If � is uncountable, then j� n Aj D j�j and hence

Q
˛2�nA Add.ℵ0; 1/ Š

Q
˛<� Add.ℵ0; 1/ Š Add.ℵ0; �/,

and we may find a K 0 Add.ℵ0; �/-generic over V with V ŒG� D V ŒH�ŒK� D V ŒH�ŒK 0�. a

Theorem 34G • 6 also tells us that there’s an infinite �-decreasing sequence of Add.ℵ0; 1/-generic extensions V ¨
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� � � ¨ V ŒG2� ¨ V ŒG1� ¨ V ŒG0� whenever there’s a single G0 Add.ℵ0; 1/-generic over V . Add.ℵ0; 1/ is important for
other reasons as well, and the following motivates the notion of weak homogeneityxxxv of a preorder.

34G • 10. Definition
A preorder P is weakly homogeneous iff for every p; q 2 P , there is a dense homomorphism fp;q W P ! P such that
fp;q.p/ is compatible with q.

It’s not difficult to show that Add.ℵ0; 1/ is weakly homogeneous, and the product of weakly homogeneous preorders
(with support in some ideal) is weakly homogeneous. If we think of Add.ℵ0; 1/ as Col.ℵ0;ℵ0/, we can generalize this
to get that Col.�; �/ is weakly homogenous for every infinite � � � (recall Col.�; �/ consists of partial functions from
� to � of size < �).

34G • 11. Corollary
Add.ℵ0; 1/ is weakly homogeneous. In fact, Col.�; �/ is weakly homogeneous for all ordinals � � �.

Proof .:.

Let P be Add.ℵ0; 1/ or Col.�; �/, regarding Add.ℵ0; 1/ D hAdd.ℵ0; 1/;6; 1i as h¹p W ! * ! W j dom.p/j <
ℵ0º;�;;i. Let p; q 2 P be arbitrary. Define fp;q W P ! P by taking fp;q.r/ to swap r.n/ D p.n/ with q.n/,
and r.n/ D q.n/ with p.n/, and otherwise do nothing: for n 2 dom.r/,

fp;q.r/.n/ D

8̂<̂
:
p.n/ if r.n/ D q.n/ ^ n 2 dom.p/ \ dom.q/
q.n/ if r.n/ D p.n/ ^ n 2 dom.p/ \ dom.q/
r.n/ otherwise.

For example, if dom.p/\dom.q/ D ;, then fp;q D id andp and q are already compatible. If dom.p/ D dom.q/,
then fp;q.p/ D q.

To see that fp;q is a dense homomorphism, clearly fp;q.1/ D 1. Suppose r� 6 r . It’s easy to see fp;q.r�/ �

fp;q.r/, meaning fp;q is a homomorphism. Suppose r0 ? r1 so that r0.n/ ¤ r1.n/ for some n 2 dom.r0/ \
dom.r1/.

• If r0.n/ D p.n/ and r1.n/ D q.n/ ¤ p.n/, then clearly fp;q.r0/.n/ D q.n/ while fp;q.r1/.n/ D p.n/

are also not equal.
• If r0.n/ D p.n/ and r1.n/ ¤ q.n/, then fp;q.r0/.n/ D q.n/ ¤ r1.n/ D fp;q.r1/.n/.
• If r0.n/; r1.n/ … ¹p.n/; q.n/º, then fp;q.r0/.n/ D r0.n/ ¤ r1.n/ D fp;q.r1/.n/.

The other cases work similarly, and in each, fp;q.r0/ ? fp;q.r1/. So fp;q is an incompatibility homomorphism.
For density, fp;q is actually bijective: for any r 2 P , fp;q.fp;q.r// D r . a

Note that as an incompatibility homomorphism, if p ? q, then fp;q.p/ is compatible with q, but incompatible with
fp;q.q/. There are many other examples of weakly homogeneous preorders, and the following allows us to find even
more examples.

34G • 12. Result
Let P˛ be a weakly homogeneous preorder for each ˛ < �. Let I � P .�/ be an ideal or P .�/ itself. Therefore the
product with support in I ,

Q
˛<� P˛ , is weakly homogeneous.

Proof .:.

Let p; q 2
Q
˛<� P˛ be arbitrary. For each ˛ 2 sprt.p/ \ sprt.q/ 2 I , let f˛ W P˛ ! P˛ be a dense ho-

momorphism such that f˛.p.˛// is compatible with q.˛/. For ˛ … sprt.p/ \ sprt.q/, let f˛ D id. Define
fp;q W

Q
˛<� P˛ !

Q
˛<� P˛ by

fp;q.r/ D hf˛.r.˛// W ˛ < �i.

xxxvI believe this notion is “weak” homogeneity from the usual model theoretic notion of a model P being homogeneous. One consequence of
homogeneity is that for any p; q 2 P , there's an isomorphism f W P ! P with f .p/ D q (as long as P satisfies the same formulas using either
p or q). We have weakened this result by requiring only a dense homomorphism and f .p/ to be compatible with q. Of course, we have also
strengthened it slightly by removing the requirement of p and q having the same theory over P .

367



ITERATED FORCING CH VI §34G

Note that sprt.fp;q.r// D sprt.r/ so if r is a condition of the product, so is fp;q.r/. It’s easy to see that fp;q
is an incompatibility homomorphism since each f˛ is. To see that fp;q"

Q
˛<� P˛ is dense in

Q
˛<� P˛ , let

r 2
Q
˛<� P˛ be arbitrary. For each ˛ < �, there’s a r�.˛/ 2 P˛ where f˛.r�.˛// 6P˛ r.˛/. In particular, if

r.˛/ D 1P˛ , we can take r�.˛/ D r.˛/. As a result, r� D hr�.˛/ W ˛ < �i has sprt.r�/ D sprt.r/ and moreover,
by construction, fp;q.r�/ 6 r since fp;q.r�/.˛/ D f˛.r

�.˛// 6P˛ r.˛/ for each ˛ < �.

To see fp;q.p/ is compatible with q, just note that each fp;q.p/.˛/ is compatible with q.˛/ through some common
extension r.˛/ 6 fp;q.p/.˛/; q.˛/which defines r D hr.˛/ W ˛ < �i. By taking r.˛/ D 1P˛ whenever possible,
we can ensure sprt.r/ D sprt.fp;q.p// [ sprt.q/ D sprt.p/ [ sprt.q/ 2 I and therefore r 6 fp;q.p/; q. a

In particular, Add.ℵ0; �/ and similarly Col.�; < �/ are both weakly homogeneous for all � < �.

Part of the point of weak homogeneity is the ability to understand the theory of the generic extension independently of
the chosen generic: these dense homomorphisms tell us p  ' iff 1P  ' whenever ' is a sentence. So if G;H are
both P -generic over V , then VŒG� � ' iff there’s a p 2 G with p  ' iff 1P  ' which means VŒH � � '.

34G • 13. Theorem
Let P be a weakly homogeneous preorder. Let ' be a FOL.2/-sentence. Therefore for any p 2 P , p  ' iff 1P  '.

Proof .:.

One direction is clear. So suppose p  '. If 1P 6 ', then some q 2 P forces :'. Let fp;q W P ! P be a
dense homomorphism with fp;q.p/ compatible with q. By Name Translation Theorem (33C • 8), fp;q.p/  '

but then any common extension r 6P fp;q.p/; q must force both ' and :', a contradiction. a

We can also expand this notion to allow for parameters if we expand our notion of weak homogeneity to fix the
interpretation of the relevant P -names. The same idea of using Name Translation Theorem (33C • 8) gives Theorem
34G • 13 with those parameters.

34G • 14. Definition
Let P be a preorder and E� P -names. P is weakly homogeneous with respect to E� iff for every p; q 2 P , there’s a
dense homomorphism fp;q W P ! P such that

• fp;q.p/ is compatible with q;
• Tfp;q

.�n/ D �n for each entry �n of E� ;
where as in Name Translation Theorem (33C • 8), we iteratively define Tf .�/ D ¹hTf .�/; f .p/i W h�; pi 2 �º.

It’s easy to see that every weakly homogeneous preorder is weakly homogeneous with respect to check-names.
34G • 15. Corollary

Let P be a weakly homogeneous preorder. Therefore P is weakly homogeneous with respect to all check-names.

Proof .:.

Let p; q 2 P be arbitrary and let fp;q be the dense homomorphism witnessing the weak homogeneity of P . Let x
be arbitrary to show Tfp;q

. Lx/ D Lx. As a dense homomorphism, fp;q.1P / D 1P and therefore a simple induction
yields Tfp;q

. Lx/ D ¹hTfp;q
. Ly/; 1P i W y 2 xº D ¹h Ly; 1P i W y 2 xº D Lx, as desired. a

34G • 16. Corollary
Let P be a preorder and E� P -names. Suppose P is weakly homogeneous with respect to E� . Therefore, for any p 2 P
and FOL.2/-formula ', p  “'.E�/” iff 1P  “'.E�/”.

Proof .:.

The same proof as Theorem 34G • 13 works, just noting that the use of Name Translation Theorem (33C • 8)
doesn’t change the parameters by weak homogeneity with respect to E� . a
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In particular, if we force with Cohen forcing a bunch, what the generic extension thinks of (finitely many) sets in the
ground model is independent of the generic chosen. This has the nice side effect of telling us HODVŒG�

V � V .
34G • 17. Result

Let V � ZFC be a transitive model we can force over. Let P 2 V be a preorder weakly homogeneous with respect
to E� in V P and let G be P -generic over V . Suppose x 2 V ŒG� is FOLp.2/-definable from E�G and x � V . Therefore
x 2 V .
Proof .:.

Let x � V˛ for some ˛ 2 Ord \ V (in particular, x � Vrank.x/ \ V ). There is some FOL.2/-formula ' where
V ŒG� � “8y .y 2 x $ '.y; E�G//” so some p 2 G forces this. By Corollary 34G • 16, for any name Px for x,
1P  “8y .y 2 Px $ '.y; E�//” and therefore y 2 x iff 1P  “'. Ly; E�/”. This then defines x in V:

x D ¹y 2 V˛ \ V W 1P  “'. Ly; E�/”º 2 V . a

Recall ODA is the class of sets FOLp.2/-definable with parameters in Ord and A. HODA is then the class of sets whose
transitive closure is contained in ODA.

34G • 18. Corollary
Let V � ZFC be a transitive model we can force over. Let P 2 V be a weakly homogeneous preorder, and G P -
generic over V . Therefore if x � V and x 2 V ŒG� is ordinal definable in VŒG� from parameters in V , then x 2 V .
In particular, HODVŒG�

V � V .

Proof .:.

Let x � V be defined from ordinals ˛0; � � � ; ˛n 2 Ord \ V D Ord \ V ŒG� and sets y0; � � � ; ym 2 V , meaning
x 2 ODVŒG�

V . P is weakly homogeneous with respect to L̨0; � � � ; L̨n; Ly0; � � � ; Lym by Corollary 34G • 15. By Result
34G • 17, x 2 V . Now if x 2 HODVŒG�

V , then x 2 ODVŒG�
V and it suffices to show x � V by induction on rank.

Clearly this holds for x D ;. Every y 2 x is also in HODVŒG�
V so inductively y � V and thus y 2 V by the

above. This means x � V and so x 2 V . a

We know that for any set A 2 ODA, HODA � ZF, and HODA � “x can be well-ordered” iff there’s a well-order of x in
ODA. The point of this is that although HODVŒG�

N
� ZF, if G is Add.ℵ0; ˛/-generic for an uncountable ˛, there will be

no definable well-ordering of N from real parameters, and hence HODVŒG�
N

� :AC.
34G • 19. Theorem (Consistency of ZF C :AC)

Let V � ZFC be a transitive model we can force over. Let G be Add.ℵ0; �/V-generic over V for some � 2 Ord \ V
uncountable in V. Therefore HODVŒG�

N
� ZFC:AC.

Proof .:.

By absoluteness, Add.ℵ0; �/ is the same in every transitive model with � in it. So there’s no worry about where
this defined preorder is interpreted. Write P D Add.ℵ0; �/. Work in VŒG�. It suffices to show there’s no ODN -
well-ordering of N . So suppose otherwise. For the sake of notation, let '.x; y; a; ˛/ define a well-ordering 4'
from just one parameter a 2 N , and one ordinal ˛. The proof easily generalizes to more parameters. Let Pa 2 V P

be a name for a. By Corollary 34G • 9, let V ŒG� D V ŒH�ŒK� where a 2 V ŒH� and K is P -generic over V ŒH�.

Thus going from V ŒH� to V ŒH�ŒK� D V ŒG�, every x 2 N can therefore be FOLp.2/-defined using ˛, a 2 V ŒH�,
and its 4'-rank (another ordinal). So N � ODN \V ŒH�. In fact x 2 N , as a subset of ! � ! 2 HOD, then has
x 2 HODN \V ŒH� and so N is contained in this. By the weak homogeneity of P , Corollary 34G • 18 implies
HODN \V ŒH� D HODVŒH�ŒK�

N \V ŒH�
� V ŒH� and therefore N � V ŒH�. But P adds reals from V ŒH� to V ŒH�ŒK�,

meaning N 6� V ŒH�, a contradiction. a

This marks the start of a whole host of results related to weakenings of AC that might hold or fail [16]. Generally,
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such results are studied with “symmetric” or “permutation” models, but these always take the form HODVŒG�
V[X for some

generic extension VŒG� and some X 2 V ŒG� [13]. That being said, such models are often much nicer to work with in
these kinds of arguments than HOD-style models.
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Section 35. Forcing and Elementary Embeddings

Many of the large large cardinals are phrased in terms of elementary embeddings. So it’s natural to ask how these
interact with forcing. Overall, the main tools used in the interaction between the two focus on lifting embeddings from
the ground model to the generic extension, and (more importantly) doing this lifting in the generic extension.

§35A. Lifting embeddings

What we mean by “lifting” an embedding is the following.
35A • 1. Definition

Let V;W;N;M � ZFC be transitive models with V � W andN �M . Let j W V ! N be an elementary embedding.
A lift-up of j to W ,M is an elementary embedding jC W W !M such that jC � V D j .

Note that the lift-up of an embedding has the same critical point. The main result we care about is the following, telling
us that we can always lift-up embeddings so long as the image of the generic is compatible with a generic.

35A • 2. Theorem (Generic Lifting)

• Let V � ZFC be a transitive model we can force over.
• Let j W V !M be an elementary embedding withM transitive (M need not be a subset of V ).
• Let P 2 V be a preorder and let G be P -generic over V .

Therefore the following are equivalent for everyH (which need not be in V ŒG�).
1. j "G � H andH is j.P/-generic overM .
2. There is an elementary embedding jC W V ŒG�!MŒH� such that jC � V D j andH D jC.G/.

Proof .:.

• (1)! (2). To define jC, we’d like to work with names. For any � 2 V P , take jC.�G/ D j.�/H . First
we must show that this definition makes sense: if �G D �G then j.�/H D j.�/H . Let p 2 P force the
equality of names in V: p  “� D �”. We therefore have in M that j.p/  “j.�/ D j.�/” and since
j.p/ 2 H , MŒH � � “j.�/H D j.�/H ”. So jC W V ŒG�!MŒH� is well-defined.

To see that jC is elementary, note that this follows from the elementarity of j : if VŒG� � “'.E�G/” for P -
names E� in V and FOL-formula ', then there is some p 2 G such that p  “'.E�/” and hence inM, j.p/ 
“'.j.E�//”. Since j "G � H , this gives MŒH � � “'.j.E�/H /” in other words, MŒH � � “'.jC.E�G//”. And
clearly, the converse holds sinceMŒH � � “: ” iffMŒH � 6�  and then we use the contrapositive from the
above argument.

To see that jC.G/ D H , note that the canonical name for G, PG D ¹h Lp; pi W p 2 Pº is moved by j to
j. PG/ D ¹h Lp; pi W p 2 j.P/º which is clearly interpretted byH to be j. PG/H D H .

• (2) ! (1). Clearly since G � P , for every p 2 G, j.p/ 2 jC.G/ D H � j.P/ by elementarity.
Moreover, since P .P/\V 2 V ŒG�, V ŒG� knowsG is P -generic over V and hence by elementarity,MŒH�

knows jC.G/ is j.P/-generic over P .j.P// \ j "V D P .j.P// \M . But the notion of being generic is
absolute between transitive models. Thus jC.G/ is indeed generic overM and soH D jC.G/ works. a

The hard part of this theorem is really the existence of such anH . For example, if we collapse a measurable cardinal �
to, say, !, then in the generic extension, � is no longer measurable, and hence V ŒG� can’t lift the canonical ultrapower
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embedding of V to V ŒG�. But we can actually say something much stronger than this. It’s not that V ŒG� simply doesn’t
have the proper information to liftxxxvi it’s that there can’t be a lift.

35A • 3. Example
• Let V � ZFC be a transitive model we can force over.
• Let � be measurable in V as witnessed by a measure U 2 V .
• Let j W V ! cUltV.V; U / be the canonical embedding jU .
• Let P D Col.!; �/.
• Let G be P -generic over V .

Therefore, there is noH that is j.P/-generic over cUltV.V; U / with j "G � H .

Proof .:.

Note that P collapses j�j to ℵ0 by adding a surjection g W ! ! �. One useful property of P is that j "P D P ,
because each p 2 P has p � ! � ˛ for some ˛ < � D cp.j /. Thus the conflict with lifting is that G � H and
G already determines that the added function has its image as � not j.�/. To be more explicit, for each n < !,

Dn D ¹p 2 P W n 2 dom.p/º � P

is dense in P and hence has an intersection with G. It should also be clear that any p 2 G has imp � � by
definition. Working with j.P/ D Col.!; j.�//, let � � ˛ < j.�/ also be arbitrary. We should have

E˛ D ¹p 2 j.P/ W 9n 2 ! .p.n/ D ˛/º

as dense in j.P/ and hence intersects H at some h 2 H \ E˛ where then some n 2 ! has h.n/ D ˛. But
G \Dn ¤ ; so there is some g 2 G \Dn where then g.n/ < � � ˛. Thus j.g/ D g and h are incompatible,
contradicting thatH is a filter. a

As such, many arguments require a lot of effort to show we can find such generics. And more difficult is that we want to
find such genericsH 2 V ŒG�. This is because most of the embeddings we want to consider will witness large cardinal
properties. As such, we often have above thatM � V and j as a FOLp-definable class of V (with parameters being
measures, extenders, and so forth). To use jC for large cardinal properties in V ŒG�, we often want jC to be a class of
V ŒG�, which requires not just the existence of the j.P/-genericH , but also thatH 2 V ŒG�.

A half-negative and half-positive example is the following, where we don’t want to lift the embedding j W V ! M

to jC W V ŒG� ! MŒH� as a class of V ŒG�. Instead, the following example tells us that sometimes we must go to a
larger model, namely V ŒG �H� to find a generic overM to apply Generic Lifting (35A • 2).

35A • 4. Example
• Let V � ZFC be a transitive model we can force over.
• Let U be a measure on � in V.
• Let jU W V ! cUltV.V; U / be the canonical embedding.
• Let G be P D ColV.!;< �/-generic over V .
• Let j.P/ D P �Q, and letH be Q-generic over V ŒG�.

Therefore in V ŒG �H� we can lift jU to jC
U W V ŒG�! cUltV.V; U /ŒG �H� with critical point !VŒG�1

Proof .:.

Work in V. UsingTheorem 34G • 8, P D Col.!;< �/ is isomorphic to the finite support product
Q
˛<� Col.!; ˛/

so that j.P/ is isomorphic to Y
˛�j.�/

Col.!; ˛/ Š
Y
˛<�

Col.!; ˛/ �
Y

��˛<j.�/

Col.!; ˛/

So set Q D
Q
��˛<j.�/ Col.!; ˛/ so that j.P/ Š P �Q. Now work in VŒG �H� (or VŒG �H�). We may also

xxxviOne might worry that we can't lift because if � isn't measurable, then it can't be the critical point of an embedding, but this only applies to
embeddings that are classes of the model. After all, in VŒG�, � isn't measurable, but the embedding j W V ! cUltV.V;U / still is a class there.
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regard G �H as j.P/-generic over V by considering
¹f 2 j.P/ W f � .! � �/ 2 G ^ j � .! � Œ�; j.�/// 2 H º 2 V ŒG �H�.

It should be clear also that for p 2 G, jU .p/ D p in the set above, meaning jU "G is contained in the above
set that is j.P/-generic over V and therefore over cUltV.V; U / � V . Thus in V ŒG � H�, by Generic Lifting
(35A • 2), we can lift jU to get jC

U W V ŒG�! cUltV.V; U /ŒG �H�. a

Note the similarity in hypotheses to Example 35A • 4 but the difference in conclusion. Loosely speaking, the reason
why we have such different conclusions is that G in Example 35A • 4 is comprised of parts which are all bounded in
�. So when we stretch G by an elementary embedding, jU "G D G doesn’t cover too much information like it did in
Example 35A • 3, it just covers one of the parts bounded below �.

Generalizing Example 35A • 4 is actually quite difficult, because in general we have the following easy fact about
how iterations work with elementary embeddings. For most practical applications, iterations are built up with small
preorders at first and larger preorders later.

35A • 5. Result
• Let V � ZFC be a transitive model we can force over.
• Let j W V !M be an embedding withM � V a transitive class and cp.j / D �.
• Let P D

¨
˛<�
PQ˛ be a �-length iteration in V such that each PQ˛ 2 VV

˛ .
Therefore j.P/ D

¨
˛<j.�/

PQ˛ Š P � PQ where each PQ˛ 2 VM
˛ , and PQ is the tail iteration.

Proof .:.

This just follows by elementarity and the fact that j � V� D id by Result 12A • 3. a

This gives an alternative perspective on what is required to lift an embedding j W V ! M . The proof given for
Example 35A • 3 is essentially that we can’t lift because no generic could be compatible with G. But more than that,
V ŒG� doesn’t have any j.P/-generics overM since any such generics would witness that j.�/ is countable in V ŒG�,
which isn’t true. Similarly, with Example 35A • 4, j.P/ collapses � to be countable, meaning V ŒG� cannot find such
a generic overM .

A very useful result in forcing is the following. This tells us that if j W V ŒG�! N is elementary and N is transitive,
then N DMŒj.G/� for some transitive M � ZFC, an inner model of N.

35A • 6. Result (Definability of the Ground Model)
Let V � ZFC be a transitive model we can force over. Let P 2 V be a preorder and let G be P -generic over V .
Therefore V is a FOLp-definable class of VŒG�, in particular using just the parameter P D P .jP j/V .

In fact, this definition is uniform across all generic extensions: there is some FOL-formula ' such that for any Px 2 V P ,
V � “9p 9y .p  “ Px D Ly”/$ 1P  “'. Px; LP /””.

The proof of this result is interesting, but is left through guided exercise Defining the Ground Model (35 • Ex22). The
point is that VŒG� knows it’s the generic extension of some class V so that by elementarity of j W V ŒG� ! N , N
knows it’s the generic extension of some class we callM . Explicitly, there is some formula ' and P 2 V ŒG� such that
V D ¹x 2 V ŒG� W VŒG� � “'.x; P /”º. Hence by elementarity, we can defineM D ¹x 2 N W N � “'.x; j.P //”º.
Note that we always get that the restriction j � V W V !M is elementary assuming V is a class of VŒG�xxxvii but this
alone doesn’t tell usM � V , and in some cases,M may not be contained in V .

Let us now move on to thinking about how ultrapower embeddings are lifted, since ultrapowers are the primary source
of embeddings for us.

xxxviiTo see this, just use the defining formula ' as a class so by elementarity, VŒG� � “' defines a proper class ^ '.x/” iff MŒj.G/� �
“' defines a proper class ^ '.j.x//” so that ' defines a class M in MŒj.G/� by the same formula and whenever x 2 V , j.x/ 2 M . Ele-
mentarity of j � V W V ! M then follows from the elementarity in VŒG� but restricting quantifiers by the defining formula of V .
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35A • 7. Theorem (Lifting Ultrapowers)

• Let V � ZFC be a transitive model we can force over.
• Let P 2 V be a preorder appropriate for forcing.
• Let G be P -generic over V .
• Let E be a (short) .�; �/-extender in V.
• Suppose the canonical embedding j W V ! M D cUltVE .V / lifts to jC W V ŒG� ! MŒjC.G/� in that
jC.�G/ D j.�/jC.G/ for all � 2 V P .

ThereforeMŒjC.G/� D cUltVŒG�E� .V ŒG�/whereE� D E�
jC and jC is the canonical extender embedding. Moreover,

E D E� \ V .
Proof .:.

Using Corollary 13B • 8, we first aim to show MŒjC.G/� D ¹jC.f /.r/ W r 2 Œ��<! ^ f W Œ��<! ! V ŒG�º.
Note that any � 2 M P can be represented by � D j.f /.r/ for some f W Œ��<! ! V and r 2 Œ��<! . In
fact, without loss of generality, we may assume imf � V P . As a result, in V ŒG�, we can consider the function
f 0 defined by f 0.r/ D f .r/G for all r . By elementarity, jC.f 0/ and jC.f / have the same relationship with
jC.G/: jC.f 0/.r/ D jC.f /.r/jC.G/. It follows that

�jC.G/ D j.f /.r/jC.G/ D j
C.f /.r/jC.G/ D j

C.f 0/.r/.
Obviously, since im jC � MŒjC.G/� we have the other containment, which means we have equality. So by
Corollary 13B • 8,MŒjC.G/� D cUltVŒG�E� .V ŒG�/whereE� D E�

jC . The fact that jC lifts j D jE shows us that
E� \ V D E: for any A 2 P .Œ��<!/\ V and r 2 Œ��<! , hr; Ai 2 E iff r 2 j.A/ iff r 2 jC.A/ iff hr; Ai 2 E�.
a

It’s important to note that the converse of this need not hold in general. In fact, just because there’s an embedding
j W V ŒG�!MŒj.G/� withMŒj.G/� � V ŒG�, we don’t even need thatM � V .

Example 35A • 3 is an example of when we can’t find a lift-up, and generalizes to Col.˛; �/ for any ˛ < �. Example
35A • 4 gives an example where we can lift j W V ! M , but only in a larger model that has access to a generic over
M . But in many cases we can find lift-ups in the generic extension. The easiest examples of this are when the preorders
we’re using are sufficiently closed.

35A • 8. Example
• Let V � ZFC be a transitive model we can force over.
• Let � be measurable in V as witnessed by a measure U 2 V .
• Let j W V ! cUltV.V; U / be the canonical embedding jU .
• Let P 2 V be � �-closed in V.
• Let G be P -generic over V .

Therefore U is still a measure in VŒG� and j VŒG�U lifts j VU , meaning that j VŒG�U � V D j VU and cUltVŒG�.V ŒG�; U / D
cUltV.V; U /Œj VŒG�U .G/�.

Proof .:.

Work in V. Since P is � �-closed, it doesn’t add any new subsets of � and hence P .�/V D P .�/VŒG�. Thus U is
still a measure in VŒG�. To lift j VU , we consider j

VŒG�
U , the ultrapower map of VŒG� by U . We cannot make use

of Lifting Ultrapowers (35A • 7) until we know we can lift j VU to j VŒG�U . But assuming we have this, it follows
immediately from Lifting Ultrapowers (35A • 7) that cUltVŒG�.V ŒG�; U / D cUltV.V; U /Œj VŒG�U .G/�. So we focus
on showing j VŒG�U � V D j VU .

Again, the � �-closure of P means P adds no new sequences from � to V . So in particular, Œf �U and trcl.Œf �U /
are interpreted the same way in the ultrapowers UltVŒG�.VŒG�; U /, UltVŒG�.V; U /, and UltV.V; U / whenever f W
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� ! V . In particular, UltVŒG�.V; U / D UltV.V; U / and the collapsing maps
�0 W UltVŒG�.V ŒG�; U /! cUltVŒG�.V ŒG�; U /

�1 W UltV.V; U /! cUltV.V; U /.

satisfy �0 � UltVŒG�.V; U / D �1 because of the uniqueness of collapsing maps. As a result, for x 2 V ,
j
VŒG�
U .x/ D �0.Œconstx �U / D �1.Œconstx �U / D j VU .x/ and so j

VŒG�
U � V D j VU . a

Note that above, we might not have G � j VŒG�U .G/.

Closure isn’t actually necessary through. The great part of � �-closure is that we don’t really affect � at all in the
generic extension. A harder, but more useful example is the following. Here we again don’t really affect �, but in this
case because our forcing is small enough to not rock the boat too much.

35A • 9. Theorem (Lévy–Solovay)

• Let V � ZFC be a transitive model we can force over.
• Let � be measurable in V as witnessed by a measure U 2 V .
• Let P 2 V be a preorder of size jP jV < �.
• Let G be P -generic over V.

Therefore in VŒG�,
UC
D ¹X 2 P .�/ W 9Y 2 U .Y � X/º 2 V ŒG�

is a measure on � and the canonical embedding jUC is a lift-up of jU , meaning both jUC � V D jU and also
cUltVŒG�.V ŒG�; UC/ D cUltV.V; U /ŒjUC.G/�.

Proof .:.

First we show UC is a measure. That it’s a filter should be clear: ; … UC since ; … U ; it’s trivially closed
upwards; and if X; Y 2 UC as witnessed by X 0 � X , Y 0 � Y with X 0; Y 0 2 U , then X \ Y � X 0 \ Y 0 2 U .
UC is also trivially non-principal because U is. Now for any X 2 P .�/ \ V ŒG� with name PX , for each p 2 P ,
let

Xp D ¹˛ < � W p  “ L̨ 2 PX”º
so that each p  “ LXp � PX \ L�”.

Claim 1
UC is an ultrafilter.
Proof .:.

Let X 2 P .�/\ V ŒG� and p 2 P be arbitrary. If Xp 2 U , then p  “ PX \ L� 2 PUC”. On the other hand, if
Xp … U then � nXp 2 U . Note that

� nXp D ¹˛ < � W p 6 “ L̨ 2 PX”º D ¹˛ < � W 9q 6 p .q  “ L̨ … PX”/º D
[

q6p
.� nX/q .

Since jP j < �, by the �-completeness of U , this means some .� n X/q 2 U . But q forces that this is
contained in � nX so that q  “� nX 2 UC”. This means for every p 2 P ,

p 6 “ PX … PUC
^ L� n PX … PUC”

But this means 1P forces the negation, i.e. UC is an ultrafilter. a

So now we must show UC is �-complete and normal. The �-completeness of UC does not so trivially follow
from the �-completeness of U : ¹X˛ 2 UC W ˛ < º for  < � should be witnessed by ¹Y˛ 2 U W ˛ < º � V ,
but this set need not be in V .

Claim 2
UC is �-complete.
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Proof .:.

Suppose not. Let X D ¹x˛ 2 UC W ˛ < º be a < �-sized family of sets in UC such that
T
X … UC. Let

PUC be a name for UC, let PX be a name for X , and let p 2 G be such that
p  “jX j D L < L� ^ PX � PUC

^
\
PX … PUC”.

Consider now ¹.x˛/p W ˛ < º. If any .x˛/p … U , then the idea from Claim 1 tells us .� n x˛/q 2 U
for some q 6P p, and thus below q, � n x˛ 2 UC. In other words, q  “ Px˛ … PUC”, contradicting that
q 6P p  “ PX � PUC”. Thus assume each .x˛/p 2 U and therefore

T
˛< .x˛/p 2 U witnesses thatT

X 2 UC. a

Claim 3
UC is normal.
Proof .:.

Suppose not. Let Pf be a name for a function with p  “ Pf W L� ! L� is regressive” but is forced to never be
UC-almost-constant: p  “:9ˇ 8�

PUC
˛ . Pf .˛/ D ˇ/”. For each ˇ < �, let pˇ 6P p decide the values of

Pf on a set Xˇ 2 U so that
Xˇ D ¹˛ < � W 9 < � pˇ  “ Pf . L̨ / D L”º and pˇ  “8˛ 2 LXˇ . Pf .˛/ ¤ ˇ/”.

Since there are only jP j < � many such pˇ s, it follows that there are less than � manyXˇ s and so by Claim
2,
T
ˇ<� Xˇ 2 U . So define

F.˛/ D

´
ˇ if ˛ 2

T
�<� X� ^ p0  “ Pf . L̨ / D Ľ”

0 otherwise.
It follows that F W � ! � is regressive in V , but for each ˇ < �, ¹˛ < � W F.˛/ ¤ ˇº �

T
�<� X� 2 U ,

contradicting the normality of U . a

Now we move on to showing that jUC is a lift-up of jU . To do this, since jUC maps into cUltVŒG�.V ŒG�; UC/

while jU maps into cUltV.V; U /, we need to have some way of comparing both Œconstx �U and Œconstx �UC and
the collapses of these. We first show cUltV.V; U / D cUltVŒG�.V; UC/ and then proceed from there.

Claim 4
For every f W � ! V in V ŒG�, there is some g W � ! V in V such that f �UC g.

Proof .:.

Let p 2 P and let Pf be a P -name for a �-sequence such that for every ˛ < �, p  “ Pf . L̨ / 2 LV ”, meaning
for each ˛ < �,

D˛ D ¹q 6P p W 9x q  “ Pf . L̨ / D Lx”º is dense in P .
With that technicality out of the way, for each ˛ < �, let p˛ 2 D˛ . Most of these p˛s will be the same since
jP j < �. More precisely to work with U , for each p 2 P , consider ¹˛ < � W p˛ D pº. These sets partition
� into < �-many sets so one of them must be in U . Hence there is some p� 2 P such that p˛ D p� for
U -almost every ˛. Now define g.˛/ D x whenever p�  “ Pf . L̨ / D Lx” and g.˛/ D 0 otherwise. In this
case, it follows that g 2 V and 8�

UC˛ .f .˛/ D g.˛//, as witnessed by A as desired. a

Now we can show that jUC � V is itself a canonical ultrapower embedding.
Claim 5

jUC"V � cUltVŒG�.V; UC/. In fact, jUC � V is the ultrapower map from V to cUltVŒG�.V; UC/.
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Proof .:.

If x 2 V , Œconstx �UC 2 UltVŒG�.V ŒG�; UC/ \ UltVŒG�.V; UC/. So it suffices to show that the collapses
of these are the same. Note that for any f W � ! V ŒG� and g W � ! V , if UltVŒG�.VŒG�; UC/ �
“Œf �UC 2 Œg�UC” then without loss of generality, imf � trcl.img/ � V and hence f W � ! V which
witnesses that UltVŒG�.V; UC/ � “Œf �UC 2 Œg�UC”, and the converse of these clearly holds. As a result,
jUC � V maps into cUltVŒG�.V; UC/. a

It follows that taking the ultrapower of V by UC in VŒG� doesn’t change anything from the ultrapower in V in
the following sense. Let �UC W UltVŒG�.V; UC/ ! cUltVŒG�.V; UC/ and �U W UltV.V; U / ! cUltV.V; U / be
the collapsing maps.

• UltVŒG�.V; UC/ Š UltV.V; U / as witnessed by ' sending Œf �UC D Œg�UC to Œg�U for f; g as in Claim 4.
• �UC.Œg�UC/ D �U .Œg�U / whenever g W � ! V is in V , because �U ı ' collapses UltVŒG�.V; UC/ and so
does �UC . By the uniqueness of the collapsing map, �UC D �U ı '.

As a result, whenever x 2 V , jUC.x/ D �UC.Œconstx �UC/ D �U .Œconstx �U / D jU .x/. So jUC � V D jU .
By Lifting Ultrapowers (35A • 7), cUltV.V; U /ŒjUC.G/� D cUltVŒG�.V ŒG�; UC/. a

The original version of Lévy–Solovay (35A • 9) in fact says much more [21]: every measure in V ŒG� on � is generated
from a measure in V as above. In a sense, Lévy–Solovay (35A • 9) tells us that measurability and most large cardinal
properties are unaffected by small forcing. The theorem also generalizes in various ways showing that small forcing
is relatively harmless to large cardinals, as practically all large cardinal notions are preserved by small preorders. This
will be shown later in the subsection on gap forcing.

What distinguishes the examples where we can lift, Lévy–Solovay (35A • 9) and Example 35A • 8, from the example
where we can’t, Example 35A • 3, is the fact that the preorders used in the positive examples avoid �. It is this sense of
having a “gap” at � that we will exploit in the subsection on gap forcing, dealing primarily with the non-introduction
of large cardinals.

§35B. Strategic closure and finding generics

Another way of finding generics is merely to generate them by transfering the original generic. This only occurs under
special circumstances, but those circumstances are common enough by ultrapowers that its inclusion is warranted,
generalizing Example 35A • 8 and giving a better idea of what j VŒG�U .G/ should be.

35B • 1. Theorem
• Let V � ZFC be a transitive model we can force over.
• Let E be a .�; �/-extender in V with jE W V ! cUltVE .V / the canonical embedding.
• Let P 2 V be a preorder appropriate for forcing that is � �-distributive (e.g. � �-closed).
• Let G be P -generic over V .

Therefore the filter generated by jE "G, i.e. H D ¹p 2 jE .P/ W 9q 2 jE "G .q 6 p/º, is jE .P/-generic over
cUltVE .V /, and thus jE lifts to jC W V ŒG�! cUltVE .V /ŒH�.

Proof .:.

It’s clear thatH is a filter, so letD 2M D cUltVE .V / be open dense in j.P/. We canwriteD D j.f /.r/ for some
r 2 Œ��<! and f W Œ��<! ! V . Without loss of generality, f .s/ is open dense in P for each s 2 Œ��<! . Since P
is � �-distributive,

T
s2Œ��<! f .s/ ¤ ; is open dense so there is some element p 2 G \

T
s2Œ��<! f .s/. Thus

jE .p/ 2 j "G and by elementarity, 8s 2 Œ��<! .jE .p/ 2 jE .f /.s//. So in particular, jE .p/ 2 jE .f /.r/ D D
and so ; ¤ j "G \D � H \D. The fact that we can lift jE to jC follows from Generic Lifting (35A • 2). a

We can go the opposite direction under less restrictive circumstances too.
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35B • 2. Theorem
• Let V � ZFC be a transitive model we can force over.
• Let j W V !M be an elementary embedding withM transitive and cp.j / D �.
• Let P 2 V be �-cc in V.
• LetH be j.P/-generic overM .

Therefore j�1"H is P -generic over V .

Proof .:.

That j�1"H is a filter is easy: if p� 2 j�1"H and p� 6P p, then by elementarity, j.p�/ 6P j.p/ so as a filter,
j.p/ 2 H and hence p 2 j�1"H . Compatibility of elements also follows easily by elementarity. For genericity,
we use antichains instead of dense sets as in Theorem 32C • 5. Let A 2 V be a maximal antichain in P so that
jAj < � and hence j "A D j.A/ is an antichain of j.P/. There is then some p 2 H \ j "A and as p 2 j "A,
p D j.q/ for some q 2 P so that q 2 j�1"H \ A as desired. a

These two results are useful for transfering generics one of two ways along an elementary embedding, but they merely
reuse the same generic. The issue is that if j.P/ is fairly different from P , by being a longer iteration for example, then
the two ideas don’t work because we aren’t able to find generics over the later iterations. The main means of actually
finding generics is the same idea as with Corollary 31D • 3, but generalized to uncountable cardinals. All we require
is a sufficient amount of closure and sufficiently few dense sets or antichains.

35B • 3. Theorem
• Let V � ZFC be a transitive model we can force over.
• Let P 2 V be a preorder appropriate for forcing.
• Let � 2 Ord.
• Suppose P is < �-closed and ¹D 2 V W D is denseº has size � � (ostensibly, not in V ).

Therefore there is a G P -generic over V , and in fact 2�-many such generics.

We will give a formal proof of a generalization of this later, but the idea is essentially the same as with Corollary
31D • 3: just continually extend conditions p˛ 2 D˛ for ˛ < � forD˛ open dense. By closure we can continue to do
this, and since there are sufficiently few dense sets (in the real world), the resulting choices ¹p˛ W ˛ < �º generate a
generic.

The easiest example of this type of reasoning is simply to collapse everything in sight down to just above the closure
of a preorder.

35B • 4. Example
• Let V � ZFC be a transitive model we can force over.
• Let P 2 V be a < �-closed preorder appropriate for forcing in V for some �.
• LetH be Q D Col.�; 2jP j/V-generic over V .

Therefore in V ŒH�, there is a G P -generic over V .

Proof .:.

Because Q is< �-closed, it doesn’t add any< �-sized sequences and thus P remains< �-closed in VŒH �. Since
P is appropriate for forcing, in V, � � jP j � 2jP j. In V we also trivially have at most 2jP j-many distinct dense
sets of P . Hence in VŒH �, P has < �-closure with at �-many dense sets of V . So we may apply Theorem 35B • 3
to get a G P -generic over V in V ŒH�. a

Generally, we use Theorem 35B • 3 while working inside a generic extension of V, say VŒG�, and we use this to find
an H 2 V ŒG� generic overM to lift; where j W V ! M and j "G � H . Sometimes we cannot lift so directly, and
instead must move to a larger model, lifting j W V ! M to jC W V ŒG�! MŒH� as a class of V ŒG �H� rather than
V ŒG� as with Example 35A • 4.
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The generalization of Theorem 35B • 3 uses a concept of strategic closure of a poset, which is a kind of generalization
of regular closure in a way that encompasses many more posets without compromising most of the arguments used
with such posets.

35B • 5. Definition
Let P be a preorder and �; � ordinals. The game ��P is the two person game of length � �

I: p0 D 1P p2 2 P � � � p! p!C2 � � �

II: p1 2 P p3 � � � p!C1 � � � ,
with the rules that p0 D 1P and that p˛ 6P pˇ for ˇ � ˛ < �. Here I plays p˛ for even ˛ < � (including limit ˛)
and II plays p˛ 2 P for odd ˛ < �. The first player to break a rule loses, and if no one breaks a rule, then I wins. In
other words, I wins iff the game can continue.

• P is � �-strategically closed iff I has a winning strategy in ��C1
P .

• P is �-strategically closed iff I has a winning strategy in ��P .
• P is < �-strategically closed iff P is � ˛-strategically closed for all ordinals ˛ < �.
• P is� �-strategically closed iff P is � �-strategically closed for all cardinals � < �.

Strategic closure is a weakening of the usual closure of preorders:
• � �-closure corresponds to � � and < �C-strategic closure.
• < �-closure corresponds to� �, < �, and �-strategic closure in increasingly stronger senses.

Basically, whereas < �-closure ensures we can always extend a 6P -decreasing sequence hp˛ W ˛ < �i whenever
� < �, �-strategic closure only allows us to state this whenever the even entries of the sequence conform to a certain
strategy by player I. Put in another sense, closure gives total freedom to choose a decreasing sequence (of appropriate
length) and find something below it. Strategic closure only gives control over half of the sequence, relying on I’s
strategy to extend at limits.

Additionally, � j˛j-strategic closure is ostensibly weaker than ˛-strategic closure since the game �˛P could be much
longer than �

j˛jC1
P . It’s clear that we can play the game multiple times, which gives some additional strength: � �-

strategic closure implies � � C �-strategic closure and < � � !-strategic closure. Going beyond this is more difficult,
and it’s unclear to me whether � �-strategic closure implies � �!-strategic closure and more generally < �C-strategic
closure.

Usually, in proving things with strategic closure, we—the theorem provers—play the role of II, relying on I’s strategy
to clean up our mess, especially at limit stages. Despite their differences, the similarities between < �-closed and
�-strategically closed preorders are enough to show to allow some arguments about < �-closure to go through about
�-strategic closure. For example, �-strategically closed preorders are � �-distributive.

35B • 6. Corollary
For any infinite cardinal �, if P is� �-strategically closed, then P is < �-distributive.

Proof .:.

Let D be a collection of open, dense sets. Clearly
T

D is open, so it suffices to show it’s dense. Let p 2 P be
arbitrary. Enumerate D D ¹D˛ W ˛ < �º where jD j D � < 2�C 1 < �. Because we only have access to half
of the extensions, we must work half as slow, accomplishing the same proof as Result 33B • 3, but requiring a
sequence of length 2�with a condition beneath it instead of a sequence of length �with a condition beneath it. In
other words, to make space for I’s moves that we don’t care about, we need 2�C 1 steps instead of �C 1 steps.

Let � be a strategy for I in �2�C1
P , and take p0 D 1P . Assuming I plays according to � , we prove by induction

p2˛ 2 D� for every � < ˛. (�)
This is trivial for ˛ D 0. For limit ˛ this is also easy: inductively, p2˛ 6 p2� 2 D� for � < ˛ so p2˛ 2

T
�<˛D�

since each D� is open. For ˛ C 1, let II play p2˛C1 2 D˛ \ P6p2˛
\ P6p which exists by density of D˛ . Thus

p2˛C1 2
T
��˛D� . Since � is a strategy and I plays according to � , �.hp� W � � 2˛ C 1i/ D p2˛C2 6 p2˛C1

so that p2.˛C1/ 2
T
�<˛C1D� and thus (�) holds for ˛ C 1. This proves the induction that p2˛ 2

T
�<˛D� for
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every ˛ � �. In particular, p2� 2
T
˛<�D˛ \ P6p . a

In paticular, considering � D ıC, � ı-strategic closure implies � ı-distributivity.
35B • 7. Corollary

For any limit cardinal �, if P is� �-strategically closed, then P is < �-distributive.

Proof .:.

If � is a limit, let D be a collection of open, dense sets of size jD j < �. By � �-strategic closure, we have
� jD jC-strategic closure and hence

T
D ¤ ; is open, dense by < jD jC-distributivity from Corollary 35B • 6.

a

In general, < �-distributivity is indeed distinct from �-strategic closure.xxxviii But we continue to show its similarities
with the usual notion of closure. In particular, we have the same sort of result with iterations as in Inverse Limit Closure
(34D • 7).

35B • 8. Theorem (Inverse Limit Strategic Closure)
Let �; � be ordinals. Let

¨
˛<�
PQ˛ be a �-stage iteration with support in I � P .�/, an ideal or P .�/ itself such that

• inverse limits are taken at every limit stage ˛ � � with cof.˛/ < �;
• we take either direct or inverse limits at all other limit stages;
• 1˛  “ PQ˛ is < L�-strategically closed” for each ˛ < �; and

Therefore
¨
˛<�
PQ˛ is < �-strategically closed.

Proof .:.

Proceed by induction on �. � D 0 is trivial as the only sequences are constant 1 sequences. We only show the
successor case as the limit case is similar to Inverse Limit Closure (34D • 7) but made merely more complicated
by the introduction of (canonical) names of strategies. The successor case deals with this slight complication in
a much more managable way. We proceed similarly to Lemma 34D • 6. So work with P � PQ which, to those
attached to the induction, can be thought of inductively as P D

¨
˛<�
PQ˛ and PQ D PQ�C1.

Let ˛ < � be fixed. We aim to define a strategy for I in �˛
P� PQ

, so suppose II plays some sequence hhp� ; Pq�i W � <
i in this game, where  is such that after including I’s turns, we get a full ˛-length sequence. In the game �˛P , I
wins with some strategy � giving

�˛P
I: 1P �.hp0i/ �.hp0; p1i/ � � � �.hp� W � < i/ D p

�

II: p0 p1 � � �

Thus in �˛P �
PQ, the strategy for I to choose the first coordinates will be just to use � while ignoring PQ. To choose

the second coordinates for I, let P� 2 V P be such that 1P  “ P� is winning for I in � L̨
PQ
”. Without loss of generality,

since II loses otherwise, hhp� ; Pq�i W � < i is 6P� PQ-decreasing which means for � < � <  , p�  “ Pq� 6 PQ Pq�”.
Hence I may play according to P� as determined by the play by II thus far: there is some canonical name for
P�.h Pq� W � < �i/ for each � �  , and since P� is forced to win, the condition p� below each p� forces that this
name is below each Pq� and below the previous plays by I.

So I plays these canonical names for the second coordinate. To sum up, I plays according to this strategy: using
� for the first coordinates, and canonical names for the outputs of P� (as determined by the first coordinate) for
the second coordinates. This is clearly winning for I. Since ˛ < � was arbitrary, we get < �-strategic closure for
P � PQ. a

xxxviiiThe example of this, which hasn't been defined here yet, is “shooting a club” in (a stationary, co-stationary subset of) !1, which is < ℵ1-
distributive, but not ℵ1-strategically closed. Indeed, shooting a club isn't even � ℵ0-strategically closed: � ℵ0-strategically closed preorders
preserve stationary subsets of ℵ1 with nearly the same proof as with� ℵ0-closed preorders. Trivially all separative preorders will be ℵ0-strategically
closed, so this is the worst we can possibly fail to have any of the above strategic closure properties. This also highlights the difference between
< �-distributivity and < �-closure.
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By the same proof, we also get the above result with �-strategic closure replacing the occurrences of < �-strategic
closure. This also gives, by the exact same proof, the analogue of Result 34 E • 8 for strategic closure.

35B • 9. Corollary
Let

¨
�<�
PQ� be a �-stage iteration with support in some I � P .�/—a non-principal ideal or P .�/ itself—such that

for some ˛ < � and some �,
• inverse limits or direct limits are taken at every limit stage;
• inverse limits are taken at every limit stage � ˛ of cofinality < �;
• 1�  “ PQ� is < �-strategically closed” for every ˛ � � < �; and
•
¨
�<˛
PQ� doesn’t collapse any cofinalities � � to be < �.

Therefore 1˛  “*˛��<�
PQ� is < �-strategically closed”.

Now we actually show the theorem we care about. Actually we could have shown this earlier, but the exploration of
strategically closed preorders is useful for easton support iterations in a bit more generality than purely closed preorders.

35B • 10. Theorem (Closure Giving Generics)

• Let V � ZFC be a transitive model we can force over.
• Let P 2 V be a preorder appropriate for forcing.
• Suppose P is �-strategically closed and ¹D 2 V W D is denseº has size � � (ostensibly, not in V ) for some
cardinal �.

Therefore for each p 2 P , there is a G P -generic over V with p 2 G, and in fact 2�-many such generics.

Proof .:.

Proceed as in Corollary 31D • 3. Let p 2 P be arbitrary. Enumerate ¹D 2 V W D is denseº D ¹D˛ W ˛ < �º. As
a cardinal, if ˛ < � then 2˛ < �. This means that we can deal with every D˛ in a game just of length � while
only having access to half the moves. More precisely, let � be a strategy for I in ��P . Let I play according to this
strategy and for p2˛ defined by I, let II play an arbitrary p2˛C1 2 D˛ \ P6p2˛

\ P6p . Since � wins for I in
��P , we can continue this to get a set ¹p˛ W ˛ < �º � P which, by construction, intersects every dense set of P
in V and in which every two elements are compatible with a common extension (indeed, any two elements are
comparable). Hence, the upward closure ¹q 2 P W 9˛ < � .p˛ 6 q/º is a filter P -generic over V with p 2 G.

To see that there are 2�-many such generics, note that for incompatible choices by II of p2˛C1 2 D˛ \ P6p2˛
,

we get different generics. Since P is appropriate for forcing, any dense set has such incompatible elements. This
gives at least 2 incompatible choices by II on each turn, and thus at least 2�-many choices by II overall, and so at
least 2�-many generics. a

We can also use the same idea with antichains as opposed to dense sets.
35B • 11. Theorem
• Let V � ZFC be a transitive model we can force over.
• Let P 2 V be a preorder appropriate for forcing.
• Suppose P is �-strategically closed and ¹A 2 V W A is a maximal antichainº has size � � for some �.

Therefore for each p 2 P , there is a G P -generic over V with p 2 G, and in fact 2�-many such generics.

Proof .:.

Proceed as in Corollary 32C • 4. Let p 2 P be arbitrary. Enumerate ¹A 2 V W A is a maximal antichainº D
¹A˛ W ˛ < �º. Write A# D ¹p� 2 P W 9p 2 A .p� 6 p/º which is dense if A is a maximal antichain. Thus we
can consider ¹A˛# W ˛ < �º as a �-sized family of dense sets and find 2�-many G P -generic over this family as
in Closure Giving Generics (35B • 10). Each such G clearly intersects every maximal antichain and therefore is
generic over V by Theorem 32C • 5. a
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This idea is useful because were very rarely have combinatorial results related to dense sets, but chain conditions are
very common and can give nice results related to counting the number of antichains: if a �-sized preorder P is �-cc,
then there are at most ��-many antichains. As a result, combinatorial axioms that give nice characterizations of cardinal
exponentiation, like GCH as perTheorem 5E • 6, are useful in these contexts and are often assumed out of convenience.

§35C. Easton support iterations

Easton support iterations are very useful with indestructibility axioms with large cardinals. A common idea with such
iterations is to proceed in a trial by fire—not unlikeTheConsistency ofMAwithoutCH (34 F • 10)—where each preorder
attempts to destroy some large cardinal property, and what remains is then indestructible by the kinds of preorders used
in the iteration. But beyond this, easton support iterations can also be used with all sorts of large cardinals to produce
a wide array of interesting results.

35C • 1. Definition
Let � 2 Ord. The easton ideal on � is the set ¹X � � W 8ı � � .ı is weakly inaccessible! jX \ ıj < ı/º. Easton
support iterations of length � are iterations with support in the easton ideal on �.

More intelligibly, for �-length iterations, we take bounded support at weakly inaccessible stages, and allow every other
kind of support elsewhere as in Support of Inverse Limits (34C • 12). Hence by Support of Direct Limits (34C • 5),
easton support corresponds to taking direct limits at weakly inaccessible stages (i.e. regular limit cardinals), and inverse
limits elsewhere.

Easton support iterations have nice properties for their tail forcing, which is especially useful when thinking about how
iterations are moved by elementary embeddings: if j.P/ Š P � PQ, then PQ (is forced to) act like the how most of the
tails of P act. So if the tails of P act nicely, so too does this tail iteration PQ. So let’s investigate what the tails of easton
support iterations look like, assuming that we’re forcing with sufficiently (strategically) closed, small preorders.

35C • 2. Lemma
• Let � < � be mahlo in that � is strongly inaccessible and ¹ı < � W ı is strongly inaccessibleº is stationary.
• Let

¨
˛<�
PQ˛ be a �-length easton support iteration.

• Suppose each PQ˛ is forced to be� ˛-strategically closed, and j
¨
�<˛
PQ� j < � for each ˛ < �.

• Let PQ D*��˛<�
PQ˛ be the tail iteration after �, and P D

¨
˛<�
PQ˛ .

Therefore
1. P is �-cc; and
2. 1P  “ PQ is < L�-strategically closed”.

Proof .:.

1. The result for P follows from Corollary 34C • 16 and more generally from Direct Limit Chain Conditions
(34C • 15) because mahlos, having a stationary set of inaccessibles below them and easton iterations tak-
ing direct limits at inaccessibles, means we satisfy Direct Limit Chain Conditions (34C • 15) (3): we take
the direct limit stationarily often. Direct Limit Chain Conditions (34C • 15) (2) is trivial by the cardinal-
ity restriction, and (1) follows by � again being inaccessible and easton iterations taking direct limits at
inaccessibles.

2. For strategic closure, we must use Corollary 35B • 9 and confirm the following four hypotheses:

a. inverse limits or direct limits are taken at every limit stage;
b. inverse limits are taken at every limit stage � � of cofinality < �;

c. 1˛  “ PQ˛ is < L�-strategically closed” for every ˛ 2 Œ�; �/; and
d. P doesn’t collapse any cofinalities � � to be < �.
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(a) is immediate by definition of easton support. For (b), note that we take inverse limits everywhere except
weak inaccessibles. But those of cofinality < � are all dealt with before �: if � D cof.�/ with cof.�/ < �
then � < �. So (b) holds, and (c) holds by hypothesis. (d) follows from P being �-cc. a

The fact that the heads are �-cc is very useful when used in combination with Theorem 35B • 11. The idea is that with
a traditional j W V ! M , we often have j.P/ D P � PQ where then PQ is j.�/-cc, and this can give a bound on the
number of antichains, assuming some nice combinatorial properties and that j.�/ is relatively small.

Here is one general example of this idea of counting antichains by using chain conditions and elementary embeddings.
The idea behind the setup is that we have iteratively forced with preorders to change properties of some cardinals below
� using preorders below �. For example, the reader can assume PQ˛ is a name for Add.˛; 1/ whenever ˛ is a successor
cardinal and trivial otherwise. That particular preorder has some nice properties.

35C • 3. Example
• Let V � ZFCC GCH be a transitive model we can force over.
• Let � be measurable in V with measure U .
• Let j D jU W V ! cUltV.V; U / be the canonical embedding.
• Let P D

¨
˛<�
PQ˛ be an easton support iteration.

• Suppose each PQ˛ is forced to be� ˛-strategically closed, and each PQ˛ has rank (and thus cardinality) < �.
• Suppose further that PQ˛ is trivial for U -almost every ˛ < �, and is non-trivial only at cardinals.
• Let G be P -generic over V .

Therefore, in VŒG�,
• VŒG� � “8ı � � .jıj D ı ! ıC D 2ı/”, i.e. GCH holds above �; and
• there are �CC-manyH j.P/-generic over cUltV.V; U / such that j lifts to jC W V ŒG�! cUltV.V; U /ŒH�.

Proof .:.

It’s not too difficult to see that VŒG� satisfies GCH above �, but we really only need that VŒG� � “2� D �C”.
To see this, note jP j � � so for any ı � �, using Result 32 E • 3: there are at most .2jı�P j/V D .2ı/V-many
names for subsets of ı in V ŒG�. Since P is �-cc and thus ı-cc, it follows that .ıC/V D .ıC/VŒG� and thus
.ıC/VŒG� � .2ı/VŒG� � .2ı/V D .ıC/V D .ıC/VŒG� and so VŒG� � “2ı D ıC” for every ı � �. In particular,
VŒG� � “�CC D 2�

C

D 22
�”.

Note that j.P/ is an easton support iteration where for ˛ < �, each preorder takes the form j. PQ˛/ D PQ˛ since
the rank of such preorders are below � D cp.j /. Hence j.P/ can be factored of the form j.P/ Š P � PQ where
PQ is the tail forcing inM D cUltV.V; U / from � to j.�/. Note that PQG is j.�/-cc inMŒG� by Corollary 34C • 16
(measurable cardinals are mahlo). Also note that j "G � P so we merely need to find a PQG-generic overMŒG�

in VŒG� to lift.

Because of the restriction on rank, by elementarity, it’s not hard to see that the hypotheses of Lemma 35C • 2
hold in M where � is the mahlo cardinal and j.�/ is the length of the iteration. In particular, P is �-cc in M.
Since PQ˛ is trivial for U -almost every ˛ < �, it follows that PQ� is trivial in M: the set of trivial stages is in
U iff � 2 j.¹˛ < � W PQ˛ is trivialº/. Thus the first non-trivial preorder of the tail forcing PQ happens at some
M-cardinal above �, and so PQG must be �C-strategically closed in MŒG�.

By Result 12C • 1,M is closed under V ’s �-length sequences. Since P is �-cc, by Result 33B • 7,MŒG� is closed
under V ŒG�’s �-length sequences. In particular, .�C/MŒG� D .�C/VŒG� and so PQG is still �C-strategically closed
in VŒG�. It’s also not hard to see that in VŒG�, j PQG j D jj.�/j D j.2

�/V j � �C D 2� . In particular, in VŒG�,
because PQG is j.�/-cc in MŒG�, there are at most .2�/� D 2� D �C-many maximal antichains of MŒG�. By
Theorem 35B • 11, there is are 2�C -many H 0 PQG-generic over MŒG� in VŒG� which means G � H 0 is P � PQ-
generic over M . This gives .2�C

/VŒG�-many H j.P/ Š P � PQ-generic over M with j "G � H . By Generic
Lifting (35A • 2) we can lift j in VŒG�. a
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An easy example of this is the following, showing from a single measurable cardinal that it’s possible to have the
maximal number of measures on it.

35C • 4. Example
• Let V � ZFCC GCH be a transitive model we can force over.
• Let � be measurable in V with measure U and ultrapower embedding j D jU W V ! cUltV.V; U /.
• Let P D

¨
˛<�
PQ˛ where PQ˛ D

PAdd. L̨ ; L1/ whenever ˛ 2 ¹ıC W ı D jıj < �º, and otherwise PQ˛ is (forced
to be) trivial.

• Let G be P -generic over V .
Therefore, in VŒG�, � is measurable and has �CC-many measures on it.

Proof .:.

Note that Add.˛; 1/ has rank < ˛ C ! and is < j˛j-closed and hence� ˛-strategically closed whenever non-
trivial (and clearly Ord-strategically closed when trivial). Moreover, it’s not hard to see that A D ¹˛ < � W

9� .˛ D �C/º … U since � … j.A/ because � is still a limit cardinal in M D cUltV.V; U /. Since measurable
cardinals are mahlo, it follows that all hypotheses of Example 35C • 3 hold and thus there are �CC-many j.P/-
generics H overM such that j lifts to V ŒG�;MŒH�. Enumerate these generics H˛ for ˛ < �CC in VŒG�. Let
j˛ W V ŒG�!MŒH˛� be the corresponding liftup of j .

By Lifting Ultrapowers (35A • 7), MŒH˛� D cUltVŒG�.V ŒG�; Uj˛
/ for each ˛ < �CC where Uj˛

is the derived
measure (i.e. .�; �C 1/-extender). And since eachMŒH˛� is distinct, each Uj˛

is distinct for ˛ < �CC, and thus
VŒG� has �CC-many measures on �. a

A similar forcing demonstrates a common problem associated with long iterations: loosing control over the elementary
embeddings in the generic extension. In particular, it’s consistent relative to a measurable cardinal that we can add a
measurable cardinal in a model with none.

35C • 5. Example
Assume Con.ZFCC “there is a measurable cardinal”/. Therefore, the following state of affairs is consistent:

• V � ZFC is a transitive model we can force over;
• V � “there is no measurable cardinal”; and
• there is a preorder P 2 V such that 1P  “there is a measurable cardinal”.

Proof .:.

The V of the statement will actually be a generic extension VŒG� of a ground model V with a measurable cardinal.
The idea is to kill the measurable cardinal of V in VŒG�, and then resurrect it in another extension VŒG�ŒH�. Let’s
get on with the actual proof. Without loss of generality that we are working with a countable, transitive model
of ZFC with a measurable cardinal �. Also let � be the least ordinal with a transitive model V � ZFCC GCHC
“� is measurable” C“2� D �C”. And by cutting off V, we may assume � is the only measurable of V (if there is
another measurable above �, then consider �0 the least above � and consider instead the ground model as VV�0 ).

Let Q D
¨
˛<�
PQ˛ be an easton support iteration that adds a cohen subset of ˛ to each inaccessible below �:

PQ˛ D
PAdd. L̨ ; L1/ whenever ˛ is strongly inaccessible.

Claim 1
Let G be Q-generic over V. Therefore VŒG� � ZFCC “there are no measurable cardinals”.
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Proof .:.

That VŒG� � GCH isn’t too difficult, but it is rather tedious, primarily using Corollary 33A • 3 and the
chain and closure properties of Add.˛; 1/ at each stage of the forcing. So suppose U is a measure on �
in VŒG�. Consider jU W V ŒG� ! N D cUltVŒG�.V ŒG�; U / the canonical embedding. By Definability
of the Ground Model (35A • 6), N D MŒj.G/� for some M � N where j.G/ is j.P/-generic over M .
Moreover, jU � V W V ! M is also elementary, although perhaps M 6� V . Nevertheless, we still get
P .�/ \ V � P .�/ \M . It’s easy to see that j. PQ˛/ D PQ˛ whenever ˛ < �, and hence we can factor
j.Q/ Š Q �*��˛<j.�/

PQ˛ where PQ˛ is (forced to be) Add.˛; 1/ whenever ˛ 2 Œ�; j.�// is inaccessible
in M.

Since VVŒG�
�C1 D VMŒj.G/�

�C1 , � is still inaccessible in MŒj.G/� and by downward absoluteness, � is inac-
cessible in M. Hence j.Q/ adds a subset j.G/� � � in MŒj.G/�. But then j.G/� 2 V ŒG� which is
Add.�; 1/MŒj.G/���-generic over MŒj.G/ � �� D MŒG� � V ŒG�. But since jAdd.�; 1/j D 2<� D � in
both MŒG� and VŒG�, any dense subset of Add.�; 1/VŒG� in VŒG� can be seen as a subset of � and is thus in
MŒG� by the agreement between V and M given by jU � V . In particular, j.G/� 2 MŒj.G/� � V ŒG� is
Add.�; 1/VŒG�-generic over V ŒG�, a contradiction. Thus � is not measurable in VŒG�.

There of course cannot be any measurables created above � by Lévy–Solovay (35A • 9): jQj D �. No
� < � is measurable in VŒG� by hypothesis of the minimality of � (Add.�; 1/ forces that 2� D �C). So
there are no measurable cardinals in VŒG�. a

Now consider PR D PAdd. L�; L1/ and P D Q � PR. To show that � remains measurable after forcing with P over
V, we need to lift an embedding. Let U be a measure on � and let j D jU W V ! M D cUltV.V; U / be the
canonical embedding. We can factor

j.P/ Š Q � PR � *�<˛�j.�/

PS˛ D P � *�<˛�j.�/

PS˛

where PS˛ is defined like PQ˛ but for � < ˛ � j.�/ in M. Note that in V, the tail forcing*�<˛<j.�/
PS˛ is forced

to be .�C/V-closed since the first non-trivial stage of forcing happens at an inaccessible above �. Also note that
the tail forcing is forced to have size j.�/ inM, which has size �C in V. So letG �H be P -generic over V . Note
that .�C/V D .�C/VŒG�H� because both Q and RG preserve cardinals and cofinalities � �. As a result, j.�/ still
has size �C in VŒG �H�, and the tail iteration is �C-closed there. Moreover, since P is �-cc in V, the tail iteration
is forced to be j.�/-cc in M. Hence M thinks there are only j.�/<j.�/ D j.�/ � 2<j.�/ D j.�/-many antichains
of the tail iteration. Hence in VŒG �H�, the tail iteration .*�<˛�j.�/

PS˛/G�H is �C-closed and there are only
jj.�/j D �C-many antichains of MŒG �H�. Thus by Theorem 35B • 11, V ŒG �H� has a K generic overM for
the tail iteration with j "G �H D G �H � K so that j W V ! M lifts to jC W V ŒG �H� ! MŒK� within
VŒG �H�. It follows that � is measurable in VŒG �H�. a

The next subsection attempts to give limits on when this can happen, which really is an attempt to gain control over
the embeddings a preorder can add to the generic extension.

§35D. Gap forcing

One topic in the theory of forcing is that of indestructibility axioms which state the preservation of large cardinals by
forcing with various kinds of preorders. The general idea behind showing the consistency of these axioms is to force
with everything bad until everything that remains is indestructible by such bad preorders. The issue with this approach
is that one must take great care to check that no new large cardinals have been introduced by accident that might not
have gone through the entire process. As a result, knowing that certain (common) preorders don’t introduce any large
cardinals is quite useful, and a quite general technique is shown here.

Recall Lévy–Solovay (35A • 9), which states that small posets don’t affect measurability. What’s really going on,
however, is two results: every measure U on � in the ground model generates a measure in V ŒG�, and every measure

385



FORCING AND ELEMENTARY EMBEDDINGS CH VI §35D

U on � in the generic extension is generated by a measure in the ground model. In this sense, small forcings don’t
introduce new large cardinals. While this is a nice result, it’s not exactly all that useful if we want to deal with iterations
of length � � or with larger preorders. Basically, we lose control over the embeddings added by more useful forcing
notions in a large cardinal context. Gap forcing, a notion due to Joel David Hamkins [14], is a way to help with that.

35D • 1. Definition
Let � be a cardinal. A preorder admits a gap at � iff it’s (forcing equivalent to) an iteration P � PQ where

• P is non-trivial of size < �; and
• 1P  “ PQ is � L�-strategically closed”.

For such a preorder, we also calll � the gap.

To help hint at why this concept will be useful, note that there are lots of examples of such preorders. In particular,
• P admits a gap at every � � jP jC for any non-trivial P ;
• P � PCol.jP jC; �/ admits a gap at jP jC for any non-trivial P ;
• Add.!; 1/ � PQ admits a gap at !1 for any countably closed PQ; and so on.

The main theorem we’re interested in is the following showing where embeddings in the generic extension come from.
35D • 2. Theorem (Gap Forcing)

• Let V � ZFC be a transitive model we can force over.
• Let P 2 V admit a gap at ı < � in V for some cardinals ı; � 2 V .
• Let G be P -generic over V .
• Suppose there is an elementary j W V ŒG�!MŒj.G/� as a class of VŒG� with cp.j / D �.
• SupposeMŒj.G/� is closed under ı-length sequences of V ŒG�.

Therefore
1. j � V W V !M is a class of V withM D V \MŒj.G/�.
2. VŒG� � “�MŒj.G/� �MŒj.G/�” implies V � “�M �M ” for all � 2 Ord.
3. VV

�
�MŒj.G/� implies VV

�
�M .

There are stronger versions of this theorem where it’s not even assumed that j is amenable, but I believe the above is
the simplest form to digest. Note that there are a few ways to view what exactlyM andMŒj.G/� are supposed to be.
The first is merely to view M as some given transitive model with MŒj.G/� a forcing extension that happens to have
an elementary j W V ŒG� ! MŒj.G/�. In this case, M is already given, and the result that M D V \MŒj.G/� is
quite interesting. The other is to viewMŒj.G/� as just some model N , like an ultrapower of VŒG�. In this case,M is
less obvious, but we may viewM either by definition as trcl.j "V /, making it a less interesting result, or instead use
elementarity and the definability of the ground model as per Definability of the Ground Model (35A • 6).

Regardless of howM andMŒj.G/� are viewed, Gap Forcing (35D • 2) easily gives results like the previously unproven
consequences of Lévy–Solovay (35A • 9) discussed above.

35D • 3. Corollary

• Let V � ZFC be a transitive model we can force over.
• Let P 2 V admit a gap at ı < � in V for some cardinals ı; � 2 V with � measurable.
• Let G be P -generic over V .

Therefore, for � � �, VŒG� � “� is measurable” implies V � “� is measurable”.

Proof .:.

Note that the ultrapower j W V ŒG� ! cUltVŒG�.V ŒG�; U / by some measure U on � is cp.j / D � > ı-closed.
Since the gap is below �, by Gap Forcing (35D • 2), j � V is a class of V, and thus we can consider the derived
measure as a measure on � in V. a

The tagline for this is that gap forcing creates no new measurable cardinals above its gap. By similarly easy reasoning,
gap forcing creates no new strong cardinals above its gap. Note that strong embeddings can be difficult to work with
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because ensuring the closure properties of Gap Forcing (35D • 2) aren’t immediate, but so long as we consider the
canonical extender embeddings, we’re fine.

35D • 4. Corollary

• Let V � ZFC be a transitive model we can force over.
• Let P 2 V admit a gap at ı < � in V.
• Let G be P -generic over V .

Therefore, for � � � with cof.�/ > ı, VŒG� � “� is �-strong” implies V � “� is �-strong”.

Proof .:.

If � is �-strong in VŒG� as witnessed by some E 2 V ŒG�, then cUltVŒG�E .V ŒG�/ is closed under ı-sequences in
VŒG�. Thus we can apply Gap Forcing (35D • 2) to get that j � V W V !M is a class of V with VV

�
� VVŒG�

�
�

cUltVŒG�E .V ŒG�/ and therefore VV
�
� M � V \ cUltVŒG�E .V ŒG�/. This means, using the derived extender, � is

�-strong in V. a

Hence VŒG� � “� is strong” implies V � “� is strong”. Note that we needed cof.�/ > ı, since otherwise the embed-
ding witnessing the �-strength of � would only have < ı-closure and we couldn’t apply Gap Forcing (35D • 2). Note
also that the converse of these need not hold: P � PCol. L�; L�/ would potentially move the strength of � down, yet this
iteration still admits a gap at ı < � because PCol. L�; L�/ has enough closure. And there are many, many more results like
the above. The general idea is that gap forcing creates no new large cardinals above the gap. This is often useful in
combination with easton support iterations by way of Lemma 35C • 2.

35D • 5. Corollary

• Let
¨
˛<�
PQ˛ be a �-length easton support iteration.

• Suppose that each PQ˛ is trivial unless ˛ is mahlo.
• Suppose further that each PQ˛ is forced to be� ˛-strategically closed.xxxix

• Suppose that j
¨
�<˛
PQ� j < j˛j for each ˛ < �.

Therefore,
¨
˛<�
PQ˛ admits a gap between any two stages of the iteration. More precisely, for each ˛ < �,¨

�<˛
PQ˛ �*˛��<�

PQ˛ admits a gap at j˛jC.
Proof .:.

For ˛ < � arbitrary, note that the above break up is equivalent to breaking it up at the next mahlo cardinal. If
there is no such cardinal, then the tail iteration is trivial and clearly we admit a gap at j˛jC because the start
of the iteration only has size j˛j by hypothesis. So without loss of generality, assume ˛ is mahlo. By Lemma
35C • 2, the tail iteration*˛��<�

PQ˛ is forced to be < �-strategically closed where � is the next mahlo above
˛. In particular, it is � ˛C-strategically closed. Again, by hypothesis, the start of the iteration

¨
�<˛
PQ˛ has size

< ˛C and so the iteration admits a gap at ˛C. a

The proof of Gap Forcing (35D • 2), due to Hamkins, involves a series of lemmas, partially abstract theorems regarding
covering properties as per Definition 33B • 4. First we introduce a definition of the kinds of sequences gap forcings
can’t introduce.

35D • 6. Definition
Let V � ZFC be a transitive model. A sequence f W ˛ ! V is fresh over V iff f � � 2 V for every � < ˛, but
f … V .

The definition will be useful in a variety of places, especially in combination with covering properties. Of note is that
forcing with a gap at ı doesn’t introduce fresh sequences of cofinality > ı. That being said, any non-trivial preorder
adds a fresh sequence over the ground model.
xxxixWe actually need much less than � ˛-strategic closure in most cases: we just need that PQ˛ , when non-trivial, is � ˇ -strategically closed
where ˇ is the maximal mahlo below ˛. In this way, � ˛-strategic closure is extreme overkill, but it's simple to state.
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35D • 7. Result
Let V � ZFC be a transitive model we can force over. Let P 2 V be a non-trivial preorder in V. Let G be P -generic
over V . Therefore there is a fresh sequence over V of length � jP jVŒG� in VŒG�.

Proof .:.

Suppose jP jVŒG� D � as witnessed by a bijection h W � ! P in VŒG�. Now consider the characteristic function
of h�1"G as a subset of �: �G W � ! 2 has �G.˛/ D 1 iff h.˛/ 2 G. We can’t have both �G 2 V and h 2 V as
otherwise G D ¹p 2 P W �G.h�1.p// D 1º 2 V . So just consider the least ˛ � � such that either �G � ˛ … V
or h � ˛ … V . Such a sequence is therefore fresh over V of length � � D jP jVŒG�. a

With a bit of work, we can show that gap forcing adds very few fresh sequences. The idea being that P adds some small
< ı-length sequence and this should propagate through to longer sequences: no sequence of cofinality � ı escapes
this because of the strategic closure of PQ.

35D • 8. Lemma
• Let V � ZFC be a transitive model we can force over.
• Let P � PQ 2 V admit a gap at ı in V.
• Let G be P � PQ-generic over V .
• Suppose f 2 V ŒG� is a � -length sequence with cof.�/VŒG� � ı.

Therefore f is not fresh: if f � � 2 V for every � < dom.f / then f 2 V .

Proof .:.

It suffices to work with f W � ! Ord and in fact binary sequences f W � ! 2.
Claim 1

P � PQ adds no fresh sequences of a length � with cof.�/V � ı iff it adds no such binary sequences.

Proof .:.

Clearly the (!) direction holds. For the other direction, suppose f W � ! V with cof.�/ � ı and f �
� 2 V for all � < � . We have f W � ! VV

˛ for some sufficiently large ˛. In V we have an injection
g W � � VV

˛ ! �C for some �. Now consider the characteristic function not of f as a subset of � � VV
˛ but

instead of g"f as a subset of �C: � W �C ! 2. Since f � � 2 V for each � < � , it follows that � � � 2 V
for each � < �C. Since �C is regular (in V) with � � � � ı, it follows that � 2 V as otherwise it would be
a fresh binary sequence. But then f D ¹x W �.g.x// D 1º 2 V , meaning f is not fresh. a

So let f W � ! 2 have all of its (strict) initial segments in V . The general idea is to notice that P should add a
new sequence of length < ı that then propagates through to larger sequences like f in a coded way. The way we
can code this is through a tree of conditions that decide more and more of Pf .

Claim 2
There is some hp�; Pq�i 2 P � PQ such that each set

D� D ¹hp
�; Pq��

i 2 P � PQ W hp�; Pq��
i decides every element of Pf � L�º

is dense below hp�; Pq�i for � < � .

Proof .:.

Really we just need to ensure we can use the same p� when strengthening. Note that for � < � , f � � is
decided by some hp� ; Pq�i 2 G to be some element of the ground model: let Pf be a name for f :

V � “8� < � 9x 9hp� ; Pq�i 2 P � PQ .hp� ; Pq�i  “ Pf � L� D Lx”/”.
Since cof.�/ � ı and jP j < ı, unboundedly many of the p�s must be the same p� 2 P so that in fact this
p� works for every � < � since we’re talking about initial segments. Using any Pq� such that hp�; Pq�i 
“ Pf is a function from L� to L2” then works. a

Basically, this means that to decide more of Pf , we don’t need to change the first coordinate, and can just deal
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with the conditions of PQ in the tree of decisions we will form. We use then the � ı-strategic closure of PQ. We
will consider a tree T 2 V of conditions of P � PQ. An immediate corollary of this is the following.

Claim 3
If f is fresh over V , then any condition below hp�; Pq�i splits into two incompatible conditions that differ on
initial segments of (what they decide of) Pf .

Proof .:.

Since no condition decides every element of Pf , any condition below hp�; Pq�i splits into two incompatible
conditions that differ on Pf and by further extension, we can assume that they differ on initial segments of
Pf . a

So assume f is fresh, i.e. f … V . To form T , let P� be a canonical P -name for a winning strategy in �ıC1
PQ

for
I. The idea is now to pick the incompatible extensions as above while the other player plays according to P� . It’s
important to note that P adds a fresh sequence P of length � < ı by Result 35D • 7. Let PP be a P -name for P .

To form T , consider � 2 2<� . We define Pq� as a canonical P -name for the last play by II in the game �ıC1
PQ

where
I uses P� . Firstly, have player II play Pq��0 D Pq

� as in Claim 2. For any � 2 2<� , let Pr� be I’s response using P� : a
canonical name for P�.h Pq��˛ W ˛ < lh.�/i/. Now suppose Pr� has been defined by the following game (inductively
p� forces that this is all in accordance with P� ):

I: P1 PQ Pr��0 Pr��1 � � � Pr�
II: Pq� D Pq��0 Pq��1 Pq��2 � � �

To define q�_h0i and q�_h1i, use p� and Claim 3. To define Pq� for limit length � , we may just consider any
condition below Pr� . The result is a map from 2<� to PQ that, most importantly, lies in V .

Now we make use of G D GP �GQ to finish off the proof where GP is P -generic over V and GQ is PQGP D Q-
generic over V ŒGP �. Work in VŒGP �. Let P D PPGP , let q� D . Pq� /GP , r� D . Pr� /GP for � 2 2<� \ V , and let
� D . P�/GP . Consider hqP�� W � < �iwhich therefore comes from an actual partial play of the game �ıC1

Q where
I uses � . By the � ı-strategic closure of Q, there is some rP D �.hqP�� W � < �i/:

I: P1 PQ rP�0 rP�1 � � � rP
II: qP�0 qP�1 � � �

Note, however, that rP , being below each qP�� , decides the initial segments of Pf that the qP��s decide. But
the initial segment of Pf decided by rP is in V since f was fresh. Yet from this initial segment f � �, we
can reconstruct P W � ! 2 in V: for � C P , if hp�; Pq�_h0ii decides Pf in a way different from f � � , then
�_h1i C P , and so we consider what hp�; Pq�_h1;0ii decides, and so on. At limit stages we take unions and after
� steps, this gives P 2 V , a contradiction. a

One might wonder about cases like Add.!1; 1/ being factored as 1 � PAdd. L!1; L1/. At first glance, this would seem to
admit a gap at !, but adds an !1-length sequence with cof.!1/ > !. But by countable closure, every initial segment
would be in the ground model, meaning the !1-length sequence is fresh. The reason why this doesn’t conflict with
Lemma 35D • 8 is because of the somewhat innocuous restriction in Definition 35D • 1 that P must be nontrivial in a
gap forcing preorder P � PQ. This fact is of course used in the proof, but it’s worth keeping in mind when trying to think
about examples of gap forcing.

35D • 9. Lemma
Consider the setup as in Gap Forcing (35D • 2):

• Let V � ZFC be a transitive model we can force over.
• Let P � PQ 2 V admit a gap at some regular ı in V.
• Let G be P � PQ-generic over V .
• Let j W V ŒG�!MŒj.G/� be a class of VŒG� with cp.j / D � > ı.
• SupposeMŒj.G/� is closed under ı-length sequences of V ŒG�.

Therefore every set of ordinals in V ŒG� of size ı is covered by a set inM \ V of size ı.
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Proof .:.

Let x 2 V ŒG� have size ı so, by � ı-strategic closure and thus � ı-distributivity via Corollary 35B • 7, PQ didn’t
add it. So if we regard G D GP �GQ where GP is P -generic over V , then x 2 V ŒGP �. Note also that by closure
under ı-length sequences of V ŒG�, x 2MŒj.G/� and again since j. PQ/ didn’t add it by� j.ı/ D ı-distributivity,
x 2MŒj.GP /�. Since jP j < ı < �, we might as well assume by a bijection that P D ı and thus P 2 VV

ıC!
� VV

�

so that j.P/ D P and thus j.GP / D GP . So all of this is just to say that x 2 V ŒGP � \MŒGP �. Note that V ŒGP �

andMŒGP � have the same ı-sized sets of ordinals by the closure properties ofMŒj.G/� in V ŒG� and the above
argument about � ı-strategic closure not adding any such sequences.

Since P is trivially ı-cc, by Chain Condition Covering (33B • 5), we have the � ı-covering property between V
and VŒGP �, and similarly forM andMŒGP � so that ı is still regular in VŒGP � (Recall that the� ı-covering property
for V, VŒG�means that any � ı-sized set in VŒGP � is covered by a set in V of size � ı.) As a result, we can cover
x � x0 2 V with a set of size jx0jV � ı. Since x0 2 V ŒGP �\MŒGP �, we can again cover x0 � x1 2M of size
jx1j

M � ı. Again we can cover x1 � x2 2 V and so on. At limit stages  < ı, we have in V ŒGP � \MŒGP � the
sequence hx� W � < i and so can take the union x D

S
�< x� which, by regularity, has size� ı in VŒGP �. This

allows us to continue defining the sequence with xC1 2M and xC2 2 V and so on. The result is a�-increasing
sequence hx� W � < ıi with cofinally many in V and cofinally many inM .

So now consider X D
S
˛<ı x˛ 2 V ŒGP � which has sze � ı. We’d like to show X 2 V \M since x � X .

In VŒGP �, let p˛ 2 G witness that in V p˛  “ Px˛ 2 LV ” where Px˛ is a name for x˛ . .Since jP j < ı, there must
be some p� 2 GP such that p˛ D p� for unboundedly many ˛. But then this p� decides all of X in V. And
working in MŒGP �, we can use the same idea for M to get some q� deciding all of X in M. A common extension
to p� and q� in GP then shows X 2 V \M . a

It’s not hard to see then that this gives agreement betweenM and V with respect to ordinal sequences.
35D • 10. Corollary

Consider the setup as in Gap Forcing (35D • 2). ThereforeM and V have the same ı-sequences of ordinals.

Proof .:.

Without loss of generality, work with ı-sized sets of ordinals. Any such set in V can be enumerated and extended
into V \M by Lemma 35D • 9. But by cutting off the enumeration at a point of length < ıC < � inM , we get
the set is inM and vice versa. a

We will use a previous exercise Exercise 10 • Ex29 to simplify things slightly, which we prove here, giving a solution
to the exercise.

35D • 11. Lemma
Let M;V � ZFC be transitive models. ThereforeM � V iff every set of ordinals inM is in V .

Proof .:.

Let x 2 M . Enumerate in M trcl.¹xº/ and then code this enumeration as a subset of a single ordinal so that the
code is in V and we can decode to get trcl.¹xº/ 2 V and thus x 2 V . More precisely, let f W trcl.¹xº/! � be a
bijection in M. Let code W � � � ! � be the definable bijection in M and V given in the proof of Lemma 5D • 2.
It follows that

A D ¹code.f .a/; f .b// W a 2 b 2 trcl.¹xº/º 2 P .�/ \M \ V .
V can then decode A with code�1 "A D ¹hf .a/; f .b/i W a 2 b 2 trcl.¹xº/º 2 V . But h�; code�1 "Ai 2 V is
isomorphic to htrcl.¹xº/;2i 2 M by the mostowski collapse. Hence taking the mostowski collapse in V yields
by uniqueness of the collapse that htrcl.¹xº/;2i 2 V . From this, x 2 V since x is the 2-maximal element of
htrcl.¹xº/;2i 2 V . a

Now we may actually get on with proving the main result.
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Proof of Gap Forcing (35D • 2) .:.

Note firstly that by Lemma 35D • 9, the statement “cof.�/ < ı” is the same among V, VŒG�, MŒj.G/� and M.
This will be useful when using Lemma 35D • 8. Let G D GP � GQ where GP is P -generic over V and GQ is
Q D PQGP -generic over V ŒGP �. Recall that we need to show the following:

1. M D V \MŒj.G/�.
2. j � V W V !M is a class of V .
3. VŒG� � “�MŒj.G/� �MŒj.G/�” implies V � “�M �M ” for all � 2 Ord.
4. VV

�
�MŒj.G/� implies VV

�
�M .

Before we show any of these, it will be useful to show the following claim.
Claim 1

M � V .

Proof .:.

By Lemma 35D • 11, it suffices to show that every set A of ordinals inM is in V . We proceed by induction
on � D supA. So suppose A 2 P .�/ \M with A \ � 2 V for each � < � . If cof.�/ � ı, then Lemma
35D • 8 tells us A 2 V since otherwise A 2 V ŒG� would be fresh.

So assume cof.�/ < ı. Write G D GP � GQ for GP P -generic over V . We know A 2 M � V ŒG� and
by the � ı-distributivity of PQGP D Q as a result of Corollary 35B • 7, it follows that Q didn’t add A, i.e.
A 2 V ŒGP �. So let PA be a P -name forA as a subset of � . Let ˛ be sufficiently large (e.g. such that VV˛ reflects
the statements (1) “p  “ L̨ 2 PA” _ p  “ L̨ … PA”” and (2) 8˛ < � .(1) holds/ for p 2 P and ˛ < � ) and
consider the (uncollapsed) hull

Hull D HullV
V
˛ .¹ PA;Pº [ P/.

It should be clear that GP is P -generic over Hull and VV
˛ . Moreover, Hull 4 VV˛ . It’s not hard to see that

jHull j D jP j � ℵ0 � ı so that Hull\Ord is a set of V and M by the previous argument. Since A 2 M
already, it follows that a D A\Hull � Ord is also inM and as a small set, by Corollary 35D • 10, a 2 V .
Hence there is some p 2 GP such that p  “ PA D La”, meaning for each � 2 Hull,

p  “ L� 2 PA” or p  “ L� … PA”. (�)
By hypothesis on ˛ being sufficiently large, (�) holds in VV˛ for each � 2 Hull and so by elementarity, (�)
holds in Hull for each � 2 Hull, meaning Hull � “p decides every element of PA” and thus the same holds
in VV˛ and by hypothesis on ˛, this holds in V. Hence A 2 V defined by ¹˛ 2 � W p  “ L̨ 2 L�”º. a

As a corollary of Claim 1, using Corollary 35D • 10, we have tthat ıM �M in V. Now we show (1)–(4) above.
1. ClearlyM � MŒj.G/� andM � V so it suffices to show V \MŒj.G/� � M . To show this, we defer to

sets of ordinals. It’s not immediate this suffices by Lemma 35D • 11, since it’s not clear V\MŒj.G/� � ZFC
yet. Proceed by induction: let x 2 V \MŒj.G/� and assume inductively that x � M and so (since V ,
V ŒG�, MŒj.G/�, and M all have the same ordinals) x � VM

˛ for some ˛. In M, let g W � ! VM
˛ be

a bijection. Now consider A D ¹˛ < � W g.˛/ 2 xº as a set of ordinals. If A … M , let � � � be
least such that A \ � 2 M for all � < � but A \ � … M . If cof.�/ � ı then Lemma 35D • 8 tells us
A\� 2MŒj.G/�must be inM because it was added by a preorder admiting a gap at j.ı/ D ı. So assume
cof.�/ < ı as witnessed by � D sup�< �� in V for some  < ı. Since ıM � M in V, the sequence
hA \ �� W � < i 2 M and thus the union, A \ � , is inM , a contradiction. Hence there is no such � such
that A \ � …M , i.e. A \ � D A 2M . It follows that g�1"A D x 2M since g 2M .

2. Showing j � V is a class of V requires showing two things: that j � V is amenable to V and that j � V
is FOLp-definable over V. First we show amenability, that if x 2 V then j \ x 2 V .

Claim 2
j � V is amenable to V iff j "� 2 V for every � 2 Ord \ V .
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Proof .:.

Clearly the (!) direction holds: if j � V is amenable to V then j \.��VV
˛/ for every �; ˛ 2 Ord\V

and hence for ˛ D sup j "� , j "� D im.j \ .� � VV
˛// 2 V .

For the ( ) direction, assume j "� 2 V for every � 2 Ord \ V . Let X 2 V be arbitrary. We have
X � dom.X/ � VV

˛ for some ˛. Since dom.X/ 2 V , by enumerating g W � dom.X/, we have
j \X D ¹ha; bi 2 X W j.a/ D bº D ¹hg.˛/; g.ˇ/i W ˛ 2 � ^ j.˛/ D ˇº.

Note that j "� 2 V and thus j � � 2 V as the increasing enumeration of j "�. Hence for ˛ < �,
j.˛/ D ˇ is definable in V (via h˛; ˇi 2 j � �) and so the above defines j \X in V. a

So let � 2 Ord \ V be arbitrary and supose inductively that j "� 2 V for each � < � . As a class of VŒG�,
j "� 2 V ŒG�. And as before, if cof.�/VŒG� � ı then j "� 2 V by Lemma 35D • 8. So assume cof.�/ < ı

as witnessed by h�� W � < i 2 V for  < ı. By � ı-strategic closure and thus � ı-distributivity of
Q, hj "�� W � < i 2 V ŒGP � and therefore j "� , as the supremum of these, is in V ŒGP �. So let � be a
P -name for j "� . As with Claim 1, let ˛ be sufficiently large (e.g. such that VV˛ reflects the statements (1)
“p  “ L̨ 2 PA” _ p  “ L̨ … PA”” and (2) 8˛ < � .(1) holds/ for p 2 P and ˛ < � ) and consider again an
uncollapsed hull

Hull D HullV
V
˛ .¹�;Pº [ P/ 4 VV˛ .

Since jHull jV � ı, j "� \ Hull has size � ı in V and so is in M by Corollary 35D • 10. Furthermore,
j "� \ Hull D j "X for some X � � in V ŒG� of size � ı, and since we can enumerate X D ¹x˛ W ˛ < ıº,
j.X/ D ¹j.x˛/ W ˛ < j.ı/ D ıº D j "X since ı < � D cp.j /. By Lemma 35D • 9, we can cover X by
a set Y 2 V \M of size � ı and without loss of generality, X � Y � � . Thus we have j "� \ Hull D
j "X � j "Y � j "� \ Hull and so equality holds: j "Y D j "� \ Hull and, as with X , j "Y D j.Y /. But
since Y 2 V , j.Y / 2 M � V . Thus V has access to all the information of a D j "� \ Hull and we can
find some p 2 GP such that p  “� D La” meaning for each � 2 Hull,

p  “ L� 2 �” or p  “ L� … �” �

By hypothesis on ˛ being sufficiently large, (�) holds in VV˛ for each � 2 Hull and so by elementarity, (�)
holds in Hull for each � 2 Hull, meaning Hull � “p decides every element of �” and thus the same holds
in VV˛ . By hypothesis on ˛, this holds in V and thus j "� is definable in V with j "� D ¹˛ < � W p 
“ L̨ 2 �”º 2 V . By Claim 2, this finishes the proof that j � V is amenable to V .

To show that j � V is FOLp-definable over V, let ' be a formula that defines j over VŒG�: j.x/ D y iff
VŒG� � “'.x; y; w/” for parameters w (which we write as a single parameter for notational convenience).
Let Pw be a P � PQ-name for w. Thus for x; y 2 V , j.x/ D y iff 9p 2 G .p  “'. Lx; Ly; Pw/”/. For each
� 2 Ord \ V , we then get a p� realizing this for j � VV

�
instead of just j � V , and so unboundedly

many � must have the same p� D p�. We can then use this p� to define j � V in V by j.x/ D y iff
p�  “'. Lx; Ly; Pw/”.

3. This is easy since if �MŒj.G/� �MŒj.G/� in V ŒG� then any �-length sequence ofM �MŒj.G/� in V is
in V ŒG� and thus inMŒj.G/�. So any such sequence is in V \MŒj.G/� DM by (1).

4. This is also easy since VV
�
�MŒj.G/� implies VV

�
D VV

�
\MŒj.G/� �M by (1). a

§35E. Master conditions

One of the arguments used in the proof of Gap Forcing (35D • 2) above is to take a hull and use a single condition
that gives a great deal of information about forcing over the hull. Such conditions are the last topic we focus on here.
To motivate the idea, let’s consider an extreme case. Suppose I have a traditional j W V ! M and I stretch P to
j.P/ in such a way that there is some p 2 j.P/ below every element of j "P . Such a p has the property that if H is
j.P/-generic over M with p 2 H , then G D j�1"H will be generic over P and we can then clearly lift using Generic
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Lifting (35A • 2). This is an extreme idea, but the idea is that p provides a very nice way to lift the embedding, and
more generally, p allows us to argue about forcing on the V side in M. This is the main motivation behind considering
master conditions. First we begin with the easier idea of a strong master condition.

35E • 1. Definition
Let V;M be transitive. Let P 2 V be a preorder. Let j W V ! M be elementary. Let G � P . We call p� 2 j.P/ a
strong master conditions for j and G iff p� 6j.P/ j.p/ for all p 2 G, i.e. p� is below j "G.

This easily allows us to lift up an embedding if this master condition is in a generic overM byGeneric Lifting (35A • 2).
35E • 2. Corollary
• Let j W V !M be elementary between transitive models of ZFC we can force over.
• Let P 2 V be a preorder appropriate for forcing.
• Let G � P be P -generic over V .
• Let p� 2 j.P/ be a strong master condition for j and G.
• LetH be j.P/-generic overM with p� 2 H .

Therefore, G D j�1"H is P -generic over V , and so j W V !M lifts to jC W V ŒG�!MŒH�.

Proof .:.

Clearly j "G � H since H is a filter and p� 6j.P/ j.p/ for any p 2 G. That we can lift and G D j�1"H
follows from Generic Lifting (35A • 2) (2). a

Now sinceH was an arbitrary generic containing the strong master condition, it follows thatG D j�1"H for any such
generic. One way to think about this is as a restriction on the kinds of generics we can find for M. But another way to
think about this relationship is instead that our strong master condition is able to generate a generic. If we forget about
being givenG, such a condition p� lets us generate a generic likeG. So now we attempt to give a more general notion
of a strong master condition that ignores G but still retains a similar property.

35E • 3. Definition
Let V;M be transitive. Let P 2 V be a preorder. Let j W V !M be elementary. We call p� 2 j.P/ a strong master
condition for j and P iff for every maximal antichain A � P in V, j "A has a unique element above p�.

In essence, we may translate antichains from V and work with them inM. This gives Corollary 35 E • 2 where we may
not know what G looks like beforehand.

35E • 4. Corollary
• Let j W V !M be elementary between transitive models of ZFC we can force over.
• Let P 2 V be a preorder appropriate for forcing.
• Let p� 2 j.P/ be a strong master condition for j and P .
• LetH be j.P/-generic overM with p� 2 H .

Therefore, G D j�1"H is P -generic over V , and so j W V !M lifts to jC W V ŒG�!MŒH�.

Proof .:.

Clearly j "G � H . For genericity, we use the antichain characterization of Theorem 32C • 5. Let A � P
be a maximal antichain. Therefore j "A has a unique element j.p/ 2 j "A such that p 6j.P/ j.p/. Hence
j.p/ 2 H \ j "A so that p 2 G\A. SinceH is generic,H \ j "A has size at most 1 and therefore jG\Aj D 1.
Once we show G is a filter, this tells us G is P -generic over M and we can lift by Generic Lifting (35A • 2).

G is a filter because H is: if p 6P q with p 2 G then j.p/ 6P j.q/ with j.p/ 2 H . Since H is a filter,
j.q/ 2 H so that q 2 G. For compatibility, clearly any two p; q 2 G are compatible in P . Let D be the set of
everything below both p; q or incompatible with one of them. By Result 32C • 3, there is a maximal antichain
A � D where then j "A\H is some j.r/ with p� 6 j.r/. It follows that j.r/ can’t be incompatible with j.p/
or j.q/ since all three are inH andH is a filter. Thus j.r/ 2 H is below j.p/; j.q/ so that r 2 G is below p; q.
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This completes the proof that G is a filter and by the above remarks, we can lift j . a

The general idea with strong master conditions is that they are able to not only generate a generic, but they tell us exactly
what that generic should look like: p� tells us whereG should intersect antichains. Nevertheless, this is sometimes too
strong of a condition to verify practically, and is more than what is necessary to make certain arguments go through.
Loosely speaking, a strong master condition not only forces j�1"H to be generic, it also tells us what that generic
looks like.

A weak master condition can be defined just by forcing the preimage to be generic. The way to do this is by ensuring the
preimage will always intersect maximal antichains, but it does not saywhere as in Definition 35 E • 3. This is equivalent
to saying that j "A is predense below p� for each suchA. Such a notion is very useful in the context of PFA and related
forcing axioms. Let us explain the common terminology.xl

35E • 5. Definition
Let P be a preorder and p� 2 P .

1. A setD is predense iff every element of P is compatible with some element ofD.
2. A setD is predense below p� iffD is predense in P6p .

Such a set is predense in the sense that the downward closure of the set is dense in the same way that this is true of a
maximal antichain. It’s actually fairly clear that one can re-characterize a maximal antichain as a predense antichain.
Moreover, every dense set is obviously predense. And this gives us the following.

35E • 6. Corollary
Let V � ZFC be a transitive model we can force with P 2 V , a preorder, over. Therefore, for a filter G � P , the
following are equivalent:

1. G is P -generic over V .
2. G \ A ¤ ; for every maximal antichain A 2 V ;
3. G \D ¤ ; for every predenseD 2 V ;
4. G \D ¤ ; for every denseD 2 V ;

Proof .:.

The equivalence between (1), (2), and (4) is shown by Theorem 32C • 5. (That jG \ Aj D 1 for A an antichain
follows from G being a filter.) So suppose (3) holds. Since every dense set is predense, it follows that G is
generic. For the other direction of (1)! (3), suppose D is predense. Let D0 � D be the downward closure of
D so that D0 is therefore dense. G \D0 ¤ ; and any element of this lies beneath some element p 2 D. Since
G is closed upward, p 2 G \D as desired. a

And this motivates the idea of a weak master condition.
35E • 7. Definition

Let j W V !M be elementary between transitive models of ZFC. Let P 2 V be a preorder and p� 2 j.P/. We say
p� is a weak master condition for j;P iff for every maximal antichain A � P in V, j "A is predense below p�.

Predense sets and master conditions are often useful in the context of proper forcing where we often take skolem
hulls.xli But for now we will just cover the very basic ideas. Readers interested more in these topics should consult
[17]. For now, what matters is that transforming critical information about the poset in V like maximal antichains into
informative sets below a single p� inM via j W V ! M means that p� has a lot of power in relation to the generics
over V . This gives us Corollary 35 E • 4 for weak master conditions by basically the same proof.

xlThis terminology was briefly brought up in Definition 33D • 1, but we will actually look at the ideas here.
xliElsewhere in the literature, we would consider HullV.X/ � H� for some X and � and consider j as the resulting (uncollapsing) map from

cHullV.X/ to H� . In this framework, a weak master condition for j;P is sometimes called .HullV.X/; j.P//-generic [17]. The concept can also
be thought of in terms of certain games and names for ordinals in a very nice way.
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35E • 8. Corollary
• Let j W V !M be elementary between transitive models of ZFC we can force over.
• Let P 2 V be a preorder appropriate for forcing.
• Let p� 2 j.P/ be a weak master condition for j and P .
• LetH be j.P/-generic overM with p� 2 H .

Therefore, G D j�1"H is P -generic over V , and so j W V !M lifts to jC W V ŒG�!MŒH�.

Proof .:.

Clearly j "G � H . For genericity, we use the antichain characterization of Theorem 32C • 5. Let A � P be a
maximal antichain. Therefore j "A is predense below p�. Since p� 2 H ,H \j "A ¤ ; by Corollary 35 E • 6 (3)
and hence G \A ¤ ;. Once we show G is a filter, this tells us G is P -generic overM and we can lift by Generic
Lifting (35A • 2).

G is a filter because H is: if p 6P q with p 2 G then j.p/ 6P j.q/ with j.p/ 2 H . Since H is a filter,
j.q/ 2 H so that q 2 G. For compatibility, clearly any two p; q 2 G are compatible in P by elementarity and
compatibility between j.p/; j.q/ 2 H . LetD be the set of everything below both p; q or incompatible with one
of them. By Result 32C • 3, there is a maximal antichainA � D where then j "A is predense below p� and hence
j "A \ H ¤ ; with some element j.r/. It follows that j.r/ can’t be incompatible with j.p/ or j.q/ since all
three are inH andH is a filter. Thus j.r/ 2 H is below j.p/; j.q/ so that r 2 G is below p; q. This completes
the proof that G is a filter and by the above remarks, we can lift j . a

This actually provides a characterization of being a weak master condition.
35E • 9. Corollary
• Let j W V !M be elementary between transitive models of ZFC we can force over.
• Let P 2 V be a preorder appropriate for forcing.
• Suppose p� 2 j.P/ is such that G D j�1"H is P -generic over V wheneverH is j.P/-generic overM with
p� 2 H .

Therefore p� is a weak master condition for j;P .

Proof .:.

Suppose A � P is a maximal antichain in V. Let q 6j.P/ p� be arbitrary. We need that there is some element of
j "A compatible with q. Suppose not. LetH be j.P/-generic overM such that q 2 H and therefore p� 2 H . It
follows that G D j�1"H is P -generic over V . As A is a maximal antichain, G \ A D ¹rº for some r 2 P and
therefore j.r/ 2 H \ j "A. SinceH is a filter, j.r/ 2 j "A is compatible with q. As q 6 p� was arbitrary, j "A
must be predense below p�. a

Examples of master conditions can be found in, for example, the proof of Gap Forcing (35D • 2), in particular the p
such that (�) held. Other examples can be found with a common technique like the following.

35E • 10. Result
• Suppose j W V !M is traditional between transitive models of ZFC we can force over.
• Suppose �M �M .
• Suppose P 2 V is such that

1. jP jV � �; and
2. j.P/ Š P � PQ where PQ is (forced to be) � �-directed closed in M.

– A preorder is � �-directed closed iff for every set A such that 8p; q 2 A 9r 2 A .r 6 p; q/ (i.e.
every directed set A), if jAj � � then there is some p� below every element of A.

• SupposeM has only �C-many dense sets (according to V) of j.P/.
Therefore we can lift j to jC W V ŒG�!MŒG �H�.
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Proof .:.

LetG be P -generic over V . By (1), j "G has size� � in VŒG� and is directed. PQ being forced to be� �-directed
closed inM implies PQ is also forced to be� �-directed closed in V since �M �M . Thus PQG is also� �-directed
closed in VŒG� and so there is some p� below every element of j "G, in other words, a strong master condition
for j;G.

In VŒG� we can enumerate the dense sets inM of PQG by ¹D˛ W ˛ < �Cº. Now we construct a genericH below
p� as follows. Let p0 2 D0 be below p�. Inductively, let p˛ 2 D˛ be below the directed set ¹pˇ W ˇ < ˛º

(which, more than being directed is just linearly ordered). Such a p˛ exists for ˛ < � by the� �-directed closure
of PQG . The result is ¹p˛ W ˛ < �Cº which intersects every dense set of PQ in MŒG�. It follows that the filter H
generated by this set contains p� and is generic overMŒG�. Hence j "G can be regarded as a subset of G �H
and thus we can lift j to jC W V ŒG�!MŒG �H�. a

It’s not too difficult to see thatMŒG�H� remains closed under �-length sequences in VŒG�. These ideas and techniques
are commonly used when dealing with supercompact cardinals, which assert the existence of a j W V ! M with
�M � M , j.cp.j // > �, for arbitrarily large �. Such cardinals make calculating the number of dense sets of M
relatively easy since such embeddings can be generated by a certain kind of ultrapower, which means one needs only
to count the generating functions in V. And often, the P of Result 35 E • 10 will be an iteration that starts with small
preorders to ensure we can factor j.P/ Š P� PQwhere the tail iteration has a certain amount of directed closure because
the initial preorders in the iteration do too. Further reading in [17] and [4] is recommended.
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Section 36. Exercises

In all of the following exercises, let V � ZFC be a transitive model we can force with P 2 V over (for P a preorder),
and let G be P -generic over V .

§36A. Easier Exercises

36 • Ex1. Exercise: Show that if P has a minimal condition p, then ¹q 2 P W p 6P qº is P -generic over V .

36 • Ex2. Exercise: Let S � � be stationary in V , meaning S \ C ¤ ; for every club subset of � D cof.�/ > ℵ0 in
V. Suppose P is < �-closed. Show S is still stationary in VŒG�.

36 • Ex3. Exercise: Show VVŒG�
˛ D ¹�G W � 2 V

P
˛ º for any ˛ 2 Ord.

36 • Ex4. Exercise: Show that if P is < �-distributive in V for some regular � 2 Ord then VV
� D VVŒG�

� .

36 • Ex5. Exercise: Suppose j W V ! M is traditional and lifts to jC W V ŒG� ! MŒH�. Suppose every element of
V P
˛ has a name in VV

˛ , and VV
˛ D VM

˛ . Show VVŒG�
˛ D VMŒH�

˛ .

36 • Ex6. Exercise: Show a countable support iteration of length !1 takes inverse limits at every limit stage except
stage !1 where it takes the direct limit of previous iterations.

36 • Ex7. Exercise: Show the results of Theorem 33A • 1 using previous proofs in Section 32.

36 • Ex8. Exercise: Show the results of The Generalized Δ-System Lemma (33A • 2) using the proof of The Δ-System
Lemma (32D • 2).
36A • 1. Definition

Define T D hT ;6i to be a normal suslin tree iff the following hold:
1. T is a tree with height !1.
2. All branches of T have length < !1.
3. All levels of T have size < ℵ1.
4. All antichains of T have size < ℵ1.
5. For all t 2 T , if ˛ > rankT .t/, then there is an s of T -rank (i.e. height) ˛ with t 6 s (i.e. every element can

be extended to an element of arbitrary height).
6. For all t0; t1 2 T and limit ˛ < !1, if pred6.t0/ D pred6.t1/ then t0 D t1 (i.e. no splitting at limit stages).
7. For all t 2 T , the set ¹s 2 T W t 6 s ^ :9r .t 6 r 6 s/º is infinite (i.e. every element has infinitely many

direct sucessors).
A suslin tree is just a tree satisfying (1)–(4).

Suslin trees are important in relation to the standard linear order on R. We know hR; <i is uniquely defined by three
properties: it’s a dense linear order without endpoints, it’s a complete linear order, and it’s separable. It’s unclear
whether separability can be weakened to merely being ccc (where an antichain for a linear order is a set of disjoint
open intervals). A suslin line is a linear order witnessing that we cannot weaken separability to being ccc: a suslin line
is not isomorphic to hR; <i but it is a complete, ccc, dense linear order without endpoints. The existence of suslin lines
is equivalent to the existence of suslin trees. Suslin’s hypothesis, SH, is that there are no suslin lines. In the end, we have
SH is independent of ZFC, of ZFCCCH, and of ZFCC:CH. In particular, we have that ZFCCMAC:CH � SHwhile
ZFCC “V D L” � :SHC CH. Using techniques of forcing, we can use this last relative consistency of ZFCC:SH
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to force :CH while preserving :SH, basically showing :SH 6! CH. One can also show the relative consistency of
ZFCC CHC SH so that SH and CH are completely independent of each other relative to ZFC.

36 • Ex9. Exercise:

a. Show the existence of normal suslin trees is equivalent to the existence of suslin trees. (Hint: remove the
points not satisfying (5))

b. Show MAC:CH implies there are no normal suslin trees.

Suslin trees are an easy counter-example to the nice looking claim that the product of ccc posets is ccc.

36 • Ex10. Exercise: Show that if T D hT ;6i is a normal suslin tree as in Definition 36A • 1, then T 0
D hT ;>i is a

ccc poset such that T 0
� T 0 is not ccc.

36 • Ex11. Exercise: Let G D G0 �G1 be Add.ℵ0;ℵ2/ � Add.ℵ1;ℵ3/ in V. Show VŒG� � “2ℵ0 D ℵ2 ^ 2ℵ1 D ℵ3”.

§36B. Medium Exercises

36 • Ex12. Exercise: AssumeMA. Let � < jRj be a cardinal and suppose X˛ has lebesgue measure 0 for each ˛ < �.
Show

S
˛<� X˛ has lebesgue measure 0. Hint: consider the preorder P D ¹p � R W p is open ^ �.p/ <R "º

where � is lebesgue measure and <R is the usual ordering on reals.

36 • Ex13. Exercise: Let P D
¨
n<!
PQn be a finite support iteration with each PQ˛ appropriate for forcing. Show that

P adds a cohen real in the sense that there’s a g 2 V ŒG� that is Add.!; 1/-generic over V .

36 • Ex14. Exercise: Suppose P D Q �Q is �-cc for some Q 2 V . Suppose � is measurable in VŒG�. Show that �
is measurable in V.

36 • Ex15. Exercise: Let � be regular. Show that Add.�; 1/ forces 2<� D �.

36 • Ex16. Exercise: Consider the iteration P D
¨
˛<�
PQ˛ where PQ˛ is (forced to be) Add.ℵ˛C1; 1/, using easton

support. Assume 2� D �C for all � � � and show P  GCH.

36 • Ex17. Exercise: Suppose T is a suslin tree as in Definition 36A • 1. Let � > 2ℵ0 be a regular cardinal. Show that
Add.!; �/ forces that T is still a suslin tree (and hence the consistency :CH with the existence of a suslin tree.)

36 • Ex18. Exercise: Let S � !1 be stationary in V. Consider P D hP ;6i defined by (in V)
P D ¹X � S W sup.X/ < !1 ^ 8Y � X .sup.Y / 2 X/º.

ordered by p 6 q iff p \max.q/ D q. Show that

a. P is � ℵ0-distributive in V.
b. P is not � ℵ0-closed in V.
c. VŒG� � “

S
G � S is a club of !1”.

Conclude there is no FOLp.2/-formula ' such that ZFC ` “¹˛ < !1 W V!1
� “'.˛/”º is stationary but doesn’t

contain a club”.

§36C. Harder Exercises

36 • Ex19. Exercise: Assuming whatever reasonable/standard large cardinal assumptions you’d like, find an example
of an embedding j W V ŒG�!MŒj.G/� such thatM 6� V .
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36 • Ex20. Exercise: For regular � 2 Ord, ˙� is the statement that there is a sequence hA˛ � ˛ W ˛ < �i such that for
every X � �, ¹˛ < � W X \ ˛ D A˛º is stationary in �. We often write ˙ for ˙ℵ1

. We can use this statement to
show the existence of a suslin tree in L, thus showing the independence of the existence of suslin trees from ZFC
when coupled with Exercise 36 • Ex9.

a. Show Add.�; 1/ forces ˙� whenever � is regular.
b. Show L � ˙� for every regular �, where ˙� is as in Exercise 36 • Ex20.
c. Show ˙� implies 2<� D �. Conclude L � GCH.
d. Show that if T is a tree satisfying (1)–(3) of Definition 36A • 1, any maximal antichain A of T has

C D ¹˛ < !1 W A \ T˛ is a maximal antichain of T ˛º

as a club. Here T˛ refers to the subtree of T consisting of elements of rank < ˛.
e. Show that ZFCC ˙ � “there is a suslin tree”, defined in Definition 36A • 1. (Hint: choose which points to

extend in T˛ � ˛ according to whether A˛ in the ˙-sequence is a maximal antichain of T˛ . Use this with
(d).)

36 • Ex21. Exercise (Easton Forcing): Let F 2 V be a function from regular cardinals to cardinals such that for all
� � � 2 dom.F /, � < cof.F.�// and F.�/ � F.�/. Therefore there is a poset P that forces 2� D F.�/ for all �.
We now walk through a proof.

a. Suppose P is� �-closed and Q is �C-cc. LetG D GP �GQ be P �Q-generic over V. Show every function
f W � ! V in V ŒG� is in V ŒGQ�.

b. Define EF to be the product forcing
Q
�2dom.F / Add.�; F.�//with Easton support, i.e. direct limits at weakly

inaccessible stages and inverse limits elsewhere. Define E��
F to be EF ��C , and similarly for the tail E>�F .

Assuming GCH, show for all � 2 dom.F /, E��
F is �C-cc and E>�F is � �-closed. (Hint: to show it’s �C-cc,

use GCH with The Generalized Δ-System Lemma (33A • 2).)
c. Assume V � GCH, and let F 2 V be as above. Let G be EF -generic over V . Show VŒG� � “8� 2

dom.F / .2� D F.�//C8� > sup.dom.F // .2� D �C/”.

The next exercise about defining the ground model (using parameters) will make use of the following definitions. For
the sake of reference, we include the concept of covering from Definition 33B • 4.

36C • 1. Definition
Let V � W be transitive models of (sufficiently large fragments of) ZFC. Let ı be a cardinal of W.

1. V;W have the < ı-covering property iff for all A 2 W , if A � V with jAjW < ı then there is some A0 2 V

such that A � A0 and jA0jV < ı.
2. V;W have the < ı-approximation property iff for all A 2 W , if A � V and

8x 2 V .jxjV < ı ! A \ x 2 V /

then A 2 V .

Succinctly, < ı-covering says that we can cover < ı-sized sets of W with < ı-sized sets in V, and < ı-approximation
ssays that if every < ı-sized subset of A is in V then A 2 V (even if A is very large).

36 • Ex22. Exercise (Defining the Ground Model): Let V be a transitive model of set theory we can force with P over
and let G be P -generic over V .

a. Suppose ı is a regular cardinal of V. Suppose M;N � V are two inner models such that
i. P .ı/M D P .ı/N;
ii. M;V and N;V both have the < ı-covering and < ı-approximation properties;
iii. .ıC/M D .ıC/V D .ıC/N.
Show that every set of ordinals in V of size < ı is contained in a set inM \N of size � ı.
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b. With the same setup, show that M and N have the same sets of ordinals. Conclude M D N.
c. Suppose P Š R � PQ admits a gap at ıC. Show V; V ŒG� have the < ıC-covering property.
d. Suppose P Š R � PQ admits a gap at ıC. Show V; V ŒG� have the < ıC-approximation property by the

following line of reasoning.
i. Let A 2 V ŒG� with A � Ord be arbitrary such that A \X 2 V for any ı-sized subset X � sup.A/ � �
in V. Let PA be a P -name for A and considerM D HullH

V
� .R [ ¹�;P ; PAº/ for some sufficiently large � .

Show that if hp; Pqi doesn’t decide “ L̨ 2 PA” then there are extensions p�
0 ; p

�
1 6R p and 1P  “ Pq� 6 PQ Pq”

such that
hp�
0 ; Pq

�
i  “ L̨ 2 PA” and hp�

1 ; Pq
�
i  “ L̨ … PA”.

ii. Show there is a Pq 2 M where for every p 2 R, there are extensions p�
0 ; p

�
1 6 p and an ordinal ˛ 2 M

such that
hp�
0 ; Pq

�
i  “ L̨ 2 PA” and hp�

1 ; Pq
�
i  “ L̨ … PA”.

iii. Let a D A\M 2 V and extend h1R; Pqi to some hp�; Pq�i  “ PA \ LM D La”. Show hp�; Pq�i decides all
of A in V .

e. Show V is FOLp.2/-definable in VŒG� from just the parameter P .jP j/V . Hint: show the < ıC-covering and
< ıC-approximation properties for VV

�
;VVŒG�

�
, and use (b) to define VV

�
as a certain inner model of VVŒG�

�
(of

sufficiently enough set theory) with certain properties that agrees with V on P .jP jC/. Then reduce the need
for P .jP jC/V to P .jP j/V .
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Appendix A. Computability Theory

Computability is one of the most boring, tedious aspects of logic, akin to estimating infinite sums for traditional math-
ematics in that it mostly consists of looking at the fine details of long, hideous formulas and calculations. That said,
it is unfortunately one of the most important aspects of the study, as it has close connections with definability and
absoluteness. Fortunately, it develops into a study with more interesting questions with interesting methods through
descriptive set theory and inner model theory. For now, we focus on the basics of computability theory.i

Themost basic question that motivates the study is the following: “what can we compute?”This can be said in a slightly
more formal manner of “What sets A � ! are such that for any x, we can compute whether x 2 A or not?” Of course,
to answer such questions, we must first fix a notion of what it means to be able to compute something.

There is a distinction between the meta-theory and the formal theory similar to that of proof with first-order logic:
we have our meta-theoretic sense of computation, and our more formal sense of it. Setting things up correctly, we
should have the analog of “soundness”: that if something is computable in the formal sense, then it’s computable in
the meta-theoretic sense. A priori, the converse, analogous to “completeness”, can’t be proven, as “computable” is a
vague meta-theoretic concept that isn’t as precise as truth for FOLp-formulas.

In light of the equivalence between all sufficiently strong methods of computationii, we adopt the Church–Turing thesis
which states that if something is computable in the meta-theoretic sense, then it is computable in the formal as well.
Often we will appeal to this philosophical stance as a form of laziness, avoiding having to give the precise details of
an algorithm.

With all notions we present, we will start by defining which functions are considered computable by means of assuming
that we can carry out certain processes. From this, we can say that a set, relation, and so on are computable according
to whether there is a computable function outputting “true” or “false” (coded by 1 and 0 respectively) in accordance to
whether the element is in the set, or the relation holds, and so on. In this way, wewill expand the notion of computability
from functions to sets, relations, propositions, and so on.

In doing so, we will often encounter the issue of where an algorithm does not give a final answer: it just keeps going
through the instructions forever, never able to arrive anywhere. Hence we will often be dealing with partial functions
rather than full fledged functions. In essence, a partial function is just a function where we state a larger domain than
it actually has, similar to stating a larger range of a function than its actual image.

A • 1. Definition
A function f is a partial function from A to B , written f W A * B , iff there is someD � A where f W D ! B .

The only purpose of this is to say that the algorithm that determines f W ! * ! accepts inputs from !, but perhaps
doesn’t return an answer for all of them. Moreover, it might not be clear what dom.f /will be just from its complicated
definition. The use of partial functions is a nice concept that moves past these issues. Fortunately, we will not need to
deal with the issue at first, since our first notion of computability yields only total functions.

iComputability theory historically was called “recursion theory”, and has since been re-branded by those within the field. Many old-guard set
theorists still refer to it as recursion theory, and this is especially so when used in connection to set theory. To avoid a possible mix-up of terminology
between recursive functions and functions defined by recursion, “computable functions” is used here. Unfortunately, primitive recursive functions
have no such re-branding, and we use this term which no longer has a connection in name to computable functions.

iiThere have been many different, complex systems of computation given over time, all of which have been proven to be equivalent in that
something is computable in one sense iff it is in the other. This first started with Alonzo Church's �-calculus and Alan Turing's turing machines,
which were proven to have the same notion of computability by Turing.
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Section A1. Primitive Recursion

We begin with the simplest notion of computability. We allow essentially two operations: adding 1, and the ability
to repeat this. Unsurprisingly, we will need slightly more to flesh out this system, but nothing more computationally
difficult than adding 1. Firstly, analogous to Recursion on ! (3 B • 2), we have the following definition.

A1 • 1. Definition
A function f is defined by recursion iff dom.f / � !nC1 for some n < ! and there are functions g and h where

f .0; Ey/ D g.0; Ey/, and
f .x C 1; Ey/ D h.f .x/; x; Ey/,

for all x 2 ! and Ey 2 n!

This allows us to make precise the notion of “repeating”.
A1 • 2. Definition

The set of primitive recursive functions is the �-smallest subset of partial functions from !<! to ! that is closed
under composition, and recursion as in the scheme Definition A1 • 1, and the functions

• hx0; � � � ; xni 7! xi for each i � n and each n < !;
• x 7! 0; and
• x 7! x C 1.

A1 • 3. Corollary
Every primitive recursive function is a “total” function, meaning its domain is all of !n for some n < !.

Proof .:.

Clearly each hx0; � � � ; xni 7! xi , x 7! 0, and x 7! xC 1 is total. By the inductive hypothesis, for total functions
g and h as in Definition A1 • 1, the resulting f is total. And clearly the composition of total functions is total.
Hence by structural induction, every primitive recursive function is total. a

Primitive recursive functions are also FOLp-definable over h!;C; �; 0; 1i. In fact, the axioms of peano arithmetic, PA,
are able to define f on all of the actual natural numbers N.

A1 • 4. Result
Let f W !n ! ! be primitive recursive. Therefore f is definable over N D h!;C; �; 0; 1i.

The proof of this fact is delayed until later, since it makes use of some coding of finite sequences. In particular, to deal
with definitions by recursion, we need to have a number that codes a list of previous calculations obeying the definition.
Much of the following subsection will be to prove that such a coding is primitive recursive.

§A1a. Examples of primitive recursion

We immediately get by recursion that addition is primitive recursive. In particular, we proceed as follows:
f .0; y/ D y

f .nC 1; y/ D f .n; y/C 1.
Here g.x0; x1/ is the map sending hx0; x1i to x1 as in Definition A1 • 2. h.x0; x1; x2/ D x0C1 is then given by taking
the first component of hx0; x1; x2i and adding 1: the composition of two functions from Definition A1 • 2. One can
prove by induction that f .x; y/ D x C y.

The same sort of idea easily gives the following as primitive recursive.
• The constant map x 7! n is primitive recursive for each n 2 ! as seen by repeated composition of 0 and
x 7! x C 1.
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• hx; yi 7! x � y is primitive recursive as seen by g.x; y/ D x C y and h.z; x; y/ D z C x.
• hx; yi 7! xy is primitive recursive as seen by considering the map f 0 where f 0.x; y/ D yx as defined by
g.x; y/ D 1 and h.z; x; y/ D z � y.

• x 7! xŠ is primitive recursive as seen by g.x/ D 1 and h.z; x/ D z � x.
• x 7! pd.x/, the predecessor of x, is primitive recursive where pd.x C 1/ D x while pd.0/ D 0.
• hx; yi 7! x P� y is primitive recursive, where x P� y is 0 if y � x and is x � y otherwise. In the context of Z
rather than !, x P� y D max.0; x � y/.

• hx; yi 7! max.x; y/ is primitive recursive.
• hx; yi 7! min.x; y/ is primitive recursive.

To work out the details more precisely, we have the following slightly more difficult consequences.
A1a • 1. Corollary

Let f be primitive recursive. Therefore the maps
�.Ex; z/ D

X
y<z

f .Ex; y/ and �.Ex; z/ D
Y
y<z

f .Ex; y/

are primitive recursive.

Proof .:.

We define each by recursion: take g� .Ex; y/ D 0 and h� .t; y; Ex/ D t C f .Ex; y/ so that � obeys
�.Ex; 0/ D 0 and �.Ex; nC 1/ D h.�.Ex; n/; n; Ex/ D �.Ex; n/C f .Ex; n/.

By induction, it’s easy to see � defined in this way satisfies the requirements: inductively, �.Ex; 0/ D 0 DP
y<0 f .Ex; y/; and at successor stages, �.Ex; n/ D

P
y<n f .Ex; y/ so that the above equality gives that

�.Ex; nC 1/ D

 X
y<n

f .Ex; y/

!
C f .Ex; n/ D

X
y<nC1

f .Ex; y/.

A similar definition and idea holds for � :
�.Ex; 0/ D 1 and �.Ex; nC 1/ D �.Ex; n/ � f .Ex; n/ a

By considering characteristic functions, we can also regard relations and sets as primitive recursive. Recall that for a
set A � <!!, the characteristic function is defined by

�A.Ex/ D

´
1 if Ex 2 A
0 otherwise.

This demonstrates the usefulness of Corollary A1 a • 1 as the product
Q
y<z �A.Ex; y/ is 1 iff 8y < z .hEx; yi 2 A/.

A1a • 2. Definition
A set or relation A � <!! is primitive recursive iff the characteristic function �A is primitive recursive.

A1a • 3. Corollary
Let f be a function. Therefore f is primitive recursive as a function as in Definition A1 • 2 implies it is primitive
recursive as a relation as in Definition A1 a • 2.
Proof .:.

Suppose f is primitive recursive as a function. Then as a set, consider �.Ex; y/ D 0y P�f .Ex/ � 0f .Ex/ P�y . Recall
that 00 D 1 while 0n D 0 for n ¤ 0. So if f .Ex/ ¤ y, then either f .Ex/ P� y or f .Ex/ P� y will be non-
zero (and in fact, the other will be 0), and hence �f .Ex; y/ D 1 � 0 D 0. Similarly, if f .Ex/ D y, then both
f .Ex/ P� y D y P� f .Ex/ D 0 and hence �f .Ex; y/ D 00 � 00 D 1 � 1 D 1. Therefore � D �f is primitive recursive,
given by the composition of primitive recursive functions: P�, multiplication, exponentiation, and f itself. a

The converse to Corollary A1 a • 3 is not true in general. As we will see, primitive recursive functions do not encompass
all of what is computable, and requires a kind of “bounded search” for an answer. Ostensibly, from a characteristic
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function�f , we could just take the least y such that�f .Ex; y/ D 1 and then get f .Ex/. But this has the issue of potentially
being unbounded in a precise sense. So although it’s computable from �f , that process isn’t primitive recursive.

For now, the ability to talk about relations in a primitive recursive way allows for more complicated definitions. In
particular, we have the following.

A1a • 4. Result
Let g; h be primitive recursive functions. Let A be a primitive recursive relation. Therefore f , defined by

f .Ex/ D

´
g.Ex/ if Ex 2 A
h.Ex/ otherwise,

is primitive recursive.

Proof .:.

Note that f .Ex/ D �A.Ex/ � g.Ex/C .1 P� �A.Ex// � h.Ex/ is clearly primitive recursive since �A, g, and h are. a

This allows for some relations to be easily seen as primitive recursive, as it says that the set of primitive recursive
functions is closed under definitions by cases (where the cases are primitive recursive). In particular, we have some
further closure properties.

A1a • 5. Result
The set of primitive recursive relations is closed under

1. relative complements;
2. intersections; and
3. unions; and
4. bounded quantification (where the bound is primitive recursive).

Proof .:.

Let A and B be primitive recursive relations and g a primitive recursive function. Without loss of generality, A
and B have the same arity, as we are more focused on �A and �B , and if one has fewer variables, just consider
instead the expansion fA.Ex; Ey/ D �A.Ex/ where we ignore the extra variables.

1. �AnB.Ex/ D �A.Ex/ P� �B.Ex/.
2. �A\B.Ex/ D �A.Ex/ � �B.Ex/.
3. �A[B.Ex/ D max.�A.Ex/; �B.Ex//.
4. The last is bounded quantification, and by this, we mean the sets

A0
D ¹Ex W 9y � g.Ex/ .hEx; yi 2 A/º and A00

D ¹Ex W 8y � g.Ex/ .hEx; yi 2 A/º.
As one follows easily from the other, we will show A00 is primitive recursive. To do this, note that

�A00.Ex/ D min¹�A.Ex; y/ W y � g.Ex/º.
From this, �A00.Ex/ D �.Ex; g.Ex// for � as in Corollary A1 a • 1 with f as �A, meaning �A00.Ex/ DQ
y�g.Ex/ �A.Ex; y/. Hence A00 is primitive recursive. A0 being primitive recursive follows in the same

sort of way: �A0.Ex/ D 1 P�
Q
y�g.Ex/.1 P� �A.Ex; y// witnesses that A0 is primitive recursive. a

This is perhaps more appropriately stated in terms of logic rather than sets. In particular, intersections correspond to
conjunctions, unions to disjunctions, relative complements to negations, and bounded quantification nowmore directly
says what it means. In this way, we can restate Result A1 a • 5 as follows.iii

A1a • 6. Result
The set of primitive recursive relations is closed under conjunctions, disjunctions, unions, and bounded quantification
(where the bound is primitive recursive). More formally, for P.Ex/ and Q.Ex/ two primitive recursive relations and
g.Ev/ a primitive recursive function, then

iiiNote the similarity here with†0-formulas in the Lévy hierarchy.
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• P.Ex/ ^Q.Ex/ and P.Ex/ _Q.Ex/ are primitive recursive;
• :P.Ex/ is primitive recursive; and
• 8y � g.Ev/ P.Ev; y/ and 9y � g.Ev/ P.Ev; y/ are primitive recursive.

The benefit of bounded quantification in particular is that it allows for many simpler definitions, and for minimalization.
A1a • 7. Definition

Let P.Ex; y/ be a relation over !. Write �y < z P.Ex; y/ for the function

f .Ex; z/ D

´
the least y < z such that P.Ex; y/ if there is one
z otherwise

Write �y P.Ex; y/ for the least y such that P.Ex; y/, and leave it undefined if there is no such y.

Using this, we can show that primitive recursive functions are closed under bounded minimalization.
A1a • 8. Theorem

Let P.Ex; y/ be a primitive recursive relation. Therefore �y < z P.Ex; y/ is primitive recursive.

Proof .:.

Define by recursion f .Ex; z/ so that it satisfies
f .Ex; 0/ D 0

f .Ex; z C 1/ D

8̂<̂
:
f .Ex; z/ if f .Ex; z/ ¤ z
z if P.Ex; z/
z C 1 otherwise.

It is easily seen that this is primitive recursive, and by induction that this is the same as �y < z P.Ex; y/. a

This is useful as it will generalize nicely to general computable functions. For now, we turn our attention to codings.

A “code” of a set A into a set B is just an injection f W A ! B that ideally allows us to recover elements from A

according to the encoded elements in B . We have already seen many examples of this, like associating a setA 2 P .!/
with its characteristic function �A 2 !2. The first coding we will consider is encoding !<! into !. We say that this
coding is primitive recursive in the sense that coden D code � !n is primitive recursive for each n < !.

A1a • 9. Result
For each n < !, there is a primitive recursive, injective function coden W !n ! ! where im.coden/\im.codem/ D ;
for n ¤ m < !. Hence code D

S
n<! coden is a primitive recursive injection from !<! to !.

Proof .:.

We first prove two things are primitive recursive.
• Being a prime is primitive recursive. To see this, x is prime iff 8y < x 8z < x .y � z ¤ x/. By
Result A1 a • 6, this is primitive recursive as multiplication and equality of primitive recursive functions is
primitive recursive.

• The map from i to the i th prime number is primitive recursive. We know already that there are infinitely
many prime numbers. Thanks to the widely known proof of Euclid, we can put a bound on where to search
for the next prime. In particular, if we have a list of all the primes below a number x, there must be another
prime below the product of these primesC1 (because none of the primes in our list divide this number). In
particular, there is one below xŠC1. Therefore we can say that the i th prime number is defined by recursion
where p0 D 2 and piC1 D �p � .pi ŠC 1/ .p is a prime/. This shows that i 7! pi is primitive recursive.

As a result, defining coden.Ex/ D
Q
i<n p

xi C1
i (with code0.;/ D 1) yields a function which is injective by the

fundamental theorem of arithmetic. Moreover, this is primitive recursive, and im.coden/ \ im.codem/ D ; for
n ¤ m, since for n < m, every y 2 im.codem/ is divisible by pm�1 (explaining the C1 in the exponent of each
pi ) whereas no element of im.coden/ is. a
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Such a coding is easy to work with in that we can also primitive recursively say whether a given natural number is a
code of a sequence, what the length is, and what the nth entry in the sequence is.iv

A1a • 10. Result
The following are primitive recursive relations or functions from ! to !: for x and y the codes of sequences in <!!
and n 2 !,

1. seq.n/ iff n is the code of a finite sequence (of natural numbers).
2. x 7! lh.x/, the length of code�1.x/.
3. x 7! xn, the nth entry of code�1.x/.
4. hx; yi 7! x_y which is the concatenation code�1.x/_code�1.y/.
5. hx; ii 7! x � i which is the restriction code�1.x/ � i .

If x and y aren’t the codes of sequences, define the functions to be 0.

Proof .:.

From these instructions or directions of algorithms, it should be clear that they are primitive recursive.
1. x is the code of a sequence iff x is of the form px0C1

0 � � �p
xnC1
n for some n < ! and some x0; � � � ; xn 2 !.

So it’s not hard to see that x is the code of a sequence iff for some n, every pi divides x for i < n. This is
easily seen as primitive recursive as a j b is primitive recursive as witnessed by a j b iff 9c � b .a �c D b/.

2. lh.x/ is the least n < x such that pn j x while pnC1 − x. And if :seq.x/, then set lh.x/ D 0.
3. Similar to lh.x/, if lh.x/ < n, we take xn to be 0 and otherwise we take xn to be the least e < x such that
peC1
n j x while peC2

n − x.
4. Here we just set x_y to be the least m <

Q
i<xCy p

xCy
i (this is a bad bound, but it works) such that

8i < lh.x/ .pxi C1
i j m ^ p

xi C2
i − m/ and 8i < lh.y/ .pyi C1

lh.x/Ci j m ^ p
yi C2

lh.x/Ci − m/. And if x or y isn’t
(the code of) a sequence, we set it equal to 0.

5. Here we just set x � i to be the least m < x such that 8k < i .p
xkC1

k
j x ^ p

xkC2

k
− x/. If x isn’t (the

code of) a sequence, we say x � i D 0. a

In essence, this allows us to decode natural numbers into sequences. The usefulness of this idea will be to talk about
natural numbers as both sequences and as natural numbers, and hence talk about codes of codes and so forth. Ultimately,
this will lead to the theorems of Tarski and Gödel, which have implications for logic and set theory in the form of the
undefinability of truth and Gödel’s incompleteness theorems.

For now, the idea of coding and decoding sequences allows us to prove Result A1 • 4. The proof of this does not make
use of the fact that the coding above is primitive recursive, but instead just the idea of coding finite sequences of natural
numbers as natural numbers themselves. The only part of the coding we care about is really the ability to decode natural
numbers.

A1a • 11. Lemma
There is a definable coding (and decoding) of finite sequences over N D h!; 0; 1;C; �i.

Proof .:.

To shorten the notation, we can clearly define � over N: x � y iff 9z .y C z D x/. Therefore x < y

iff x � y ^ x ¤ y. Similarly, x j y iff 9z .x � z D y/. Hence x is a prime number of N iff
N � “x ¤ 1 ^ 8y < x .y j x ! y D 1/”. To ease up notation even more, we have x � y .mod z/ iff
9q .z D q � x C y/.

We unfortunately need to make use of a simpler (for N) to define coding mechanism, since we have no way to
reference general exponentiation (and thus the usual coding) directly. This simpler to define coding is due to

ivAs with the discussions of HOD and L, the model of ZFC we're working in might have misinterpreted ! and hence might contain elements of
“!<!” that aren't finite sequences of natural numbers. This is not a problem for our results, but it is something to keep in mind: the interpretation of
! might not be the actual N. So when I write “x is the code of a finite sequence”, I really mean that x 2 im.code/, however “code” is interpreted
in the model.
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Gödel, and the actual function is called Gödel’s ˇ function. First, we require some number theory in the form
of the Chinese Remainder Theorem. Note that this is really a theorem scheme for N: for each k, we get a new
theorem.

Claim 1 (The Chinese Remainder Theorem)
Let hx0; � � � ; xki 2 !k be given. Let hn0; � � � ; nki 2 !k be such that there is no prime p with p j ni and p j nj
for i ¤ j . Therefore there is exactly one m < n0 � : : : � nk such that for each i � k, m � xi .mod ni /.

Proof .:.

For uniqueness, supposem andm0 both havem;m0 � xi .mod ni / for all i � k. For the sake of definiteness,
supposem > m0. Thereforem�m0 � xi�xi .mod ni /, meaning ni j m�m0 for i � k. But thenm�m0 > 0

must have n0 � � �nk j m�m0, meaningm � n0 � � �nkCm0, contradicting the hypothesis thatm < n0 � � �nk .

For existence, the mapM being x 7! ha0; � � � ; aki—where ai 2 ! is the least such that x � ai .mod ni /
(and thus ai < ni )—is injective by the argument above. Looking at M � n0 � � �nk yields an injective
function from n0 � � �nk � ! to n0 � � � � � nk . The Pigeonhole Principle (5 B • 8) then implies the map is
surjective. HenceM�1.hx0; � � � ; xki/ witnesses the result. a

This suggests we can code sequences of natural numbers just by looking at a few natural numbers. In particular,
we define Gödel’s ˇ function:

ˇ.x; y; i/ D b where b is the least such that x � b .mod y � .i C 1/C 1/.
Clearly ˇ is definable over N as ˇ.x; y; i/ D b iff 9q < x .x D q � .y � .i C 1/C 1/C b ^ b < y � .i C 1/C 1/.
The point of the function is the following claim.

Claim 2
Let k 2 ! and let hx0; � � � ; xki 2 !kC1. Therefore there are x; y < ! such that ˇ.x; y; i/ D xi for every
i � k.

Proof .:.

Set y D .max.x0; � � � ; xk ; k/C 1/Š and ni D y � .i C 1/C 1.

The ni s are relatively prime: there can be no prime p j ni and p j nj for n ¤ j as otherwise for i < j ,
p j ni � nj D y � .j � i/. As a prime, p j j � i or p j y. p can’t divide y since p j 1C .i C 1/y which
would imply p j 1. Thus p j j � i . But p must be greater than max.x0; � � � ; xk ; k/C 1 as otherwise p j y.
Hence p > k � j � i , contradicting that p j j � i ¤ 0 implies p � j � i .

The Chinese Remainder Theorem then states there is some x <
Q
i�k.y � .i C 1/ C 1/ such that x �

xi .mod ni / for i � k and so ˇ.x; y; i/ D xi for i � k. a

This claim not only tells us that we can code all finite sequences of ! by triplets (x, y, and the length of the
sequence), it also tells us we can decode them with the ˇ function. a

Now at this point, we could choose to define the usual coding Ex 7!
Q
i<lh.Ex/ p

xi C1
i overN. But the process for doing so

would take up more space than the goal for introducing it: proving Result A1 • 4. So because this would take up even
more space for a topic already overstaying its welcome, we will work with the clumsy ˇ function to show that primitive
recursive functions are definable over N, and more generally, they are definable over PA: f .Ex/ D y iff PA ` '.#Ex; #y/
where #y writes out the number y as “0C 1C � � � C 1” where there are y 1s. This generalization requires a bit more
work in confirming that PA can prove and define all the necessary background material used thus far.

Proof of Result A1 • 4 .:.

Suppose f is defined by composition of primitive recursive functions: f .Ex/ D g.h1.Ex/; � � � ; hn.Ex//. Let 'g
define g and 'hi

define hi for each i as in the statement of the result. Therefore, for Ex 2 Nm and y 2 N,
f .Ex/ D y iff

N � “9v1 � � � 9vn
�
'h1

.Ex; v1/ ^ � � � ^ 'hn
.Ex; vn/ ^ 'g.v1; � � � ; vn; y/

�
”.

407



PRIMITIVE RECURSION APPX §A1 b

Suppose f is defined by recursion: f .0; Ew/ D g. Ew/ and f .x C 1; Ew/ D h.f .x/; x; Ew/. Let 'g define g and
'h define h as in the statement of the result. But because the following formula is so long, rather than writing
“'g. Ew; y/”, write “g. Ew/ D y”, and do similarly for h. To define f , we code the steps of computation as a finite
sequence up to x, and then declare y is the last computation. More precisely, for Ew 2 Nm and x; y 2 N,
f .x; Ew/ D y iff

N � “9a 9b 9y0
�

g. Ew/ D y0 ^ ˇ.a; b; 0/ D y0 ^ ˇ.a; b; x/ D y

^8i < y 9y1 9y2 .ˇ.a; b; i/ D y1 ^ h.y1; i; Ew/ D y2 ^ ˇ.a; b; i C 1/ D y2/

�
”.

That this is equivalent to f .x; Ew/ D y can be easily checked inductively for x; y 2 ! and Ew 2 !<! . Hence f
is definable over N and therefore by induction, all primitive recursive functions are definable over N. a

§A1b. Bounds and primitive recursion

At this point, one might wonder what total, computable functions could exist that aren’t primitive recursive. Of course,
simply through combinatorial means, one can show that most total functions aren’t primitive recursive.

A1b • 1. Result
There are only countably many primitive recursive functions.

Proof .:.

The set of functions containing x 7! 0, hx0; � � � ; xni 7! xi , and x 7! x C 1 for i � n < ! is clearly countable.
The closure of this set under the operations of composition and definitions by recursion is thus computable, and
this yields all primitive recursive functions. a

As a result, we can enumerate these functions ¹f W !<! ! ! W f is primitive recursiveº D ¹fn W n < !º and
diagonalize: set f W ! ! ! to be where f .n/ D max¹fi .n/ W i � nº C 1. Hence we have an (eventual) bound
on all primitive recursive functions. One might think that f is computable, as we just go through the list of primitive
recursive functions and add one to the max up to that point each time. But this is dependent on the coding of primitive
recursive functions: how n is associated to fn, and more precisely how hn; xi is associated to fn.x/. In particular, this
association needs to be computable in order for the diagonalizing element f to be computable. We can show that such
an association is possible later.

We now give an explicit example of an intuitively computable function that is not primitive recursive, but which
(eventually) bounds every primitive recursive function. This famous function is referred to as the Ackermann function
named after Wilhelm Ackermann.

A1b • 2. Definition
The Ackermann function Ack W !2 ! ! is defined by “double recursion” in that it satisfies

Ack.0; x/ D x C 1
Ack.nC 1; 0/ D Ack.n; 1/

Ack.nC 1; x C 1/ D Ack.n;Ack.nC 1; x//.

So to compute Ack.n; x/, we need to compute Ack.n; y/ for each y < x, eventually leading down to Ack.n; 0/ and
thus requiring Ack.n � 1; 1/ and so on. It’s not hard to see that such a function is well-defined. In particular, for each
n, Ackn being the map x 7! Ack.n; x/ satisfying the above can be defined by recursion and thus Ack, being the map
hn; xi 7! Ackn.x/, is well-defined. The function grows very quickly, as Ack.3; 2/ D 29while Ack.4; 2/ D 265536�3.
To show this in a semi-compact manner, firstly note that Ack.1; x C 1/ D Ack.0;Ack.1; x// D Ack.1; x/ C 1. So
inductively,

Ack.1; x/ D Ack.1; 0/C x D Ack.0; 1/C x D x C 2.
Therefore Ack.2; x C 1/ D Ack.1;Ack.2; x// D Ack.2; x/C 2. So inductively,

Ack.2; x/ D Ack.2; 0/C 2x D 2x C Ack.1; 1/ D 2x C 3.
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Therefore Ack.3; x C 1/ D Ack.2;Ack.3; x// D 2Ack.3; x/C 3. So inductively,
Ack.3; x/ D 2xAck.3; 0/C

X
k<x

3 � 2k .

Since Ack.3; 0/ D Ack.2; 1/ D 2 � 1C 3 D 5, it follows that
Ack.3; x/ D 5 � 2x C

X
k<x

3 � 2k D 5 � 2x C 3 � 2x � 3 D 8 � 2x � 3 D 2xC3
� 3.

In particular, Ack.3; 2/ D 5 � 4C 3 � 4 � 3 D 20C 12 � 3 D 29, and we can compute
Ack.4; 2/ D Ack.3;Ack.4; 1//

D Ack.3;Ack.3;Ack.4; 0///
D Ack.3;Ack.3;Ack.3; 1///

D Ack.3;Ack.3; 21C3
� 3// D Ack.3;Ack.3; 13//

D Ack.3; 216 � 3/

D 22
16

� 3 D 265536 � 3.
As a result, despite using a relatively small number like 100, Ack.100; 100/ is a truly enormous (finite) number. But
the point of the Ackermann function (for our purposes anyway) isn’t to generate large numbers, but to demonstrate
that it isn’t primitive recursive. To do this, we first should note the following properties of the Ackermann function.

A1b • 3. Lemma
Write Ackn for the map x 7! Ack.n; x/. Therefore for every n < !,

1. Ackn is increasing: x < y 2 ! implies Ackn.x/ < Ackn.y/;
2. x < Ackn.x/ for all x 2 !;
3. n < m < ! implies 8x 2 ! .Ackn.x/ < Ackm.x//;
4. Ackn.Ackn.x// < AcknC2.x/ for all x 2 !.
5. Ackn is primitive recursive.

Proof .:.

1, 2. It suffices to show x < Ackn.x/ < Ackn.x C 1/ for every x < !. Proceed by induction on n. For n D 0,
this is clear: x < Ack0.x/ D x C 1 < x C 2 D Ack0.x C 1/. For nC 1, proceed by induction on x.

For x D 0, AcknC1.0/ D Ackn.1/ > 1 > 0 by the inductive hyopthesis on n, which also yields that
AcknC1.1/ D Ackn.AcknC1.0// > AcknC1.0/. Hence the result holds for nC 1 when x D 0.

For x C 1, by the inductive hypothesis on n,
AcknC1.x C 2/ D Ackn.AcknC1.x C 1// > AcknC1.x C 1/

By the inductive hypothesis on x,
AcknC1.x C 1/ D Ackn.AcknC1.x// > AcknC1.x/ > x.

Thus the result holds for all n; x < !.

3. Proceed by induction on n then by induction on m. For n D 0 and m D 1, Ackn.x/ D x C 1 while we
already calculated above that Ackm.x/ D x C 2, which is clearly always larger. For m C 1 assuming
8x 2 !.Ackn.x/ < Ackm.x//, again proceed by induction on x. For x D 0, AckmC1.0/ D Ackm.1/ >
1 D Ackn.0/ by (1). For x C 1,

AckmC1.x C 1/ > AckmC1.x/ > Ackm.x/ > Ackn.x/ D x C 1.
Hence AckmC1.xC 1/ > .xC 1/C 1 D Ackn.xC 1/ so that the result holds for allm and x when n D 0.

For nC 1 < m, proceed by induction on x. For x D 0, we of course have
AcknC1.0/ D Ackn.1/ < Ackm.1/ D AckmC1.0/.
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For x C 1, by the inductive hypothesis on n and x,
AcknC1.x C 1/ D Ackn.AcknC1.x// < Ackm.AcknC1.x// < Ackm.AckmC1.x// D AckmC1.x C 1/.
Thus the result holds for all n < m < ! and x 2 !.

4. Proceed by induction on n. For n D 0,
Ackn.Ackn.x// D .x C 1/C 1 D x C 2 < 2x C 3 D AcknC2.x/.

For nC 1 and x D 0,
AcknC3.x/ D AcknC2.1/

> Ackn.Ackn.1// D Ackn.AcknC1.0//

> Ackn.AcknC1.0/ � 1/ D AcknC1.AcknC1.0//.
For nC 1 and x C 1,

AcknC1.AcknC1.x C 1// D AcknC1.Ackn.AcknC1.x///

< AcknC1.AcknC1.AcknC1.x///

< AcknC1.AcknC3.x//

< AcknC2.AcknC3.x// D AcknC3.x C 1/.

5. Clearly Ack0 D x 7! x C 1 is primitive recursive. So assume Ackn.x/ is primitive recursive. Therefore
the function f defined by

f .0/ D Ackn.1/
f .x C 1/ D Ackn.f .x//

is primitive recursive and is equal to AcknC1.x/. a

A1b • 4. Theorem
For every primitive recursive function f W !m ! !, there is an n < ! such that f .Ex/ < Ackn.max.Ex// for all
Ex 2 !m.

Proof .:.

We proceed by structural induction on f . If f is one of the basic, given functions x 7! 0, Ex 7! xi , or x 7! xC1;
then clearly Ack1.max.Ex// D max.Ex/C 2 > f .Ex/ for all Ex.

Suppose f is defined by composition: f .Ex/ D g.h1.Ex/; � � � ; hk.Ex//. By the hypothesis, g.Ex/ < Ackn0
.max.Ex//

and hi .Ex/ < Ackni
.max.Ex// for all Ex and 1 < i < k. Therefore for n D max¹ni W i < kº, by Lemma A1 b • 3,

f .Ex/ < Ackn0
.max.h1.Ex/; � � � ; hk.Ex/// � Ackn.Ackn.max.Ex/// < AcknC2.max.Ex//.

So suppose f is defined by recursion:
f .0; Ex/ D g.Ex/

f .nC 1; Ex/ D h.f .n; Ex/; n; Ex/.
Let g and h both be bounded by Ackm�1.

Claim 1
f .n; Ex/ < Ackm.nCmax.Ex// for all n < ! and Ex.
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Proof .:.

For n D 0, we know this holds since
f .0; Ex/ D g.Ex/ < Ackm�1.max.Ex// < Ackm.max.Ex// < Ackm.nCmax.Ex//.

For nC 1, we have that
f .nC 1; Ex/ D h.f .n; Ex/; n; Ex/ < Ackm�1.max.f .n; Ex/; n; Ex//

< Ackm�1.max.Ackm.nCmax.Ex//; x; Ex//
D Ackm�1.Ackm.nCmax.Ex///
D Ackm.nCmax.Ex/C 1/ a

Note that then
f .n; Ex/ < Ackm.nCmax.Ex// � Ackm.2max.n; Ex//

< Ackm.2max.n; Ex/C 3/ D Ackm.Ack2.max.n; Ex///
< AckmC2.AckmC2.max.n; Ex/// < AckmC4.max.n; Ex//.

Hence we have the result for f defined by recursion, and therefore, by induction, for all primitive recursive f .a

A1b • 5. Corollary
The Ackermann function is not primitive recursive.

Proof .:.

If Ack were primitive recursive, then it would need to bound itself: there’d be an n 2 ! with Ack.x; y/ <
Ackn.max.x; y// for all x; y. In particular, for x D n and y D n, Ack.n; n < Ackn.max.n; n// D Ackn.n/ D
Ack.n; n/, a contradiction. a

We also now have a counter-example to the converse of Corollary A1 a • 3.
A1b • 6. Corollary

The Ackermann function is primitive recursive as a relation (meaning the characteristic function for the graph is
primitive recursive) but not as a function.

Proof .:.

We know the Ackermann function isn’t primitive recursive as a function. As a relation, however, we know
Ack.x; y/ D z implies both x and y are less than z by Lemma A1 b • 3 (2) and (3). In particular, define � as just
whether a function obeying the Ackermann function up to that point would give z as the output to x and y. To
talk about this, however, we need to do a bit of coding. What this means is we will calculate a certain number of
Ack values and write them in a table and code this into a number. Note that since

Ack.x; y/ < Ack.x � 1; z/ D Ack.x � 1;Ack.x; y// D Ack.x; y C 1/,
we need to check at most all values Ack.x0; y0/ with x0 � x and y0 � z. In particular, the number of outputs
we need to keep track of is z � x and so using the usual primitive recursive coding, we need at most z � x primes.
Since these values are bounded by Ack.x; y/ D z, the number coding the calculation of Ack.x; y/ is bounded
by
Q
i<z�xC1 p

zC1
i � p

.z�xC1/.zC1/
z�xC1 , and thus we will work within this. As a primer, Ack.x0; y0/ will be the

x0 � z C y0th entry of the coded table.

So define �.x; y; z/ to be 1 iff there is a number c � p.z�xC1/�.zC1/
z�xC1 such that

• seq.c/ with lh.c/ D z � x C 1;
• for every x0 < x and y0 < z,

– c0�zC0 D 1,
– c.x0C1/�zC0 D cx0�zC1, and
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– c.x0C1/�zC.y0C1/ D

´
cx0�zCc.x0C1/�zCy0 if x0 � z C c.x0C1/�zCy0 < lh.c/
z C 1 otherwise;

• cz�xCy D z.
Otherwise, �.x; y; z/ D 0. It should be clear that this � is primitive recursive as all these operations with the
code are primitive recursive, and we’re using bounded existential quantification. Moreover, � is the characteristic
function for the Ackermann function as a relation. Showing it’s primitive recursive as a relation. a

Ostensibly, we could then just take Ack.x; y/ D �z .�.x; y; z/ D 1/ for � as above and get that Ack.x; y/ is primitive
recursive. This, of course, doesn’t work, as we would need bounded minimalization. So the reason the Ackermann
function isn’t primitive recursive is that we can’t get a bound on what Ack.x; y/ should be just based on (in a primitive
recursive way) x and y.

The existence of the Ackermann function not only tells us that is there a function which bounds all of the countably
many primitive recursive functions, but also that there’s one that is actually computable in an intuitive, meta-theoretic
sense and is easy to compute in the sense above: it’s graph is primitive recursive. Yet to have that Ack is computable
in a formal sense, we need to expand our notion of computability from primitive recursive functions to computable
functions.
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Section A2. Computablility

As stated before, we will adopt the Church–Turing thesis, which in essence states that the only (partial) functions that
are computable from !<! to ! are those that are computable via a turing machine, via a register machine, via an
expression of �-calculus, or via any sort of computer program given unlimited time and memory.

Now with primitive recursive functions, all the functions had domain !n for some n < !. This will not be the case
with all computable functions, yet we will still be working with natural numbers. So recall the following definition.

A2 • 1. Definition
A function f is a partial function from A to B , written f W A * B iff f W D ! B for someD � A.

To deal with the fact that not all inputs have an output, we will introduce a new notion of equality, $. We will also
introduce the notation that an input is not in the domain, leaving equality of functions as the usual set equality: f D g
iff 8x .f .x/ $ g.x// iff 8x ..x … dom.f / ^ x … dom.g// _ .x 2 dom.f / ^ x 2 dom.g/ ^ f .x/ D g.x///.

A2 • 2. Definition
Let f W A * B be a partial function. Let a 2 A. We say

• f converges at a, written f .a/ #, iff a 2 dom.f /; and
• f diverges at a, written f .a/ ", iff a … dom.f /.

For g another partial function, we write f .a/ $ g.b/ iff both diverge, or both converge and f .a/ D g.b/.

The empty function, ;, for example, has ;.x/ " for every x. There is no (set) function which converges everywherev
although class sized functions obviously can, the identity being an obvious example. Now in the context of evaluating
partial functions through algorithms, we may encounter the situation where f .a/ " but we need to evaluate g.Ex; f .a//.
In these cases, we say that g.Ex; f .a// diverges as well. Hence in definitions by recursion and composition, we often
will use $ instead of equality.

§A2a. �-recursive functions

The next notion of computability we will investigate will be so-called �-recursive functions in that they allow the
operations of primitive recursive functions in addition to the minimalization operator � as in Definition A1 a • 7. We
restate this definition as a reminder since previously, we in practice only dealt with bounded minimalization, where
�x < z.P.x// D z if there is no x < z where P.x/. In the unbounded case, we leave the function as undefined if
there is no such x. Since we are dealing with partial functions now, we should be a little more precise about how we do
this. As we are interested in computation, the idea to find the minimal witness is just to proceed through the numbers,
calculating one at a time until we reach a witness. This has some consequences for when this process diverges.

A2a • 1. Definition
Let f W !n * ! be a partial function. �n � y .f .n; Ex/ D 1/ is the function m defined by

m.y; Ex/ $

8̂<̂
:
the least (and only) n such that f .n; Ex/ D 1
and 8i � y.i < n! f .i; Ex/ # ^f .i; Ex/ ¤ 1/ if 9y .f .y; Ex/ D 1/
undefined otherwise.

We will just write “�n” for “�n � 0”.

In particular, �n .f .n; Ex/ D 1/ " iff
• there is no n with f .n; Ex/ D 1; or

votherwise replacement would yield that V is a set, contradicting Russell's Paradox (2 • 6).
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• f .n; Ex/ " with no i � n where f .i; Ex/ D 1.
So if f .0; Ex/ ", then �y .f .y; Ex/ D 1/ ", even if f .1; Ex/ D 1.

A2a • 2. Definition
The set of �-recursive functions is the �-least set of partial functions closed under composition, definitions by
recursion, and minimalization (meaning Ey 7! �x .f . Ey; x/ D 1/ for f �-recursive) and containing all the primitive
recursive functions.

A2a • 3. Corollary
The Ackermann function is �-recursive.

Proof .:.

By Corollary A1 b • 6, the Ackermann function as a set is primitive recursive. In other words, the graph of
the Ackermann function is primitive recursive, as witnessed by the primitive recursive characteristic function
�.x; y; z/ which is 1 iff Ack.x; y/ D z. Therefore Ack.x; y/ D �z �.x; y; z/ witnesses that the Ackermann
function is �-recursive. a

We also have the same sort of closure conditions as in Result A1 a • 6.
A2a • 4. Corollary

The set of �-recursive relations is closed under ^, :, and bounded quantification.

Another corollary of Definition A2 a • 2, as a consequence of Result A1 • 4, is that every �-recursive function is defin-
able over N D h!; 0; 1;C; �i.

A2a • 5. Corollary
Every �-recursive function is FOL-definable over N D h!; 0; 1;C; �i.

Proof .:.

We have already proven all the primitive recursive functions are definable, and that the functions definable over
N is closed under composition and definitions by recursion. Hence it suffices to show that they are closed under
minimalization. In particular, suppose f .Ex; v/ D y is defined by 'f .Ex; v; y/. Therefore the map sending Ex to
�v .f .Ex; v/ D 1/ can be defined as follows. In particular, �v f .Ex; v/ D 1/ D w iff

N � “'.Ex;w; 1/ ^ 8v < w .:'.Ex; v; 1//”.
Hence the definable functions of N are closed under minimalization and therefore all �-recursive functions are
definable. a

By the absoluteness of !, 0, 1, and natural number addition and multiplication, it follows that the definitions of these
computable functions are absolute between transitive models of ZF � P.

An examplevi of �-recursive functions are those gotten by if–then–else statements.
A2a • 6. Result

Let �, g, and h be partial functions. Define f .Ex/ $ if .�.Ex/ D 0/ then g.Ex/ else h.Ex/ as follows. Firstly, f .Ex/ " if
�.Ex/ ". And otherwise, for �.Ex/ #,

f .Ex/ D

´
g.Ex/ if �.Ex/ D 0
h.Ex/ if �.Ex/ ¤ 0.

Therefore, if �, g, and h are all �-recursive (primitive recursive), then f is �-recursive (primitive recursive).

Proof .:.

Ostensibly, we’d like to proceed by recursion, taking f 0.0; Ex/ $ g.Ex/ and f 0.n C 1; Ex/ $ h.Ex/, and
then set f .Ex/ $ f 0.�.Ex/; Ex/. The problem with this approach is that to compute f 0.1; Ex/, we necessarily

viWe could have introduced this earlier, but there would be no point, as primitive recursive functions are all total (rather than mere partial)
functions. So the worry demonstrated in the proof wouldn't have applied.
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need to compute g.Ex/: more formally, we’re taking f 0.n C 1; Ex/ $ h0.f 0.n; Ex/; n; Ex/ where h0.y; n; Ex/ $
h.p3.y; n; Ex/; p4.y; n; Ex/; � � � / where pi is the map Ey 7! yi . The point is that if g.Ex/ ", then h0.g.Ex/; 0; Ex/ "

and hence f .1; Ex/ " whereas the definition of the problem statement yields f .1; Ex/ $ h.Ex/.

So instead, we define two functions by recursion:
fg.0; Ex/ D 0 fh.0; Ex/ D 0

fg.nC 1; Ex/ $ g.Ex/ fh.nC 1; Ex/ $ h.Ex/

Now we can define f .Ex/ $ fg.1 P� �.Ex/; Ex/ C fh.�.Ex/; Ex/. The result then follows immediately as both
primitive recursive and �-recursive functions are closed under composition and definitions by recursion. a

The point of if–then–else is both because it is an intuitively computable operation, and it can be used as a word of
caution when working with partial functions. To combine these two purposes, we have the following result that nicely
ties together the programming or algorithm side of computability with the semantic side.

A2a • 7. Result
The function m.y; Ex/ D �n � y .f .n; Ex/ D 1/ is the �-least partial function g W !n * !, n < !, satisfying

g.y; Ex/ $ if .f .y; Ex/ D 1/ then y else g.y C 1; Ex/, (�)
for all y, Ex.

Proof .:.

This consists of showing two parts: firstly, thatm satisfies (�); and secondly, thatm � g for any g satisfying (�).
That m satisfies (�) is pretty clear, but to show this formally, we break down into three cases. Write m0.y; Ex/ for
if .f .y; Ex/ D 1/ then y else m.y C 1; Ex/ so that the goal is to show m D m0.

If m.y; Ex/ ", then one of the following holds:
• There is no y with f .y; Ex/ D 1 and thus

m0.y; Ex/ $ if .f .y; Ex/ D 1/ then y else m.y C 1; Ex/ $ m.y C 1; Ex/,
which diverges for the same reason that m.y; Ex/ ".

• f .y; Ex/ " and thus m.y; Ex/ $ m0.y; Ex/ ".
• For some n > y, f .n; Ex/ ", where then m0.y; Ex/ $ m.y C 1; Ex/. Since y C 1 � n, m.y C 1; Ex/ " and
thus m0.y; Ex/ $ m.y; Ex/.

If m.y; Ex/ D y, then f .y; Ex/ D 1 and thus m0.y; Ex/ D y. So suppose m.y; Ex/ D n > y. Therefore for
every i with y � i < n, 1 ¤ f .y; Ex/ # and hence m0.i; Ex/ D m.i C 1; Ex/. So inductively, m0.y; Ex/ $
m..n � 1/C 1; Ex/ $ m.n; Ex/ D n D m.y; Ex/. Hence m D m0 satisfies (�).

Now suppose g satisfies (�). Suppose n D m.y; Ex/ # and thus f .n; Ex/ D 1 and for every i with y � i < n,
1 ¤ f .i; Ex/ #. It follows for these i that g.i; Ex/ $ if .f .i; Ex/ D 1/ then i else g.i C 1; Ex/ $ g.i C 1; Ex/ and so,

g.y; Ex/ $ g.y C 1; Ex/ $ � � � $ g.n � 1; Ex/ $ g.n; Ex/ D n D m.y; Ex/ a

It’s important to realize that there are g satisfying (�) that aren’t equal to m. In particular, if :9y .f .y; Ex/ D 1/, then
g D m [ ¹hy; Ex; 17i W y 2 !º satisfies (�) (in addition each function with any particular constant in place of 17).

§A2b. Computation

Definitions as in Result A2 a • 7 are important in that they introduce the idea of minimal solutions to equations involving
partial functions as variables rather than merely natural numbers. Moreover, the natural way to find these minimal
solutions is just to continually expand their definitions: a minimal solution will be undefined as much as possible
unless forced to be a value by the definition. This leads to the idea of a computer.

The idea behind a computer is that it has a collection of inputs, and a collection of outputs, and starting from inputs,
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one can proceed along according to how the computer allows one to transition, and once one cannot go any further—
meaning one is at a terminal position—the computer outputs this, and this is supposed to be the output of the function
with these inputs.

In set theoretic terms, a computer is just a set of trees each of height � ! with various rules dictating how one node
transitions to the next. A branch of finite height yields either a computation (or else a defective input). To formalize
all of this, we need to specify what these transitions are and what these nodes look like. The idea is to have nodes of
the form “ Ef j Ex” where Ex denotes a series of numbers or inputs, and Ef is a series of functions that these inputs should
be applied to, or some things to be simplified or expanded.

A2b • 1. Definition
Let F be a set of partial functions over !. For f 2 F , let ‘ Pf ’ be a symbol intended to represent f . The language
of COM.F / consists of $ between terms. The terms of COM.F / is the �-least set T of expressions containing the
variables vi for i < ! as well as the constants n for n < ! such that T is closed under the following:

• “ Pf .Et/” for f 2 F and Et the proper number of COM.F /-terms;
• “pni .t1; � � � ; tn/” for COM.F /-terms t1 through tn, i; n 2 !, and ‘pni ’ a symbol playing the role of an n-place
function variable.

• “if .t1 D 0/ then t2 else t3” for COM.F /-terms t1, t2, and t3.

The point of these new function variables is to make precise the kind of thinking as in Result A2 a • 7. There, we’re
saying �n � y .f .n; Ex/ D 1/ is the �-least solution to the COM.¹f; x 7! x C 1º/-equation

“p.y; Ex/ $ if .f .y; Ex/ D 1/ then y else p.y C 1; Ex/”.
We have of course seen many examples of definitions of this form just through our usual definitions: “S.x/ $ x C 1”
and “projni .x1; � � � ; xn/ $ xi”, for example. But generally the idea with a COM-equation “p.Ex/ $ t” is that t might
involve p. For example, we can represent definitions by recursion: f defined by recursion using g and h is the�-least
solution Op0 where

“p0.y; Ex/ D if .y D 0/ then g.Ex/ else h.p0.y P� 1; Ex/; y P� 1; Ex/”.
If g and h are themselves defined by recursion or composition, we can then easily fully describe f according to a
series of COM-equations. This idea naturally leads us to form programs (and Result A2 a • 7 tells us that we only need
the simpler if–then–else in our language instead of minimalization if we want to arrive at all �-recursive functions).

A2b • 2. Definition
Let F be a set of partial functions over !. A COM.F /-program P ¤ ; is a (finite) sequence of COM.F /-equations

p0.Ex/ $ t0, � � � , pn.Ex/ $ tn,
where the only function variables occurring in the ti s are the pj s, and moreover, ‘pi ’ ¤ ‘pj ’ for i ¤ j .

Using this computer language, we can define a computer that computes the least solution of p0—call this function
Op0—to an COM.F /-program P . In particular, from a state “ Ef j Ex”, we transition by certain rules to another state. If we
start with input “p0 j Ex” and end up in the state “j n” for some n 2 !, we output n, and write “that the P -computer
computes p0.Ex/ D n”. More explicitly, we have the following transition rules, which clearly are deterministic: there’s
only ever at most one state to transition to.

A2b • 3. Definition (Computer Transitions)
Let F a set of partial functions over !. Let P be a COM.F /-program. The following are allowable transitions.

• “x j” transitions to “j x” for x 2M .
• “ Pfi j Ex” transitions to “j fi .Ex/”, where fi 2 F and Ex is of the appropriate length.
• “pi j Ex” transitions to “ti .Ex/ j”, where “pi .Ev/ $ ti” is a COM.F /-equation of P .

In addition, we also have some transitions that make things go a bit smoother.
• “h.�1; � � � ; �n/ j” transitions to “h �1 � � � �n j”.
• “.if .�1 D 1/ then �2 else �3/ j” transitions to “�2 �3 ‹ �1 j”.
• “�2 �3 ‹ j 1” transitions to “�2 j”.
• “�2 �3 ‹ j n” transitions to “�3 j” whenever n ¤ 1.

And we don’t care about surrounding material: if X transitions to Y , then �_X_& transitions to �_Y_& .
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For example, we can compute x 7! 2x C 5 when x D 1 with the COM.¹C; �º/-program
“p0.x/ $ p1.x/C 5”, “p1.x/ $ 2 � x”.

If we were to try to compute this at x D 1, we start as always with input Ex—which in this case is just x being 1—on
the node “p0 j Ex”, since the idea is that we always are trying to compute p0. The computation—which of course, is not
the most optimal way of calculating 2x C 5—then proceeds as follows:vii

p0 j 1
C.p1.1/; 5/ j
C p1.1/ 5 j
C p1.1/ j 5
C p1 1 j 5
C p1 j 1 5

C � .2; 1/ j 5

C � 2 1 j 5

C � 2 j 1 5

C � j 2 1 5

C j 2 5

j 7.
The idea is that if we end at “j n” for some n 2 !, then we have computed Op0.Ex/ D n. Of course, not all programs need
to end at such a terminal state. The easiest such example would be “p0.x/ $ p0.x/” which then has a computation for
n 2 ! as follows:

p0 j n
p0.n/ j
p0 n j

p0 j n
:::

and this goes on forever. In this case, there is nothing computed by these transitions. This reflected in that the �-least
solution to the equation “p0.x/ $ p0.x/” is just Op0 D ;.

We now collect these ideas together in the form of a “computer”. Of course, we still need to prove that such a computer
will actually compute the least solution to a program.

A2b • 4. Definition
Let F be a set of partial functions over !. Let P be a COM.F /-program. For Ex 2 !<! and n 2 !;

• We say the P -computer computes p0.Ex/ D n iff starting from “p0 j Ex”, and transitioning as in Computer
Transitions (A2 b • 3), we end at “j n”.

• If the P -computer does not compute any value of p0.Ex/, then we say it computes p0.Ex/ ".
We define the resulting function LpP0 D ¹hEx; ni 2 !<! W the P -computer computes p0.Ex/ D nº.
The �-least partial functions satisfying P are the functions OpP0 , ..., OpPn for P involving the function variables p0, ...,
pn. (And it turns out that OpP0 D LpP0 .)

Through reordering the equations of P , this also easily provides definitions for LpP
k
for k other than 0 (if there are any

in P ).

We should check two things of this sort of computer: firstly that it computes correctly, and secondly that it computes
minimal solutions.viii Showing soundness is relatively easy, although long and tedious. We skip the proof for the sake

viiNote that we are abusing notation by writing, for example, “2 � x” above, which really should be regarded as “�.2; x/”, and similarly for C.
This is reflected in the computation.
viiiThis is analogous to soundness and completeness in first-order logic.
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of clarity.
A2b • 5. Result

Let F be a set of partial functions over !, and let P be a COM.F /-program involving p0, ..., pn. Therefore LpP0 , ..., LpPn
are the �-least partial functions that satisfy P , meaning they satisfy P and any sequence of partial functions f0, ...,
fn satisfying P have LpPi � fi for i � n.

Proof .:.

By soundness of the P -computer, these LpPn satisfy P . Now suppose f0, ..., fn also satisfy P . To see that the LpPi
are the least solutions, we need to check that if LpPi .Ex/ #, then fi .Ex/ # and Lp

P
i .Ex/ D fi .Ex/ for each i � n.

Suppose the P -computer computes LpPi .Ex/ D ni . This means that starting with “pi j Ex” and following the transi-
tions of Computer Transitions (A2 b • 3), we arrive at “j ni”. We now proceed by induction on COM.F /-terms �
involving no variables (excluding the pki s).

Claim 1
Let � be a COM.F /-term involving no variables except possibly function variables. Suppose “� j” eventually
transitions to “j y”. Therefore, the interpretation of �—meaning where we replace ‘ Pf ’ with f 2 F , the pi s
with the fi s, and then evaluate as normal—is y.

Proof .:.

Let � be a counter-example such that the computation from “� j” to “j y” is of minimal length. Clearly �
can’t be a constant, since otherwise “� j” transitions to “j �” and so the result clearly holds.

Suppose � is of the form “ Pf .E�/” where E� are COM.F /-terms. In computing � , we also compute each �i
and thus their computations are shorter than � . Say the P -computer computes that �i is yi . Inductively, the
interpretation of each �i is yi so that the interpretation of � is f . Ey/. Note that “� j” transitions as follows:
“ Pf .E�/ j” goes to “ Pf �0 � � � �m j”, which eventually transitions to “ Pf �0 � � � �m�1 j ym”, and by repetition
to “ Pf j y0 � � � ym” which goes to “j f .y0; � � � ; ym/” which is the interpretation of � .

If � is of the form “.if .�1 D 1/ then �2 else �3/”, then the interpretation of � is y2 if y1 D 1, and otherwise
y3. Note that “� j” transitions to “�2 �3 ‹ �1 j” and thus eventually to “�2 �3 ‹ j y1”. If y1 D 1, this tran-
sitions to “�2 j” and thus to “j y2”, the same as the interpretation. If y1 ¤ 1, then this transitions to “�3 j”
and thus eventually to “j y3”, which is the interpretation.

If � is of the form “pi .E�/”, then we proceed as follows: “� j” transitions to “pi �1 � � � �m j” and so eventu-
ally to “pi j y1 � � � ym” and then to “ti . Ey/ j” where P contains the equation “pi .Ev/ D ti”. From here, we
somehow eventually arrive at “j y” and thus since the computation from “ti . Ey/ j” is shorter than from “� j”,
it follows that the interpretation of ti . Ey/ is y. But the interpretation of ti . Ey/ is fi . Ey/ since the fi s satisfy
P . Moreover, y D fi . Ey/ is the interpretation of “pi .E�/”, which is � . Hence the result holds for � as well.

For each i � n, we know “pi j Ex” transitions to “ti .Ex/ j”. Since ti .Ex/ involves no variables other than function
variables, its interpretation under the fi s is the same as what the P -computer computes, which is ni . Hence
ni D fi .Ex/ #, which is by definition the same as LpPi .Ex/. Therefore LpPi � fi , and the result is proven. a

Another way to phrase the result above is that LpPi D Op
P
i for each i . With this, we can then represent each �-recursive

partial function by a program. In particular, we have the following definition.
A2b • 6. Definition

Write s for the map x 7! x C 1 and pd for the map x 7! x P� 1. Say a function f is computable iff there is a
COM.¹s; pdº/-program P such that f D LpP0 .

A2b • 7. Corollary
Every �-recursive function is computable.
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Proof .:.

The programs
“p0.v0; � � � ; vn/ D vi”, and “p0.v/ D 0”

clearly compute projections and the constant 0 map. Since x 7! x C 1 is given, to show that all primitive
recursive functions are computable, it suffices to show the set of computable functions is closed under definitions
by recursion. But this was shown just below Definition A2 b • 1: if f is defined by recursion using g and h, which
are in term computed by programs Pg (with first variable pg0

) and Ph (with first variable ph0
,) then (adjusting

the names of the function variables as needed) f is the least solution OpP0 to the program
“p0.n; Ex/ $ if .n D 0/ then pg0

.Ex/ else ph0
.p0.pd.y/; Ex/; pd.y/; Ex/”_P_g Ph.

It should be clear that this program computes f and thus the set of computable functions is closed under definitions
by recursion, implying that all primitive recursive functions are computable. Moreover, by Result A2 a • 7, the
set of computable functions is closed under minimalization. Hence all the �-recursive functions are computable.
a

We can also show that the reverse is true: all computable functions are �-recursive just by the coding idea introduced
to deal with the Ackermann function. In particular, we code the symbols of COM.¹s; pdº/ as numbers as follows:

• the code of ‘Ps’ is 0;
• the code of ‘ Ppd’ is 1;
• the code of ‘vi ’ is 2i ;
• the code of ‘pni ’ is p

n
iC1 where pi is the i th prime;

• the code of n for n 2 ! is 6n;
• the code of ‘.’ is 10 and ‘/’ is 12;
• the code of ‘,’ is 14;
• the code of ‘D’ is 15;
• the code of ‘if’ is 17;
• the code of ‘then’ is 18; and
• the code of ‘else’ is 20.
• the code of ‘j’ is 21.

From these codes, sequences of symbols are coded by the classical coding hx0; � � � ; xni 7! p
x0C1
0 � : : : � p

xnC1
n . We

appeal to laziness to convince the reader that the property of a number n 2 ! being the code of a COM.¹s; pdº/-term is
primitive recursive. Mostly this just means translating the rules governing term formation into the corresponding rules
in terms of the corresponding symbol codes.

This also allows us to code nodes in computations. Then sequences of these nodes correspond to computations. It’s also
not hard—although very tedious—to show that the property of a number being the code of a computation following
the rules of Computer Transitions (A2 b • 3) is primitive recursive. And as a result, the output of a computation of a
COM.¹s; pdº/-program P can be seen as the least pair (or rather, the first element of the least number coding a pair)
hy; ciwhere c codes a computation from P that ends with code.“j y”/. Thus every partial function given by a program
P can be represented in this way and is thus �-recursive.

A2b • 8. Corollary
Every computable function is �-recursive.

This—as with the equivalence between �-recursive functions, turing machines, and so on—lends credence to the idea
of the Church–Turing thesis, which states the equivalence between an intuitive, meta-theoretic notion of computability,
and a formal notion of computability like that of �-recursive or computable as in the sense of Definition A2 b • 6.

§A2c. Normal form
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The idea of coding a program is quite important. Although the explicit details are skipped here for the sake of space,
they can in principle be worked out. But the main ideas do not rely too much on these details, since there are many
notions of computability that all turn out to be equivalent.

Let’s first recall the ideas informally stated above. The details of the proof of this lemma are left to any reader that is
interested enoughix given the discussion above Corollary A2 b • 8 as a hint.

A2c • 1. Lemma
The following are primitive recursive relations and functions:

• The property Prog.e/ stating “e is the code of a COM.¹s; pdº/-program”.
• For each 1 � n < !, the relation CompCoden.e; x1; � � � ; xn; y/ stating “e is the code of a program and y is
the code of a computation with “p0 j x1 � � � xn” at the start”.

• The function Output.y/ being �n < y .“j n” is the last entry of the computation coded by y/.

A2c • 2. Theorem (Normal Form)
For every f W !n * !, where n < !, f is computable iff there is some e such that

f .Ex/ $ Output.�y .CompCoden.e; Ex; y//.

In particular, every �-recursive function only needs to use (unbounded) minimalization once with all other relevant
functions and relations being primitive recursive. Another corollary of this is the identification of computable functions
with programs as well as the extremely important—although a bit odd looking—result below. In essence, it’s saying
that given the first m inputs in an mC n-ary partial function given by a program e, we can find a new program e0 that
outputs the same partial function but fixing those first m inputs. So Smn takes the first m inputs, and leaves the last n
inputs.

A2c • 3. Theorem (The S m
n -Theorem)

For each1 � n;m < !, there is an injective, primitive recursive function Smn W !mC1 ! ! such that for any e 2 !,
Ea 2 !m, and Ex 2 !n,

Output.�y .CompCodemCn.e; Ea; Ex; y// $ Output.�y .CompCoden.S
m
n .e; Ea/; Ex; y//.

Let us introduce some notation. Because we can identify computable functions with codes of programs and the number
of inputs, we write ŒŒe��n for the n-ary partial function mapping Ex to Output.�y .CompCoden.e; Ex; y//

x. Hence
ŒŒ0��1, ŒŒ1��1, ŒŒ2��1, ŒŒ3��1, � � �
ŒŒ0��2, ŒŒ1��2, ŒŒ2��2, ŒŒ3��2, � � �
ŒŒ0��3, ŒŒ1��3, ŒŒ2��3, ŒŒ3��3, � � �

:::

lists all of the computable functions. Moreover, this notation also allows us to more easily state The Smn -Theorem
(A2 c • 3) as saying ŒŒe��mCn.Ea; Ex/ $ ŒŒSmn .e; Ea/��.Ex/ for all Ea 2 !m.

It’s important to realize that the list above is well defined in that ŒŒx��n is a (computable) partial function even if x
doesn’t code a COM.¹s; pdº/-program with n inputs. So “most” of these functions will merely be ;, since if e doesn’t
code a program, CompCoden.e; Ex; y/ is always false. This means �y .CompCoden.e; Ex; y// diverges, implying

ŒŒe��.Ex/ $ Output.�y .CompCoden.e; Ex; y/// " .

§A2d. Noncomputable sets

As can be easily seen by Normal Form (A2 c • 2), there are only countably many computable functions. Hence most
partial functions and relations over ! must be noncomputable. The easiest example is the so-called halting problem.

ixor a masochist
xMany other texts will write 'e for ŒŒe��, but to make it easier to read the index (which is arguably more important than the input), we adopt the

latter notation.
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Let us begin with a slight modification.

Note that all primitive recursive functions can be enumerated in a similar way as with all computable functions. If we
diagonalize through these functions, we end up with a computable function that is not primitive recursive. Doing the
same for the computable partial functions leaves us with a function that is still computable. Let us work out the details
to see where the usual argument goes astray.

A2d • 1. Theorem
There is a universal computable partial function, meaning a map f W !2 ! ! where for every computable g W !n *
!, there is some e 2 ! where for all Ex 2 !n, g.Ex/ $ f .e; code.Ex//. In other words, f .e; x/ $ ŒŒe��1.x/.

Proof .:.

Just take f to be the map taking he; xi to
Output.�y CompCode1.e; x; y//.

This f is clearly able to compute all the partial functions g W ! * !: just note that g D ŒŒe��1 for some e and
thus ŒŒe��1.x/ D f .e; x/ for all x 2 ! by Normal Form (A2 c • 2).

Now for each g W !n * !, consider the map h being x 7! g.x0; x1; � � � ; xn/. Note that this map is computable
as we are (in a primitive recursive way) decoding x (and if x isn’t a code, we have taken xi D 0). Thus h W ! * !

satisfies h.code.Ex// $ g.Ex/ for every Ex 2 !n. Therefore the above gives us some e where f .e; x/ D h.x/ for
all x 2 !, and in particular for all x D code.Ex/ with Ex 2 !n. a

If we try to diagonalize as we can with the primitive recursive functions, taking f 0.e; x/ $ ŒŒe��1.x/ C 1, we don’t
necessarily have a problem. The natural argument would be that there must be some e0 with f 0 D ŒŒe0��1 and thus we
should have f 0.e0; x/ D f 0.e0; x/C 1. But in reality, we only get f 0.e0; x/ $ f 0.e0; x/C 1 and thus we must have
f 0.e0; x/ ". The problem is that this argument only works on total functions. Hence this argument actually shows that
there is no way to computably enumerate the computable total functions.

This suggests a fundamental issue related to computable (partial) functions is their domains. And this gives us our first
example of a non-computable relation.

A2d • 2. Definition
Define Halt to be the set ¹he; xi 2 !2 W x 2 dom ŒŒe��1º.

A2d • 3. Corollary
Halt is not computable.

Proof .:.

Suppose Halt were computable. Therefore the (total) function

f .x/ D

´
ŒŒe��1.e/C 1 if he; ei 2 Halt
0 otherwise

is computable and thus can be represented as f D ŒŒef ��1 for some ef 2 !. But since f is total, hef ; ef i 2 Halt
so that f .ef / D ŒŒef ��1.ef /C 1 D f .ef /C 1, a contradiction. a

We actually have a much more general theorem of this sort. The idea is that we can work with codes of programs
syntactically to get partial functions, but to do the reverse—i.e. to work with functions to understand their programs—
is always noncomputable. Put in another way, there’s no computable way to answer the question “what the hell does
this program do?”, meaning for any given collection of functions F , whether ŒŒe��n 2 F or not for e; n < ! isn’t
computable.

A2d • 4. Theorem (Rice's Theorem)
For n < !, let F � ¹f � !n � ! W f is a functionº be an arbitrary set of partial functions over !, and let
E D ¹e 2 ! W ŒŒe��n 2 F º be the set of codes of these. Therefore, E is either ;, !, or noncomputable.
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In particular, as we noted before, the codes that give total functions is noncomputable: there is no way to tell beforehand
whether any given program’s code will always return an output.

To prove this theorem, it will be useful to know the Second Recursion Theoremxi of Kleene, which has a similar flavor
to The Smn -Theorem (A2 c • 3) but is a more remarkable fixed-point theorem. Unfortunately, the proof of the theorem
isn’t as impressive as the result itself, and feels more like symbol pushing.

A2d • 5. Lemma (The Second Recursion Theorem)
For every computable f W !nC1 * !, there is an e such that for all Ex, ŒŒe��n.Ex/ $ f .e; Ex/.

Proof .:.

Firstly, define g.e; Ex/ $ f .S1n .e; e/; Ex/ so that g is clearly computable and thus there is some eg where
ŒŒeg ��

nC1 D g. But then setting e D S1n .eg ; eg/ yields by The Smn -Theorem (A2 c • 3) that
ŒŒe��n.Ex/ $ ŒŒeg ��

nC1.eg ; Ex/ $ f .S1n .eg ; eg/; Ex/ $ f .e; Ex/ a

This fixed-point theorem has an enormous number of counter-intuitive consequences. For example, there is an e where
ŒŒe��1.x/ D xC e, and another where ŒŒe��1 is just the constant e function. Such weird statements show that the codes of
programs can have as little or as much correspondence with their defined function as we’d like. In particular, we can
never determine in general which codes yield functions with certain properties—formally stated via Rice’s Theorem
(A2 d • 4)—unless it trivially applies to all or to no partial functions over !. For now, we repress the n superscript as
it doesn’t really add any understanding.

Proof of Rice’s Theorem (A2 d • 4) .:.

Suppose E ¤ ; and E ¤ ! so that there exist e0 … E and e1 2 E. Define a partial function f where

f .x; Ey/ $
´
ŒŒe0��. Ey/ if x 2 E
ŒŒe1��. Ey/ otherwise.

Note that for x 2 E fixed, Ey 7! f .x; Ey/ is the map ŒŒe0�� … F . And for x … E fixed, Ey 7! f .x; Ey/ is the map
ŒŒe0�� 2 F . If membership in E were computable, then clearly f would be computable so that by The Second
Recursion Theorem (A2 d • 5), there’s an e 2 ! where for all Ey, f .e; Ey/ $ ŒŒe��. Ey/. But this is impossible: e 2 E
implies ŒŒe�� D ŒŒe0�� … F , contradicting that e 2 E. Similarly, e … E implies ŒŒe�� D ŒŒe1�� 2 F , contradicting that
e … E. Hence membership in E is not computable. a

xiThe First Recursion Theorem is a kind of fixed-point theorem about so-called effective operations.
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Section A3. The Arithmetical Hierarchy

What theorems like Rice’s Theorem (A2 d • 4) tell us is that we should develop a theory of complexity for noncom-
putable sets. Our first step into this topic will be with examining complexity in terms of form. More specifically, we
begin with the primitive recursive relations, and then continually consider relations defined by existential quantification
or universal quantification over lower levels. The result is a hierarchy of complexity not unlike the Lévy hierarchy for
formulas.
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A3 • 1. Figure: The arithmetical hierarchy

These sets share a close connection with the Lévy hierarchy on N D h!; 0; 1;C; �i in that a set A � ! is †0n iff A is
defined by a †n-formula. Here a �0-formula is a formula with only bounded quantifiers where the “bound” is using
the defined natural order: x < y iff 9z .x C z D y/ so a quantifier is bounded iff it is of the form 9x < y or 8x < y,
each of which is shorthand for a larger FOL.¹0; 1;C; �º/-formula.

Note that elsewhere in this document, we will refer to the sets in Figure A3 • 1 as †0;!n , �0;!n , or …0;!
n to distinguish

them from analogous notions for subsets of !! rather than just !. But since we’re dealing just with ! here, we will
ignore the “!” in the superscript. One might suggest also doing away with the superscript of ‘0’, but then we might get
confused with the lévy hierarchy, which is intimately related. This 0 can also be generalized to larger numbers, though
we will not investigate that in this appendix.

§A3a. First levels: �0
0
, �0

1
, and †0

1

The first kind of not-necessarily-computable sets we will look at are the†01 sets.xii Recall that the halting problem is not
computable just because we couldn’t tell whether a given input was in the domain of a partial function or not: it’s not
computable in general whether x 2 dom.ŒŒe��/. But this relation is very close to being computable in that x 2 dom.ŒŒe��/
iff we will eventually reach an output when computing. More precisely, x 2 dom.ŒŒe��/ iff 9y .CompCode.e; x; y//. If
we know beforehand that there is such a y, we can use minimalization to say so; but if there is no such y, we won’t be
able know beforehand in a computable manner (in general).

If we examine the form of the above equivalence, this has the form of one existential quantifier in front of a prim-
itive recursive relation. We can semi-compute this in that we can yield a “yes” answer if there is one, but we don’t
necessarily have an algorithm to determine if there is not. This motivates the definition of †01 sets, sometimes called
semicomputable or computably enumerable. The 0 on the top references that we are quantifying only over !. †11, for
example, allows quantification over !!.

A3a • 1. Definition
Let R � !n, n < !, be a relation.

• R is…0
0 D †

0
0 D �

0
0 iff it is primitive recursive.

• R is †01 iff for some �00-relationQ, Ex 2 R$ 9y .hEx; yi 2 Q/.
• R is �01 iff R and !n nR are †01.

xiiNote that†0
1 sets are different from the

�
†0

1 sets, which are the open sets of real numbers.
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Note that just by adding dummy variables, any �00 relation R is also †01: Q D R � ¹0º witnesses this. Hence
�00 � †

0
1, and as a result of Corollary A2 d • 3, this containment is strict: �00 ¨ †01. We will eventually see that the

�01 sets encompass all of the computable relations, meaning that all of the containments are strict: �00 ¨ �01 ¨ †01.

The definition of †01 sets is equivalent to a great number of other statements. In particular, we can see the connection
with Halt in that a relation is †01 iff it is the domain of a computable partial function (also called semirecursive or
semicomputable).

A3a • 2. Theorem
Let R � !n. Therefore the following are equivalent:

1. R is †01;
2. the ostensibly weaker statement that Ex 2 R iff for some computableQ, 9y .hEx; yi 2 Q/;
3. R D dom.f / for some computable partial function f over !;

Proof .:.

Clearly (1) implies (2) as all primitive recursive relations are computable. Assume (2), working towards (3).
Consider the partial function f defined by f .Ex/ $ �y �Q.Ex; y/. Note that f is computable since �Q is. But
Ex 2 domf iff 9y .hEx; yi 2 Q/ iff Ex 2 R. Hence R D domf .

So assume (3), working towards (1), with R D dom.f /, meaning that Ex 2 R iff f .Ex/ #. By Normal Form
(A2 c • 2), there is some e 2 ! where f .Ex/ $ Output.�y CompCoden.e; Ex; y//. Hence f .Ex/ # iff the func-
tion on the right converges. Since Output is total (because it’s primitive recursive), it follows that f .Ex/ # iff
�y CompCoden.e; Ex; y/ #. And since CompCoden is primitive recursive and therefore total, this happens iff
there is such a y:

Ex 2 R iff f .Ex/ # iff 9y CompCoden.e; Ex; y/,
which is then †01. a

As with primitive recursive functions and computable ones,†01 (being the set of†01 sets) is closed under conjunctions,
disjunctions, and so on. The main difference to notice about this is that †01 is not closed under negations, nor under
universal quantification.

A3a • 3. Result
†01 is closed under conjunctions, disjunctions, bounded quantification, and existential quantification.

Proof .:.

LetR.Ex/ be equivalent to 9y PR.Ex; y/, and similarly letQ.Ex0/ be equivalent to 9z PQ.Ex0; z/, where PR and PQ
are primitive recursive.

• R.Ex/ ^Q.Ex0/ is equivalent to 9c.seq.c/ ^ lh.c/ D 2 ^ PR.Ex; c0/ ^ PQ.Ex
0; c1//, which is clearly †01 as

seq and lh are both primitive recursive, and the collection of primitive recursive relations is closed under
conjunction. Disjunction follows more easily: R.Ex/ _Q.Ex0/ is equivalent to 9y .PR.Ex; y/ _ PQ.Ex0; y//.

• 9x � y R.Ex; x/ iff 9c .seq.c/ ^ lh.c/ D 2 ^ c0 � y ^ PR.Ex; c0; c1//, which is †01. Bounded universal
quantification is a little more complicated: 8x � y 9z PR.Ex; x; z/ is equivalent to saying that there is a
coding of a function from y to these z:

9c .seq.c/ ^ lh.c/ > y ^ 8n � y PR.Ex; n; cn//.

• 9z 9y PR.Ex; z; y/ is equivalent to the existence of a pair hy; xi with PR.Ex; z; y/:
9z R.Ex; z/$ 9c.seq.c/ ^ lh.c/ D 2 ^ PR.Ex; c0; c1// a

The main reason why †01 sets are not closed under negations (and hence not under universal quantification) is the
following very nice result restating computability in terms of †01 sets. The idea behind this is that generally a †01-set
only gives a “yes” answer to membership in a finite amount of steps, but might go on searching forever for a “no”.
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But if both the set and its complement have this property, then we get a bound on how far we need to search for a “no”
answer too. In particular, we just simultaneously search for a “yes” answer to membership in the set and to membership
in its complement. Either way, we reach the result in a finite number of steps.

A3a • 4. Theorem
A relationR � !n is computable iffR and !n nR are†01, in other wordsR and:R are†01. HenceR is computable
iff R is �01.

Proof .:.

If bothR and:R were†01, then for some primitive recursive PR and P:R,R.Ex/$ 9y PR.Ex; y/ and:R.Ex/$
9y P:R.Ex; y/. But thenR.Ex/$ 8y P:R.Ex; y/. So to say whetherR.Ex/ holds or not, we just need to search for
an example of PR or one to P:R: consider the computable function f .Ex/ D �y .PR.Ex; y/ _ P:R.Ex; y//. Note
that f is total, because R.Ex/ is either true or false, implying there is always a y where PR.Ex; y/ _ P:R.Ex; y/.
Now consider

�.Ex/ D

´
1 if PR.Ex; f .Ex//
0 if P:R.Ex; f .Ex//.

It should be clear that then �R D �, which is clearly computable. a

Another characterization of computability in terms of †01 is the following result, acting similar to the converse of (1)
implying (3) in Theorem A3 a • 2.

A3a • 5. Result
A partial function f over ! is computable iff f as a relation is †01.

Proof .:.

If f is computable, then f as a relation is†01 as hEx; yi 2 f iff Ex 2 dom.f /, which is†01 byTheorem A3 a • 2. So
suppose f as a relation is†01. Therefore there is some primitive recursiveP where hEx; yi 2 f iff 9z .P.Ex; y; z//.
So take f .Ex/ $ .�y P.Ex; y0; y1//0. As P is primitive recursive, f is computable. a

In some sense, the above result should seem counter intuitive, since �D.x; y/ is primitive recursive, and so by com-
position, hx; yi 7! �D.f .x/; y/ should also be computable if f is. The issue with this argument is that �f .x; y/ D
�D.f .x/; y/ when f .x/ #, but there are issues when f .x/ ": �f .x; y/ D 0 while �D.f .x/; y/ ". This is why f as
a relation may only be “semi-computable” or †01. But in the case of total functions, this idea works.

A3a • 6. Corollary
A total function f over ! is computable iff f as a relation is computable.

Now if †01 sets can be seen as domains of computable functions, they can also be seen as images of computable
functions. This motivates the names “recursively enumerable” and “computable enumerable” sometimes used in the
literature.

A3a • 7. Definition
A set A � ! is computably enumerable iff A D ; or some total, computable f W ! ! ! has A D imf .

In principle, we could expand the definition of A being computably enumerable to allow for A � !n for n < ! or for
f W !n ! !, but this doesn’t grant any additional generality by the next theorem. Indeed, since we can code tuples in
a �00 way, we can easily translate between the two notions.

A3a • 8. Result
A set A � ! is computably enumerable iff it is †01.

Proof .:.

If A D ;, this is obvious. So assume A ¤ ;. If A is †01, then for some�00-relation R, x 2 A iff 9y R.x; y/. Let

425



THE ARITHMETICAL HIERARCHY APPX §A3 a

a 2 A be fixed and consider the partial function

f .u/ D

´
a if :R.u0; u1/
u0 if R.u0; u1/.

Clearly f is computable and has f "! D A, since if x 2 A as witnessed byR.x; y/, then f .2xC1 � 3yC1/ D x so
that A � f "!. And by definition, f .u/ 2 A for each u 2 !. Hence f "! D A, so A is computably enumerable.

So assume A is computably enumerable with A D f "! for f W ! ! ! computable. Therefore y 2 A iff
9x .f .x/ D y/. As f is computable, by Result A3 a • 5, f .x/ D y is†01, and since†01 is closed under existential
quantification by Result A3 a • 3, it follows that 9x .f .x/ D y/ is †01 and thus y 2 A is †01. a

We may actually strengthen Definition A3 a • 7 to A � ! requiring a total, injective, computable f W ! ! ! with
A D f "!. We cannot, however, require that f is increasing, as this would require A to be computable. The basic idea
why is that f being increasing allows us to place a bound on where we need to search and thus give a “no” answer in
a finite amount of steps.

A3a • 9. Result
A set A � ! is computably enumerable iff jAj < ℵ0 or A D imf for some injective, total, computable f W ! ! !.

Proof .:.

One direction is immediate, so assume A is computably enumerable as witnessed by the (non-injective) g W ! !
!. The idea is to define f is just to skip the repeated values: define f by the (shorthand for the) COM.¹s; pdº/-
program
“p0.x/ D y0 for the least y D code.y0; y1/ where y0 D g.y1/ ^ y1 D �z < x .8x0 < x p0.x0/ ¤ g.z//”.

Since g is total, y D g.x/ is computable by Corollary A3 a • 6 which means we can expand the above into an
actual COM.¹s; pdº/-program to yield a computable Op0 D f . In essence, this is saying that we choose a y0 and y1
such that

• g.y1/ differs from the previous values of p0; and
• y1 � x is the least such that the above holds (recall �z < x.� � � / D x if there are no z < x such that � � �).

Since A is infinite, there will always be such a y, meaning that f .x/ D Op0.x/ is always defined, and thus f is
total. Moreover f is injective by the defining program, and it should be clear that if g.x/ D y, then f .x0/ D y

for some x0 � x. In particular, A D f "!. a

The result below uses “increasing” in the sense of strictly increasing (x < y ! f .x/ < f .y/) rather than the weaker
notion (x < y ! f .x/ � f .y/) that would encompass constant functions. The result, along with Result A3 a • 9,
shows that while we may delete repeated values in a computable way, we cannot reorder them.

A3a • 10. Result
A set A � ! is computable iff jAj < ℵ0 or A D imf for some increasing, total, computable f W ! ! !.

Proof .:.

If A � ! is computable, then clearly either jAj < ℵ0, or jAj D ℵ0 in which case, setting a D minA, we can
define by recursion f .0/ D a, f .nC 1/ D �x .x 2 A^ x > f .n//. Since membership in A is computable, this
is computable, and clearly f "! D A.

If A D f "! for some increasing, total, computable f W ! ! !, n � f .n/ for every n 2 ! and thus x 2 A iff
there is some n � x with f .n/ D x. So setting �.x/ D 9n � x .f .n/ D x/ yields that � is computable (by
Corollary A3 a • 6 since f is total) and equal to �A. a

These few results allow us to conclude the following useful results about pointwise images and preimages. Note that
the above result unfortuantely precludes f "X 2 �01 even if f and X are both computable: take X D ! and f such
that f "! D Halt as an example.
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A3a • 11. Result
Let f W ! ! ! be a (total) computable function, and let X � !. Therefore,

• If X is †01, then f "X is †01 ;
• If X is †01, then f �1"X is †01; and
• If X is �01, then f �1"X is �01.

Proof .:.

Given that f is computable as a function, it is †01 as a subset of !2 by Result A3 a • 5. Therefore, we have the
following by the closure conditions of Result A3 a • 3 and Corollary A2 a • 4.

• y 2 f "X iff 9x .x 2 X ^ y D f .x//. So f "X is †01 if X is.
• x 2 f �1"X iff 9y .y 2 X ^ f .x/ D y/, which is again †01 if X is.
• x 2 f �1"X iff f .x/ 2 X iff �X ı f .x/ D 1. Therefore, if X 2 �01, then �X ı f is computable. Since it’s
also the characteristic function for f �1"X (we need totality for this), it follows that f �1"X is �01. a

§A3b. The rest of the arithmetical hierarchy

Thus far, we have categorized subsets of! (and subsets of!<! through a primitive recursive coding and decoding) into
three distinct classes: �00, �01, and †01 with �00 � �01 � †01 and all three containments as strict.xiii We can generalize
this hierarchy in a way analogous to the Lévy hierarchy that motivates the notation used in the previous section.

A3b • 1. Definition
Let R � !n be a relation over !.

• R is †00 iff it is primitive recursive.
• R is †0mC1 iff for some…0

m-relationQ, Ex 2 R iff 9y .hEx; yi 2 Q/.
• R is…0

m iff !n nR is †0m.
With these definitions, we set †0m to be the set of all †0m-relations, and �0m D †0m \…0

m.

With such a technical definition, we should do some justification for it, in addition to alternative characterizations. To
help gain some intuition, ¹he; xi 2 !2 W ŒŒe��.x/ "º is …0

1, being the negation of the †01-relation Halt. We can also
arrive at standard ways of representing the relations in the higher classes. For example, R is…0

3 iff
Ex 2 R iff :.Ex 2 P / for P some †03-relation

iff :.9y .hEx; yi 2 Q// forQ some…0
2-relation

iff :9y :.hEx; yi 2 S/ for S some †02-relation
iff :9y :9z .hEx; y; zi 2 T / for T some…0

1-relation
iff :9y :9z :.hEx; y; zi 2 U/ for U some †01-relation
iff :9y :9z :9t .hEx; y; z; ti 2 V / for V some…0

0-relation
iff :9y :9z :9t :.hEx; y; z; ti 2 W / for W some †00-relation
iff 8y 9z 8t .hEx; y; z; ti 2 W / for W some primitive recursive relation.

The idea is that a �00 relation (analogous to the bounded quantification of �0-formulas in the Lévy hierarchy) is the
primitive recursive relations; and for the larger classes, we alternate existential quantifiers and universal quantifiers.
The following are some basic results.

• †01-relations are the form 9x R for R primitive recursive.
• …0

1-relations are of the form 8x R for R primitive recursive.
• †02-relations are of the form 9x 8y R for R as above;
• †0m-relations in general alternate the quantifiers starting with 9: they are of the form 9x1 8x2 9x3 � � �Qxm R
whereQ is either 9 or 8 to ensure the alternating pattern.

xiiiIn particular, the coded Ackermann function code"Ack 2 �0
1 n�0

0, and the coded halting set code"Halt 2 †0
1 n�0

1.
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• The same holds for…0
m-relations but starting with 8.

• R is †0m iff :R is…0
m.

We also get the following theorem which will be often used without referring back to it, allowing us to consider just
sets in P .!/ rather than in

S
n<! P .!n/. This also easily holds for the other classes of…0

n and �0n too.
A3b • 2. Theorem

Let R � !m with m < !. Therefore R is †0n iff code"R D ¹code.Ex/ W Ex 2 Rº is †0n.

Proof .:.

Proceed by induction on n. For n D 0, this is clear, because the characteristic function �R is primitive recursive
iff (by our primitive recursive coding) �.x/ D seq.x/ ^ lh.x/ D m ^ �R.x0; � � � ; xm�1/ is primitive recursive.
Note that � is the characteristic function of code"R.

For nC 1, suppose R is †0nC1 so that R satisfies Ex 2 R iff 9y .hEx; yi 2 P 0/ for some P 0 2 …0
n. Equivalently, R

satisfies Ex 2 R iff 9y .hEx; yi … P / for some P 2 †0n. By the inductive hypothesis (really a slight modification
of it to allow for some inputs to not be squashed together in a single, coded input), this is equivalent to Ex 2 R iff
9y .hcode.Ex/; yi … P0/ where P0 is†0n. So this gives a†0n-definition for code"R. The reverse direction follows
similarly. Hence by induction, the result holds. a

Now recall Figure A3 • 1, presenting the containments. We still, of course, need to prove these facts, but by introducing
irrelevant variables with either quantifier, we know thus far that �0n � †0n � �0nC1 for each n 2 ! (and similarly
�0n � …

0
n � �

0
nC1). Given the above definitions, placing relations in the hierarchy is relatively easy just based on
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A3b • 3. Figure: The arithmetical hierarchy

their defining form, just as with the Lévy hierarchy. The issue, however, is that showing this placement is optimal—
showing that R 2 †0n or that R 2 …0

n but not �0n—is far more difficult.

One might also notice that Definition A3 b • 1 offers different definitions for the classes of �00, �01, and †01 than Defi-
nition A3 a • 1. That said, we can still show that the two are equivalent.

A3b • 4. Result
†00 D �

0
0 D …

0
0 is the set of primitive recursive relations. Hence †01 is the same as in Definition A3 a • 1, and thus

�01 is the same as in Theorem A3 a • 4.

Proof .:.

Firstly, note that †00 D �00 D …0
0 since every †00 (i.e. primitive recursive) relation is the negation of a primitive

recursive relation, R 2 †00 has :R 2 †00 and thus ::R D R 2 …0
0 implying †00 D �00 D …0

0. This implies
that the definitions of †01 is equivalent as before. So that by Theorem A3 a • 4, R is computable iff R;:R 2 †01,
meaning R 2 †01 and R D ::R 2 …0

1, which is equivalent to R 2 �01. So the computable relations are again
the �01-relations and so �00, �01, and †01 are the same collections as before. a

We now begin work towards identifying †0n with sets defined by †n-formulas over N, so long as n > 0 (�0-definable
sets are �00, but the reverse isn’t necessarily true). Firstly, recall the Lévy hierarchy of formulas.

A3b • 5. Definition
Let N be the model h!; 0; 1;C; �i. Write “x < y” as shorthand for the formula “9z .x C z D y ^ z ¤ 0/”. A
quantifier is called bounded iff it is of the form “9x < t.y/ .� � � /” for some FOL.¹0; 1;C; º/-term t . Let ' be a

428



THE ARITHMETICAL HIERARCHY APPX §A3 b

FOL.¹0; 1;C; �º/-formula.
• ' is �N

0 D †
N
0 D …

N
0 iff all quantifiers in ' are bounded.

• ' is †N
nC1 iff ' is of the form 9x  where  is…N

n.
• ' is…N

n iff ' is : for some †N
n  .

Write '.N/ for the set ¹Ex 2 !<! W N � “'.Ex/”º. We also say ' is †N
n (or any of the other classes) iff '.N/ D  .N/

for some †N
n-formula  as above. And finally, ' is �N

n iff ' is †N
n and…N

n.

By again adding dummy variables, we get the same inequalities as in Figure A3 b • 3.
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A3b • 6. Figure: The elementary relations of N

It is more intuitive, however, that all the containments are strict for this diagram compared to the arithmetical hierarchy.
Note that we have the expected closure properties. As a small remark, note that “x < y”, despite having the form
9z .x C z D y/ can be easily recast as a �N

0 formula, since obviously x < y iff 9z < y .x D z/.
A3b • 7. Lemma

For each n < !, the†N
n,…N

n, and�N
n classes are closed under bounded quantification, conjunction, and disjunction.

Moreover,
• †N

n is closed under existential quantification for n > 0;
• …N

n is closed under universal quantification for n > 0; and
• �N

n is closed under negation.

Proof .:.

Proceed by induction on n. For n D 0, the result clearly holds: †N
0 D �N

0 D …N
0 consists of all formulas that

have only bounded quantifiers and thus is closed under bounded quantification, conjunction, and disjunction.

For nC 1, formulas that are †N
nC1 have the form “9x '” where ' is…N

n. So let ' and  be…N
n.

• For disjunction, “9x ' _ 9y  ” is equivalent to “9x .' _  /”. Since, inductively, “' _  ” is …N
n, it fol-

lows that 9x ' _ 9y  is †N
nC1 and so †N

nC1 is closed under disjunction.
• For conjunction, “9x ' ^ 9y  ” is the same over N as “9c 9x < c 9y < c .' ^  /”. As …N

n is closed
under conjunction and bounded quantification, it follows that this is †N

nC1 and thus †N
nC1 is closed under

conjunction.
• For existential quantification, “9x 9y '” is equivalent to “9c 9x < c 9y < c '”, and inductively, since…N

n

is closed under bounded quantification, this is†N
nC1. Hence†N

nC1 is closed under existential quantification.
• For bounded existential quantification, “9x < y 9z '” is just shorthand for “9x .x < y ^ 9z '/”. Since
“x < y” is �N

0 � †N
nC1, and †N

nC1 is closed under conjunction and existential quantification, it follows
that this is †N

nC1, and thus †N
nC1 is closed under bounded existential quantification.

To proceed further, we should think back to coding. Thanks to previous work, we have a �N
0 -definable function

that is able to code finite sequences: Gödel’s ˇ-function as per Lemma A1 a • 11. The following is clearly �N
0 ,

and defines the ˇ-function:
ˇ.x; y; i/ D b $ N � “9q < x 9z < y � .i C 1/C 1 .x D q � .y � .i C 1/C 1/C z ^ b D z/”.

From this, decoding only adds two existential quantifiers: for a k-tuple Ex, there is some a and some b where
ˇ.a; b; i/ D xi for all i < k. Hence we can show that †N

nC1 is closed under bounded universal quantification.
• For bounded universal quantification, “8x < y 9z '” is equivalent to the existence of a sequence hcn W n <
yi where x D n and z D cn witness ' for n < 2 � y. Using Gödel’s ˇ-function, this says

9a 9b 8n < y8x 8 z.ˇ.a; b; 2n/ D n D x ^ ˇ.a; b; 2nC 1/ D z ! '/.
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Since ' is …N
n, and P ! Q is shorthand for :P _Q (and …N

n is closed under those operations), we can
calculate that this is †N

nC1:
9a 9b 8n < y 8x 8 z .ˇ.x; y; 2n/ D x D n ^ ˇ.x; y; 2nC 1/ D z„ ƒ‚ …

�N
0

� …N
n

! '„ƒ‚…
…N

n„ ƒ‚ …
…N

n

/

„ ƒ‚ …
…N

n„ ƒ‚ …
†N

nC1

.

It then follows that †N
nC1 is closed under bounded universal quantification.

Thus we have proven the result for each †N
n, n < !, and the result for the…N

ns follows easily just by distributing
negations through the †N

ns: ' is…N
n iff :' is †N

n. Similarly, the result for the �N
ns follows easily from the result

for †N
n and…N

n. a

More important for our purposes is that �N
0 -formulas, while not able to encompass all �00-relations, always define

�00-relations.
A3b • 8. Lemma

Let ' be a �N
0 -formula. Therefore '.N/ is �00 (or at least code"'.N/ is �00).

Proof .:.

Firstly, note that for any FOL.¹0; 1;C; �º/-term t , the map Ex 7! tN.Ex/ is primitive recursive, as all such terms are
given by the composition ofC, �, 0, 1, and projections Ex 7! xi .

Now we proceed by induction on '. The only atomic formulas of FOL.¹0; 1;C; �º/ are those that state equality of
terms: '.Ex/ is “t .Ex/ D t 0.Ex/”, which then has '.N/ coinciding with the characteristic function �D.t

N.Ex/; t 0
N
.Ex//,

which is primitive recursive. The rest of the induction follows by Result A1 a • 6. a

The converse to Lemma A3 b • 8 is unfortunately false. Nevertheless, we do get the induction holding for the higher
levels of the arithmetical hierarchy, and this is partly due to our work in Lemma A3 b • 7 and the fact that we have a
�N
0 -definable coding of finite sequences.
A3b • 9. Theorem

Let 0 < n < ! and X � !<! . Therefore, X is †0n iff X is †N
n-definable, meaning X D '.N/ for a †N

n-formula '.

Proof .:.

Proceed by induction on n. For n D 1, we have the following.
(!) Because we have a �N

0 -definable function capable of coding of finite sequences of natural numbers, it
follows by closely analyzing Result A1 • 4, or more precisely the proof of it (along with Lemma A3 b • 7),
that every primitive recursive function has a †N

1 -definition:
f .Ex/ D y iff N � “9z 'f .Ex; y; z/”,

where 'f is �N
0 . In particular, since X is †01, for some primitive recursive R, Ex 2 X iff 9y .hEx; yi 2 R/

which is then clearly equivalent to N � “9c .'R.Ex; c0; c1//” which witnesses the result.
( ) If X D '.N/ for ' a †N

1 -formula, then for some �N
0 -formula  , Ex 2 X iff N � “9y  .Ex; y/”. By

Lemma A3 b • 8,  .N/ D R is primitive recursive. Hence Ex 2 X iff 9y .hEx; yi 2 R/ shows that X is †01.
For n C 1, the inductive hypothesis holding at n implies by the definition of …N

n and …0
n (just being negations

applied to the corresponding†N
n and†0n sets) that the result holds there. But then it’s obvious that the result holds

for nC 1: Ex 2 X iff 9y .hEx; yi 2 R/ for R …0
n iff N � “9y 'R.Ex; y/” for 'R a…N

n-formula. a

So it’s easy to conclude the result for all levels of the arithmetical hierarchy, excluding �00.

430



THE ARITHMETICAL HIERARCHY APPX §A3 b

A3b • 10. Corollary
For 0 < n < ! and X � !<! ,

• X is †0n iff X is †N
n-definable;

• X is…0
n iff X is…N

n-definable; and
• X is �0n iff X is �N

n-definable.

Therefore every N-definable relation can be placed in the arithmetical hierarchy, which is a difficult condition to satisfy,
given that of the 2ℵ0 relations, only ℵ0-many are arithḿetical: †00 is countable, and each†0nC1 adds only (by induction)
j…0

nj D j†
0
nj D ℵ0-many relations and is thus also countable, meaning

S
n2! †

0
n (also written †0!) is countable.

But this countability gives hope that we can talk about their elements coded as natural numbers themselves. This has
already been done with �01 where we consider codes of programs that are used to compute functions. This resulted
in a universal computable function, meaning a computable function that is able to compute every other computable
function: f .e; x/ D ŒŒe��1.x/. We have this same result for the higher classes in the arithmetical hierarchy.

This idea also allows us to show that all the containments of Figure A3 b • 3 and Figure A3 b • 6 are strict. The main idea
behind the proof is that there is a universal element in each class that is able to compute the others. Such an element
can be diagonalized in a way that produces a relation that only moderately increases complexity.
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Section A4. Reducibility and Logic

Indeed, in some cases, a problem A can be reduced to another problem B in the sense that knowing the answer to B
implies knowing the answer toA through some computable means. In general, we won’t be able to compare complexity
in a linear fashion, but we can still have meaningful statements that will generalize to our ideas about descriptive set
theory.

The primary idea behind these ideas is a kind of relative computability in that we take the same notion of computability
as before, but allow certain special functions and relations as given. The role these special functions play is like that
of an oracle of myth: a human that serves as a mouthpiece for gods. So the outputs of these functions, although
noncomputable by us, are simply given to us like how an oracle speaks the will of divinity, giving partial access to the
noncomputable.

A4 • 1. Definition
Let F be a set of partial functions over !. A partial function f over ! is F -computable iff it is computed by a
COM.F [ ¹s; pdº/-program.

Equivalently, f isF -computable iff it isF -�-recursive in the sense that it is in the�-least collection of partial functions
over ! containing the�-recursive functions and F that is closed under the usual operations. One can show by the same
idea as before that these two definitions of F -computability coincide: each program and computation uses only finitely
many functions fromF , and then doing the appropriate coding we can code a computation from these special functions.
Given that we assume that these special functions are F -�-recursive, we can decode such this in an F -�-recursive
way, and get that the resulting function is F -�-recursive. Similarly, the converse holds analogous to Corollary A2 b • 7.
Moreover, so long as F is countable—which it will be in each case we consider—we can consider a single coding of
these functions and do away with the “finitely many used” idea.

§A4a. Reducibility in the arithmetical hierarchy

There are many types of reducibility that one can consider. The fundamental idea behind all of them is to embed one
relation into another. The result is that if one is too complex, the other is forced to be by this reduction. Consider the
following statement which motivates the idea.

A4a • 1. Theorem
Consider the set K D ¹x 2 ! W ŒŒx��1.x/ #º. Therefore, for every R 2 †01, there is some computable, injective, total
function f where Ex 2 R iff f .Ex/ 2 K.

Proof .:.

Note that any R 2 †01 is the domain of some computable partial function r W !n * !, n < !. Now add a
variable that does nothing: r 0 W !nC1 * ! defined by r 0.Ex; y/ $ r.Ex/. We can let ŒŒ�0�� D r 0 so that by The
Smn -Theorem (A2 c • 3), for each fixed Ex 2 !n, and any y 2 !,

Ex 2 R iff r 0.Ex; y/ # iff ŒŒ�0��.Ex; y/ # iff ŒŒSn1 .�
0; Ex/��.y/ # .

Write f for the map Ev 7! Sn1 .�
0; Ev/. Since y is arbitrary, we can consider y D f .Ex/ so that Ex 2 R iff

ŒŒf .Ex/��.f .Ex// #. In other words, we’ve shown Ex 2 R iff f .Ex/ 2 K. Note that f W !n ! ! is computable,
injective, and total for each n < !. a

In terminology we will introduce, this says that every †01-relation is reducible to the set K above. Given that K, just
by examining its definition, is †01 too, this gives an example of a relation that is, in some sense, the most complex a
†01 set can be.
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The simplest example of this is “many-to-one” reducibility. Arguably this is harder to deal with than turing reducibility,
but for our purposes, it serves as a nice introduction.

A4a • 2. Definition
R � ! is many-to-one reducible to Q � !, written R �m Q iff for some computable (total) function f W ! ! !,
Ex 2 R$ f .Ex/ 2 Q. If, in addition, f is injective, we say R is one-to-one reducible toQ, written R �1 Q. And if
f is bijective, write R �1 Q.

Note the following immediate properties of �m:
• many-to-one reducibility is reflexive and transitive;
• R �m Q iff :R �m :Q;
• R �m ! iff R D !;
• R �m ; iff R D ;.

We also get that�m is able to help place a bound on where a given relation is in the arithmetical hierarchy. In particular,
each †0n class is closed downward under �m.

A4a • 3. Theorem
Let 0 < n < !, and R;Q � !. ThereforeQ �m R 2 †

0
n impliesQ 2 †0n.

Proof .:.

This is really a generalization of Result A3 a • 11: let f W ! ! ! witness the reduction so that x 2 Q iff
f .x/ 2 R, meaningQ D f �1"R. Thus, since †0n is closed under existential quantification for n > 0, x 2 Q iff

9y .f .x/ D y„ ƒ‚ …
†0

1
� †0

n

^y 2 R„ƒ‚…
†0

n

/

„ ƒ‚ …
†0

n

.

This then yields a †0n-definition forQ. a

A4a • 4. Corollary
IfQ �m R withQ … †0n, then R … †0n. The same also holds for the…0

ns.

As one would expect from the notation, a theorem of Myhill tells us thatR �1 Q andQ �1 R impliesR �1 Q, a kind
of computable version of Cantor–Bernstein (5 C • 4). Proving this isn’t especially useful nor interesting, basically being
a more refined and careful checking of the proof of Cantor–Bernstein (5 C • 4). Instead we will be more interested in
the question of relations which are maximal in the sense of Theorem A4 a • 1, which can be restated as saying R �1 K
for each R 2 †01.

A4a • 5. Definition
Let X � P .!<!/. A relation R 2 X is �m-complete in X iff every Q 2 X has Q �m R. We have similar
definitions for �1, and any other reduction we introduce.

Thus Theorem A4 a • 1 gives an example of a�1-complete in†01-set. Note that Halt (or code"Halt) is another example
that is �1-complete in †01 for the same sort of reason as K. Other classes also exhibit �1-complete sets.

A4a • 6. Result
R � !<! is �m-complete in †0n iff :R is �m-complete in…0

n.

Proof .:.

Note that Q �m R iff :Q �m :R since any f witnessing the reduction has x 2 Q iff f .x/ 2 R, which is
equivalent to x … Q iff f .x/ … R. So if R is �m-complete in †0n, then every Q 2 …0

n has :Q 2 †0n so that
:Q �m R iff ::Q D Q �m R so that R is �m-complete in…0

n. The reverse direction follows similarly. a

Hence…0
1 has ! nK as �1-complete. The benefit of complete relations is for showing something is noncomputable.
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For example, K is not computable for the same reason as Corollary A2 d • 3: the defined f is computable if K is.
A4a • 7. Corollary

If R is �m-complete in †01 (or in…0
1), then R … �01.

Proof .:.

By Corollary A4 a • 4, since K �1 R with K … …0
1, it follows that R … …0

1 and therefore R … �01. a

This yields the following, showing there is complexity even within the classes of the arithmetical hierarchy.

�1-complete in †01

other stuff†01

�01

A4a • 8. Figure: †0
1
-relations

This can also be generalized to the larger classes, meaning that to show the strict containments of †0n ¨ †0nC1 for
n < !, it suffices to find �m-complete sets. To show this, we need to introduce kind of relative versions of the
arithmetic hierarchy corresponding to the relativized notion of computable in Definition A4 • 1. The general roadmap
to do show the strict containments is as follows:

• Show †0nC1 sets are †01 over †0n-sets.
• Analogous to K and Halt for †01, produce a sequence of sets ;0, ;00, � � � such that ;.nC1/ is �1-complete in
†01.;

.n// and thus �1-complete in †0nC1.
• Conclude ;.nC1/ 2 †0nC1 n†

0
n, analogous to Corollary A4 a • 7.

• Use the ;.n/s to show there are sets in �0n n†0n.
To show the first, we need to make precise what it means to be †01 over a setQ 2 †0n.

A4a • 9. Definition
Let F be a set of total functions over !.

• The set of partial functions recursive in F is the �-least set containing the primitive recursive functions and
F that is closed under composition and definitions by recursion.

• †00.F / is the set of relations that are primitive recursive in F ;
• †0nC1.F / is the set of relations R satisfying Ex 2 R iff 9y .hEx; yi 2 Q/ for some…0

n.F /-relationQ;
• …0

n.F / is the set of relations R of the form :R where R 2 †0n.
• �0n.F / D †0n.F / \…0

n.F /.
We also say X is †0n over F for X 2 †0n.F /.

By the same sort of reasoning as before, †00.F / is closed under negations and thus †00.F / D �00.F / D …0
0.F /. By

the same arguments as before, we have the same closure conditions. Thus the proof that�01 consists of all computable
relations also shows that �01.F / consists of all F -computable relations.

A4a • 10. Corollary
Let F be a set of (total) functions over !. Therefore, R 2 �01.F / iff R is F -computable.

We also have (again, just from the same proofs as before) the following easy results as examples generalized from
Section A3. For all of the results below, we will be assuming F is finite so we can more easily code things. So if F is
finite, we have the following:
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• Each R 2 †0n.F / satisfies
Ex 2 R iff 9y1 8y2 � � � Qyn .hEx; Eyi 2 P /

for some P � !n that is F -computable, whereQ is a quantifier symbol that keeps the alternating pattern.
• The F -relativized version of Normal Form (A2 c • 2) holds with Output and each CompCoden now being prim-
itive recursive in F (and using a slightly different coding to account for F ).

• The F -relativized version of The Smn -Theorem (A2 c • 3) holds.
• Every F -computable function is thus coded by an e 2 ! with the function then being ŒŒe��nF W !

n * !.
• †0n.F / for 0 < n < ! is closed under ^, _, bounded quantification, and existential quantification.
• f W !n * !, n < !, is F -computable iff f as a relation is †01.F /.
• R 2 †01.F / iff R D dom.f / for some F -computable partial function f .
• Halt.F / D ¹he; xi 2 !2 W x 2 domŒŒe��1F º and KF D ¹e 2 ! W e 2 domŒŒe��1F º are not F -computable and are
both �1-complete in †01.F /.

Knowing a fair amount about the start of the F -arithmetical hierarchy is very important, because taking R to be a
relation �1-complete in †0n allows us to say that †01.R/-relations are precisely the †0nC1-relations. Note that for
Q � !<! , we generally write “†01.Q/” instead of more correct but more cumbersome “†01.¹�Qº/”.

A4a • 11. Lemma
Let R � ! and n < !. Therefore R is †0nC1 iff R is †01.Q/ for someQ 2 †0n […0

n.

Proof .:.

Suppose R is †0nC1. Thus R satisfies x 2 R iff 9y .hx; yi 2 Q/ for someQ 2 …0
n. Since �Q is clearly �00.Q/,

it follows that R is †01.Q/.

Now suppose R is †01.Q/ for some Q 2 †0n […0
n. As with the proof that (1) implies (3) in Theorem A3 a • 2,

R D dom.f / for someQ-computable f D ŒŒe��1F . But then x 2 R iff 9y .ŒŒe��1F .x/ D y/ iff there is a sequence
of computations that obey the rules of Computer Transitions (A2 b • 3). Given that Q is †0n or …0

n, it’s easy
to see that a natural number c being the code of a sequence of computations allowing Q is �0nC1 (we need to
make use of bothQ and :Q to state whether “ P�Q j x” transitions to “j 1” or to “j 0”, increasing the complexity
slightly from whicheverQ is). This means x 2 R iff there is a c where some �0nC1-relation holds, which is then
a †0nC1-relation. a

So to generate more complete sets, we can use the same idea as with K and Halt.
A4a • 12. Definition

Let R � !n, n < !. Write R0 for the jump of R: ¹e 2 ! W ŒŒe��1R.e/ #º.
For m < !, write R.m/ for R000 ��� 0, m applications of the jump operator.

In particular, the definition of K before is just ;0. So we can write ;00, ;000, and so on to get ;.n/ for any n < !.

The point of these, if you recall, is to show the strict containments of Figure A3 • 1 and Figure A3 b • 3. Recalling the
plan from above Definition A4 a • 9, we have shown the first step: †0nC1 sets are †01 over †0n-sets. We now want to
show that we can really just consider sets that are †01 over ;.n/ so that †0nC1 D †

0
1.;

.n//.
A4a • 13. Lemma

Let X � !. Therefore X 0 is �1-complete in †01.X/. Moreover, X 0 … �01.X/

Proof .:.

That X 0 is �1-complete in †01.X/ follows from the same proof as Theorem A4 a • 1 with the X -relativized forms
of Normal Form (A2 c • 2) and The Smn -Theorem (A2 c • 3).

To see that X 0 is not X -computable, we use the same idea as before: otherwise consider f defined by f .n/ D
ŒŒn��1X .n/ C 1 if n 2 X

0 and f .n/ D 0, which would be X -computable if X 0 were X -computable. This means

435



REDUCIBILITY AND LOGIC APPX §A4 a

f D ŒŒm��1X for some m < !. Since f is total, this yields m 2 X 0 and thus f .m/ D ŒŒm��1X .m/C 1 D f .m/C 1,
a contradiction. a

A4a • 14. Theorem (Post's Theorem)
;.n/ is �1-complete in †0n, and †0nC1 D †

0
1.;

.n// for each n < !. And the same hold for the…0
ns, n < !.

Proof .:.

Proceed by induction on n. For n D 0, both are clear:
• †01.;.0// D †01.;/ D †01; and
• ;.1/ D ;0 D K is �1-complete in †01 by Theorem A4 a • 1.

For n C 1, ;.nC2/ is �1-complete in †01.;.nC1// by Lemma A4 a • 13. It then suffices to show †0nC2 D

†01.;
.nC1//.

(�) Suppose R 2 †0nC2. Thus for some Q 2 …0
nC1, R satisfies Ex 2 R iff 9y .hEx; yi 2 Q/. Since ;.nC1/ is

�1-complete in †01.;.n// D †0nC1, :;.nC1/ is �1-complete in …0
nC1. So there is some total, injective,

computable function f where Ey 2 Q iff f . Ey/ … ;.nC1/. Hence
Ex 2 R iff 9y .f .hEx; yi/ … ;.nC1// iff 9y 9z . f .Ex; z/ D y„ ƒ‚ …

†0
1

� †0
1
.;.nC1//

^y … ;.nC1/„ ƒ‚ …
�0

1
.;.nC1//

/

„ ƒ‚ …
†0

1
.;.nC1//

shows that R 2 †01.;.nC1//, and therefore †0nC2 � †
0
1.;

.nC1//.
(�) Conversely, suppose R 2 †01.;

.nC1// and thus for some ;.nC1/-computable relation Q, Ex 2 R iff
9y .hEx; yi 2 Q/. Note that being a ;.nC1/-computable relation means that there exists the code of a
program e 2 ! where Ey 2 Q iff there is a code of computations following the program e and Computer
Transitions (A2 b • 3) using ;.nC1/ and :;.nC1/ that ends in “j 1”. Because ;.nC1/ is †01.;.n// D †0nC1

and :;.nC1/ is…0
nC1, it follows being a code of computations is�0nC2, and thusQ—stating the existence

of such a code—is †0nC2 (in fact,Q will be �0nC2, but this isn’t important for us). So R is †0nC2. a

So completeness is really quite useful, showing that †0n.R/—with R �1-complete in †0m—is just †0nCm. This allows
us to conclude all the strict containments of the arithmetical hierarchy through the following figure.

�1 ;
.n/

�1 ;
.n�1/

:::

�1 ;
0

�1 ;

†0n

†0n�1

†01 <1 ;
0

<1 ;
.n�1/

<1 ;
.n/

A4a • 15. Figure: Post's theorem

A4a • 16. Corollary
For each 0 < n < !, †0n ¨ �0nC1 ¨ †0nC1, and similarly for…0

n.
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Proof .:.

Post’s Theorem (A4 a • 14) tells us by Lemma A4 a • 13 that ;.nC1/ 2 †01.;
.n// n �01.;

.n// D †0nC1 n �
0
nC1

demonstrating �0nC1 ¨ †0nC1.

To show †0n ¨ �0nC1, we instead note that…0
n ¨ �0nC1, and the result for †0n follows similarly. Note that ;.n/

is �1-complete in †0n. Since n > 0, we thus know ;.n/ 2 †0n n �0n D †0n n…
0
n by Post’s Theorem (A4 a • 14)

and Lemma A4 a • 13. Since ;.n/ 2 �0nC1 it follows that…0
n ¨ �0nC1 and similarly †0n ¨ �0nC1 by considering

:;.n/ in…0
n n†

0
n. a

What Post’s Theorem (A4 a • 14), Lemma A4 a • 13, and Corollary A4 a • 16 should signal is that reducibility in many
of its forms is really necessary to study ever more complex sets, and by Corollary A3 b • 10, it also has consequences
for definability. Let us turn to some more consequences for this topic that we have encountered thus far.

§A4b. Consequences for logic

Corollary A4 a • 16 essentially tells us that there are ever more complicated sets of natural numbers. And, in particular,
there are ever more complicated definable sets of natural numbers through identifying†0n-relations with†N

n-definable
sets. In particular, we have the following, showing that we can’t actually define a truth relation over N.

A4b • 1. Theorem (Tarski's Nondefinability of Truth)
There is no FOL.¹C; �; 0; 1º/-formula ' where for all FOL-sentences � , N � � iff N � “'.code.“�”//”.

Proof .:.

Suppose otherwise, and let ' be a †N
n (note that every formula can be placed in this hierarchy by placing it in

prenex normal form and then reducing blocks of quantifiers to a single quantifier coding a sequence). Without
loss of generality, n > 0 so that †0n is closed under existential quantification. Therefore the property of x being
a true FOL-sentence is †0n. Write True 2 †0n for the set of (codes of) true sentences.

Note that for a formula of one variable, �.x/, the map h�; ni 7! code.“�.n/”/ is still primitive recursive (since
the map n 7! code.n/ is primitive recursive and we are just replacing every free occurrence of x in the sequence
of symbols “�.x/” with “1C � � � C 1”). Call this map f . Thus for every relation R defined by a formula �R
coded by a number code.�R/ D �R 2 !, and every x 2 !,

x 2 R$ True.f .�R; n//$ 9y .y D f .�R; n/ ^ True.y//,
which is †0n since the graph of f (i.e. f as a relation) is †01 � †0n and True is †0n by hypothesis. Thus every
definable relation is †0n. But this contradicts Corollary A4 a • 16 and Corollary A3 b • 10. In particular, ;.nC1/ is
†0nC1 and †N

nC1 but not †0n. a

As a corollary, we can’t reduce truth to any particular arithmetical relation. This yields Gödel’s incompleteness theorem
in that we cn’t reduce truth to whether there is a proof from a certain set of axioms that we can computably code.

A4b • 2. Corollary (Gödel's First Incompleteness Theorem)
There is no theory T such that all the following hold:

• The set of (codes of) formulas in T is computable;
• T is sound: N � T (this implies consistency); and
• T is complete: every ' has T ` ' or T ` “:'”.

Proof .:.

Suppose such a T exists. Therefore, for any formula ', N � ' iff T ` ', since by soundness, T ` ' implies
N � '. For the converse, by completeness, if N � ', then either T ` ' or T ` “:'”. If T ` ', we’re done, so
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suppose T ` “:'” so that T [ ¹'º is inconsistent and thus has no model, contradicting that N � ¹'º [ T .

But then any n 2 ! has n 2 True iff there is a natural number coding a proof with all the axioms of the proof in
T . Since T is computable, and it’s not hard (although, again, extremely tedious) to show that being the code of
a proof from T is�01. Hence True is †01, contradicting that True isn’t arithmetical by Tarski’s Nondefinability of
Truth (A4 b • 1). a

More generally, and by the same proof, there can be no intelligible proof system that is sound and complete.
A4b • 3. Corollary

A system for proofs is a set P where a proof is a sequence of formulas and the system for proofs specifies which
sequences are acceptable. For a formula ', we say `P ' iff there is a proof of P that ends with '.

Therefore, there is no proof system P such that all the following hold:
• being the code of a proof of P is computable;
• for every FOL.¹0; 1;C; �º/-sentence � , if `P � , then N � � ; and
• for every FOL.¹0; 1;C; �º/-sentence � , either `P � or `P “:�”.

The idea behind this generalization is that it goes beyond the usual ideas of proof in terms of first order logic or the
restrictions of only using 0, 1, C, and � over !. We could add in whatever additional relations, functions, or constants
we want. The proof system doesn’t need to behave in the same sort of way or directly make reference to N. And at
worst, we can always take P to just be the set of theorems of whatever weird system one desires. The result is always
the same: no matter what attempt we make at codifying the basic principles of logic and arithmetic, we always will
have sentences that are left unproven and unrefuted by the system or else it’s impossible to tell whether a given proof
is acceptable.

Note that the hypothesis that things be computable cannot be dropped: from the theory T D ¹' W N � 'º, we obviously
get that T is sound and complete. The issue is that this T isn’t computable, and really is just the truth set that Tarski’s
Nondefinability of Truth (A4 b • 1) showed isn’t N-definable. Indeed, it’s hard to imagine the usefulness of a system
where we can’t even fact check whether a proposed proof is actually a proof.

One concept that comes up frequently for us is the idea of a theory being encoded by ! just by coding the symbols of
the signature and using the standard coding mechansisms to code formulas as finite sequences of these.

A4b • 4. Definition
A FOL.�/-theory T is encodable iff there is a coding of FOL.�/-symbols into ! such that the set of coded sequences
of symbols ¹code.'/ W ' 2 T º is computable.

A4b • 5. Corollary
If T is encodable, then

• “x is the code of a proof of y from T ” is a computable relation; and
• so is “x is the code of a proof of code.:/_y from T ”.

Hence there are FOL.¹0; 1;C; �º/-formulas proofT .x; y/ and disproofT .x; y/ that represent these over N. Thus there
is a sentence Con.T / where N � Con.T / iff T is consistent:

:9x
�
proofT

�
x; code

�
“.v0 D v0 ^ :v0 D v0/”

���
A remarkable version of Gödel’s incompleteness theorem has us we can come up with a specific sentence for it. And
moreover, we can work with systems that aren’t necessarily sound, and whose consistency is a question mark. This is
especially useful with various strengthenings of ZF and ZFC.

A4b • 6. Theorem (Gödel's Second Incompleteness Theorem)
Let T be an encodable theory that can interpret PA. Therefore, T 6` “Con.T /” (or rather, the translation of Con.T /).

Meta-theoretically, this means that we will never have a justification that our foundations for mathematics are actually
correct from the foundations themselves: we must always go beyond to justify their correctness. Some common
responses to this would be to consider a sort-of “consistent closure” of our theory T , taking T0 D T and T1 D
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T0 [ ¹“Con.T0/”º, T2 D T1 [ ¹“Con.T1/”º, and so on. The resulting theory, T! D
S
n<! Tn would seem to be

consistent, right? Well, the issue with this approach is that T! ` “Con.Tn/” for each n < !, but we don’t necessarily
have T! ` “Con.T!/”. This is important, because if we are to continue this approach, we need to be able to encode
limit steps like T! into N and proceed to define T!C1, T!C2, � � �, T!C! , and so on. The result is that eventually we
cannot actually define our theory and what formulas are axioms becomes unintelligible.xiv

To prove Gödel’s Second Incompleteness Theorem (A4 b • 6), we need to make precise what it means to interpret
another theory in possibly a different signature. In essence, the idea is similar to how we can interpret N and N in
ZFC: relativize the operations and statements to !: instead of saying :9x 8y .y < x ! yC 1 < x/, something false
under ZFC by the axiom of infinity, we say :9x 2 ! 8y 2 ! .y < x ! y C 1 < x/, something true under ZFC
as ! is the least limit ordinal. Note that this translation is easy to carry out through codings: if we code the FOL.2/
and FOL.0; 1;C; �/-formulas, it’s easy to transform the FOL.0; 1;C; �/-formulas into the FOL.2/-formulas in a primitive
recursive way: just replace each occurrence ofCwith its defining FOL.2/-formula and similarly for the other symbols.

A4b • 7. Definition
Let � and � be two signatures. Let † be a FOL.�/-theory and T a FOL.�/-theory.

We say T can interpret † via iff there is a primitive recursive function tolk—called a translation—from FOL.�/-
sentences to FOL.�/-sentences such that for all FOL.�/-sentences ' and  ,

• † ` ' implies T ` tolk.'/; and
• tolk preserves : and ^: T ` “tolk.:'/$ :tolk.'/”, and T ` “tolk.' ^  /$ tolk.'/ ^ tolk. /”.

We call tolk above primitive recursive in the sense that the corresponding map code ı tolk ı code�1
W ! ! ! is

primitive recursive. It should be noted that this complexity requirement on tolk will be satisfied in every theory we
will consider. In particular, ZF � P, ZF, ZFC, and any other strengthenings of these can interpret PA by the following
corollary.

A4b • 8. Corollary
ZF � P (and many weaker set theories too) can interpret PA.

Up to this point, we’ve only proven equivalences over N. So it should be noted that all of the equivalences used thus
far are provable in just PA rather than the entirety of Th.N/. And if we wanted to be very careful, we could a lot more
work and show that similar results hold over much weaker axioms that suffice to prove Gödel’s work. Note that we
abandon the use of the translation � below, since it doesn’t add much. In particular, the following lemma is all we need,
although it is left unproven here. Mostly it just consists in proving Corollary A2 a • 5 from the proof of Result A1 • 4
over PA.

A4b • 9. Lemma
Let f W ! ! ! be a computable (total) function. For n 2 ! write #n for “0C 1C � � � C 1”, adding n ‘1’s. Therefore,
there is some FOL.¹0; 1;C; �º/-formula ' such that

• ' defines f over N: N � '.x; y/ iff f .x/ D y; and
• ' that also numeralwise represents f over PA: for all x; y 2 !, PA ` '.#x; #y/ iff f .x/ D y.

To prove Gödel’s Second Incompleteness Theorem (A4 b • 6), we will consider another variant of Gödel’s First Incom-
pleteness Theorem (A4 b • 2) where we explicitly construct a sentence � that has T 6` � and T 6` “:�”.

A4b • 10. Definition
LetT be an encodable theory and that interpretsPA via translation � . A rosser sentence for � andT is a FOL.¹0; 1;C; �º/-
sentence � such that, for r D code.�.�//,

PA ` “�$ 8y .proofT .y; #r/! 9z � y disproofT .z; #r//”.

Clearly a rosser sentence � is unprovable from a consistent theory T , as any proof of it has a code n 2 ! where then PA
shows there is a (code for a) proof m � n < ! of “:�” from T , meaning T would be inconsistent. So this is Rosser’s
formxv of Gödel’s First Incompleteness Theorem (A4 b • 2).

xivMore precisely, we could only carry out the process to define at most T˛ for each ˛ less than a countable ordinal known as !CK
1 < !1, but we

cannot deal with T
!CK

1
itself.

xvnamed after John Rosser, and frequently referred to as “Rosser's trick”
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A4b • 11. Lemma (Rosser's Form of Gödel's First Incompleteness Theorem)
Let T be a consistent, encodable theory that can interpret PA. Therefore there is a rosser sentence for T .

Proof .:.

Since T is encodable, proof and disproof can be represented over N and PA is strong enough to prove the equiv-
alence when we restrict ourselves to talking about actual natural numbers. More precisely, if ' represents the a
computable relation, then N � '.x/ iff PA ` “'.#x/”.

Write Rosser.v/ for a more general attempt at the rosser sentence: Rosser.v/ is
“8y .proofT .y; �.v//! 9z � y disproofT .z; �.v///”.

So we just need to find a fixed point of the map x 7! code.“Rosser.x/”/. We can find an explicit example (well,
explicit from whatever fixed coding we chose).

Write sub.x; n/ for the (computable) function that substitutes each free occurrence of “v0” in the sequence coded
by x with the number n written as “1C � � � C 1”. More concretely, we have

sub.code.'.y//; n/ D code.'.#n//. (?)
With this function at our disposal and representable over PA in the sense above, let '.x/ be the formula

“9z .z D sub.x; x/ ^ Rosser.z//”.
Let e D code.'/ and let � be the sentence '.#e/, which is just to say 9z .z D sub.#e; #e/^Rosser.z//. Note by
(?) that sub.code.'.v0//; #e/ D code.'.#e// D code.�/. Hence � states Rosser.code.�//, and thus � is a rosser
sentence for T . a

As a corollary, we can prove the second incompleteness theorem. The idea behind the proof is that the rosser sentence
for T is equivalent to the consistency of T .

Proof of Gödel’s Second Incompleteness Theorem (A4 b • 6) .:.

Let T interpret PA via the translation � . Let � be a rosser sentence for T by Rosser’s Form of Gödel’s First
Incompleteness Theorem (A4 b • 11). It suffices to show �.�/ is independent of T and � equivalence to Con.T /:

1. T 6` �.�/; and
2. PA ` “Con.T /! �”.

If we show these, then T ` “�.Con.T //! �.�/”. So if T ` �.“Con.T /”/, then T ` �.�/, contradicting (1) and
showing that T 6` �.“Con.T /”/.

T 6` �.�/ since this would imply a disproof, contradicting the consistency of T . Explicitly, suppose y 2 ! is
(the code of) a proof of �.�/ from T so that PA ` “proofT .#y; #r/” and thus PA ` “9z � y.disproofT .z; #r//”.
In particular, for N � PA,

N � “9y 9z .proofT .y; r/ ^ disproofT .z; r//”,
contradicting that T is consistent.

So suffices to show PA ` “Con.T /! �”. The argument above can be pretty easily formalized in PA (where
T D PA and � is just the identity) and this shows that PA ` “Con.T /! :9y .proofT .y; #r//”. And clearly, if
there is no proof of the rosser sentence, then � vacuously holds: every proof has a shorter disproof, just because
there are no proofs. So PA ` “Con.T /! �”. a

The same idea tells us that a formula of first-order logic being valid (meaning M � ' for every M) is †01 but not �01.
A sketch of the proof of this is given below.

A4b • 12. Result (Church's Theorem)
For any fixed coding of formulas into !, the set of valid FOL.¹0; 1;C; �º/-formulas is not computable, i.e.

Valid D ¹e 2 ! W e is the code of a formula and there is a proof of e without using any axiomsº 2 †01 n�
0
1.
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Proof Sketch .:.

Firstly, one can show that a weakened version of Lemma A4 b • 9 holds. In particular, we only need that Robin-
son’s arithmetic axioms, denoted Q, can numeralwise represent primitive recursive functions (Q is a weakening
of PA in the sense that PA � Q). The important point of this weakening is that Q is finitely axiomatizable. In
particular, there is some particular sentence Q that is the conjunction of all the sentences of Q. So Q ` ' iff
` “Q! '”. So if Valid were �01, then so would the theorems of Q—call this set Th.Q/ � !—be, as seen just
by asking whether “Q! '” is vaid or not.

Clearly Th.Q/ is †01 since x 2 Th.Q/ iff there is the code of a proof of code.“Q!”/_x. Being the code of a
proof is�01 so that the existence is†01. To show that this is not�01, we note that Q can numeralwise represent the
CompCode1 of Lemma A2 c • 1 and Normal Form (A2 c • 2). In particular, consider the halting problem again:
he; xi 2 Halt iff ŒŒe��1.x/ #. This is equivalent, since both CompCode1 and Output are total, to the existence of a y
where CompCode1.e; x; y/. By numeralwise representation in Q, we get a FOL.¹0; 1;C; �º/-formula representing
CompCode1 where then

he; xi 2 Halt iff N � “9y CompCode1.e; x; y/” iff Q ` “9y CompCode1.#e; #x; y/”.
The last equivalence can be seen as follows: if Q proves this, then clearly N � Q models it too. If N �
CompCode1.e; x; y/, then by numeralwise representation, Q ` “CompCode1.#e; #x; #y/” and hence the ex-
istence of such a y. Hence if Th.Q/ were �01, then so would Halt be, contradicting Corollary A2 d • 3. a

Theabove proof actually showsValid is�1-complete in†01 as witnessed by a�1-reduction fromHalt toValidwitnessed
by the map f sending he; xi to the code of “Q! 9y CompCode1.#e; #x; y/”. Hence while if something is always
true we can find a proof of it, we won’t be able to tell beforehand whether there is a proof. This is in contrast to
propositional logic where validity is computable just by examining the corresponding truth table.

Ideas used in Gödel’s Second Incompleteness Theorem (A4 b • 6) also lead to the idea of consistency strength, since
PA 6` Con.PA/, but ZFC ` Con.PA/ with ZFC 6` Con.ZFC/. So ZFC has a stronger consistency strength than PA:
Con.ZFC/ implies Con.PA/, but the reverse doesn’t hold.

§A4c. Turing reducibility and the turing degrees

The idea of many-to-one and one-to-one reduction is a fairly fine means of showing something is “reducible” to some-
thing else. A less subtle, more coarse notion of reducibility is that of turing reducibility.

A4c • 1. Definition
Let R;Q � ! be relations. We say R is turing reducible toQ, written R �T Q, iff �R isQ-computable. We say R
andQ are turing equivalent, written R �T Q, iff R �T Q andQ �T R.

Note the following basic facts about turing reducibility.
• �T is transitive: P �T Q �T R implies P �T R;
• �T is an equivalence relation over P .!/;
• R �T Q for all R;Q 2 �01; and
• R �m Q implies R �T Q (the reverse might not hold).
• R �T :R for all R � !.

As a result of this last item, being �m or �1-complete implies being �T-complete (and the reverse may not hold). In
particular, we have the following characterization of the �0n sets of the arithmetical hierarchy: they are exactly those
computable from ;.n�1/. This actually tells us that there’s a difference between many-to-one reducibility and turing
reducibility, which makes sense, since many-to-one reducibility requires just a single, already computable function to
translate between the two sets. Turing reducibility, on the other hand, allows all means of computation by way of using
one as an oracle.

A4c • 2. Corollary
For 0 < n < ! and R � !, R is �0n iff R �T ;

.n�1/. Hence ;.n�1/ is �T-complete in �0n but �m-complete merely
in †0n�1 (so long as n � 2 � 0). In particular, there is some �02-relation R where R �T ;

00 but R 6�m ;
00.
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Proof .:.

Let n < !. By Post’s Theorem (A4 a • 14), R is †0nC1 iff R is †01.;.n//, and similarly for…0
nC1. It follows that

R is �0nC1 iff R is �01.;.n//, but these are precisely the sets computable from ;.n/ by the same reasoning as in
Theorem A3 a • 4. This proves the first statement, and clearly implies that ;.n/ is �T-complete in �0nC1.

So for n D 2, ;00 is �T-complete in �03. Suppose towards a contradiction that every R 2 �03 not only has
R �T ;

00 but also R �m ;
00. Since ;00 is †02, it follows that :;00 2 …0

2 � �
0
3 has ;00 �m ;

00 2 †02, implying :;00

is †02 by Theorem A4 a • 3, contradicting that it is �1-complete in …0
2. Therefore there must be some R �T ;

00

with R 6�m ;
00. a

So turing reducibility gives rise to sets complete in�0n.xvi Results like the above tell us that there is a substantial differ-
ence between the equivalence classes of turing equivalence compared to many-to-one equivalence. These equivalence
classes can be understood as degrees of computation, and are of fundamental importance to computability theory,
which often cares about how sets are classified by their complexity.

A4c • 3. Definition
Let X � !. The turing degree of X is the equivalence class of X up to turing equivalence: ŒX��T D ¹A � ! W

A �T Xº.

We will often refer to turing degrees with boldface variables: a, b, c, and so on. Note that turing reducibility can be
abstracted away from the subsets of ! to instead yield an order on the turing degrees themselves: a �T b iff for some
(equivalently any) X 2 a and Y 2 b, X �T Y . By the above remarks, we have the following.

A4c • 4. Definition
Write 0 for the turing degree of 0. For a a turing degree with X 2 a, write a0 for the turing degree of X 0.

In particular, 0 D �01, and similarly, 0.n/ D �0nC1 for n < ! by Corollary A4 c • 2.
A4c • 5. Result

For any turing degree a, a0 is well-defined: if X �T Y then X 0 �T Y
0. Moreover, a <T a0 for all turing degrees a.

Proof Sketch .:.

That a0 is well defined follows easily from Definition A4 a • 12: using the fact that Y �T X , one can mimic the
computations of ŒŒe��1Y .e/ in X . This process converges iff the function itself converges meaning it’s in Y 0. But
this process converging can be carried out in X 0 by considering the analogous Halt for X -computable functions
and seeing that this is turing equivalent to X 0.

Thus for any turing degree a, since X 2 a has X <T X
0, it follows that a D ŒX��T < ŒX0��T D a0. a

This gives one method of getting more turing degrees from previous. Another method is to take the join: the least
turing degree that sits above two given turing degrees.

A4c • 6. Result
Let X; Y � !. Set X ˚ Y D ¹2n W n 2 Xº [ ¹2n C 1 W n 2 Y º. Therefore X; Y �T X ˚ Y , and for any Z,
X; Y �T Z implies X ˚ Y �T Z.

Proof .:.

ClearlyX; Y �T X˚Y sinceX; Y �1 X˚Y : x 2 X iff 2x 2 X˚Y and similarly for Y . And clearly,X; Y �T
Z implies we can compute from Z that n 2 X ˚ Y iff 9m < n ..n D 2m^m 2 X/_ .n D 2mC 1^m 2 Y //,
which yields that X ˚ Y �T Z. a

Stated in terms of orders, this gives the following.

xviThis is not the case with many-to-one reducibility, which has no �m-complete sets in�0
n for n > 1.
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A4c • 7. Corollary
Let a and b be turing degrees. Therefore there is some c such that a <T c and b <T c. In particular, the turing degrees
under �T form an upper semi-lattice:

• �T is transitive and anti-reflexive;
• For any two turing degrees, there is a �T-least upper bound—namely the join a˚ b; and
• for any turing degree a, a <T a0.

Many-to-one equivalence is a relatively fine equivalence relation in that it has smaller equivalence classes than turing
equivalence. That said, all of the equivalence classes (for either) are still only countable.

A4c • 8. Result
Each turing degree a � P .!/ has jaj D ℵ0. Hence there are 2ℵ0 -many turing degrees.

Proof .:.

For each X � !, there are only ℵ0-many programs that make use of X as an oracle (or rather, its characteristic
function just as a given relation symbol). As each Y �T X has an associated program, this implies there are at
most ℵ0-many Y 2 ŒX��T , and so each turing degree is countable.

To see that each turing degree a has jaj D ℵ0, note that for every X 2 0 D �01 and Y 2 a, Result A4 c • 6 tells
us X ˚ Y 2 a and since there are ℵ0-many elements in 0 (the finite subsets of !, for instance), it follows that
jaj � ℵ0 and thus jaj D ℵ0. a

A topic in the study of turing degrees that we will not pursue here is the existence of certain kinds of turing degrees.
In particular, there are minimal turing degrees in the sense that they are <T-minimal over the set of non-computable
turing degrees: 0 <T a but there is no b with 0 <T b <T a. Moreover, the structure of the turing degrees differs
significantly from the arithmetical hierarchy. In fact, a turing degree a is called an r.e. degreexvii in the sense that
a contains a †01-set. The study of r.e. turing degrees is long and complicated, involving many arguments using the
so-called priority method, but the results regarding these degrees are very nice, and we state some of these below.

A4c • 9. Result
1. (Sacks’ Density Theorem) For any two r.e. degrees a <T b, there is a c where a <T c <T b. This means the

r.e. degrees are dense as an order.
2. Hence no r.e. degree is <T-minimal in the non-computable degrees.
3. Moreover, there is then a solution to Post’s problem: there is a turing degree between 0 and 00.
4. For any r.e. degree a >T 0, there is an r.e. degree b such that a and b are not �T-comparable: a 6�T b and

b 6�T a.
5. (Sacks’ Splitting Theorem) For any r.e. degree a >T 0, there are r.e. degrees b; c <T a such that a D b˚ c.
6. There are r.e. degrees with no greatest lower bound, i.e. r.e. degrees a;b such that 8c �T a;b 9d .c �T d �T

a;b//. This is why the turing degrees form an upper semilattice rather than an actual lattice.

It’s also of interest that there is a solution to Post’s problem with regard to many-to-one reducibility as well: a set X
that is not �01 nor �m-complete in †01. While the proofs of these results are not of interest to us, the resulting picture
of the turing degrees is, which is mostly just that their structure is extremely complicated in a precise way we will not
pursue here. Some examples of the rich structure are the following.

A4c • 10. Result
1. For a a turing degree, a is the jump of some other degree a D b0 iff a �T 00.
2. The map a 7! a0 is not injective: in fact, for any a, there is a b >T a with a0 D b0.
3. �T is ill-founded. In fact, we can choose a sequence han W n < !i not only such that anC1 <T an but also that

a0
nC1 <T an for all n < !.

4. Every countable poset can be embedded into the turing degrees ordered under �T.

xviiThis comes from the terminology of a set being “recursively enumerable”, which is the same as being†0
1.
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For the purposes of set theory, we have the following interesting result about the turing degrees, coming from the results
about computability and the natural numbers. One might worry that some inner models have a distinct P .!/—and this
is certainly possible—but this doesn’t pose an issue, since these new subsets yield only new turing degrees.

A4c • 11. Result
Being a turing degree is absolute between models of ZF � P.

Proof Sketch .:.

For a given function f , being a COM.¹f; s; pdº/-program is absolute as it is just a statement about natural numbers.
This implies downward absoluteness: if a is a turing degree in W � U with W;U � ZF � P, then every set Y in
a D ŒX�W�T

is given by such a program in W. Since such a program is just a natural number, it follows that it’s in
U , and since the transition system of computation is absolute, it follows that this set Y is also computed by this
program and is thus in ŒX�W�T

. Hence ŒX�W�T
D ŒX�U�T

.

Now we show upward absoluteness. The idea here is that if W � U has a larger P .!/, then those new subsets
have different turing degrees. To show this, again just note that the turing degree of U, a D ŒX�U�T

, will be closed
under the computations of all COM.¹�X ; s; pdº/-programs coded by natural numbers. But sinceW and U agree on
what these programs are—being natural numbers—and they also agree on how these programs are computed, it
follows that every subset of W X -computable is also in U. The only point of ZF � P is just to have enough set
theory to carry out the required operations on !. a
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Appendix B. Recursion Theory*

The point of this appendix is to consider further the hyperarithmetical hierarchy, and more generally the interaction of
computability with set theoretic concepts, especially ordinals and ideas from descriptive set theory. As stated in the
previous appendix, what is currently called “computability theory”was previously called “recursion theory”. Many old-
guard set theorists still refer to the field as recursion theory, giving “recursion theory” a more set theoretic tone. This is
why I’m referring to the topic in this way. Regardless of the label, what will be presented here will be some of the basics
of a field sometimes referred to as recursion theory, higher recursion theory, (to a lesser extent) effective descriptive
set theory, or something else looking at computability with set theory. To make the distinction less meaningless, I will
often use the label “recursive” instead of “computable” here, in line with the fact that computable functions over !
were once called recursive functions.

The goal of this appendix is to do four main things:
1. define the hyperarithmetical hierarchy;
2. show two characterizations of !CK

1 are equivalent;
3. show the length of the hyperarithmetical hierarchy is !CK

1 ; and
4. investigate admissible sets and the theory KP’s relation to recursion theory.

Doing any of these requires introducing many more new definitions and technology. (3) is just to say that for every
˛ < !CK

1 , �0˛ ¨ †0˛ ¨ �0˛C1, and that
S
�<˛ �

0
�

¨ �0˛ , meaning that at both successor and at limit stages we add
new sets.

It should also be noted that this appendix relies on Appendix A in addition to the first several sections of [MISSING
“Chapter III. Descriptive Set Theory”], particularly Section 24. So recall some notation from Appendix A which will
be used extensively:

• ŒŒe��n refers to the partial function from !n to ! computed by the (code of the) program e. ŒŒe��nx refers to this
where x is used as an oracle in the (code of the) program e. We often leave the superscript out leaving the number
of arguments implicit.

• As we refer to partial functions, we say f .x/ $ g.x/ iff x … dom.f /[dom.g/, or else x 2 dom.f /\dom.g/^
f .g/ D g.x/. In other words, f .x/ $ g.x/ iff both are undefined, or both are defined and equal.

Note that the map he; ni 7! ŒŒe��.n/ is computable as a function from !2 to !. Note that every computable map over
�
N is of the form x 7! ŒŒe��x for some e 2 !.

Section B1. The Hyperarithmetical Hierarchy

Everything we state in this section can be generalized to other polish spaces with great effort and onerous notation.
To help with readability, this extra weight is dropped, and we state things only for N , leaving the generalizations to
the reader, and often using the unproven generalizations to products of copies of N and !. That said, the study of the
hyperarithmetical hierarchy for !, i.e. the study of hyperarithmetic reals, is itself an important topic although not one
we will investigate too much here.

Recall that we have defined†0n for n < !. To go further than†0˛ for ˛ D 1, especially at limit stages, we need a more
substantial coding. In essence, x 2 N witnessing X 2 †01.x/ is supposed to code the construction of X 2 �

†0
1 from

basic open sets. We can then easily code constructions of sets in…0
1.x/ and then in†02.x/ and so on. But to make this

intelligible at later stages, we want a uniform coding mechanism, which we call a borel code, which is a function that
basically codes the construction of some X 2

�
†0
˛ from basic open sets.
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B1 • 1. Definition
The set BC � N of borel codes is defined recursively in a hierarchy. Through simple coding, we may think of
x 2 BC as an element of ! � !N , writing x D hx.0/ 2 !i_hxi 2 N W i < !i. For ˛ 2 Ord,

• x is c†01 iff x.0/ … ¹0; 1º;
• x is c…0

˛ iff x.0/ D 0 and x0 2 c†0˛;
• x is c†0˛ for ˛ > 1 iff x.0/ D 1 and xi 2

S
�<˛ c†0

�
[ c…0

�
for each i < !.

We set BC D
S
˛<!1

c†0˛ D
S
˛<!1

c…0
˛ . To make things simpler, we also say x is c…0

˛ or c†0˛ if x is inS
�<˛ c†0

�
[ c…0

�
.

These borel codes define borel sets in the following way. Note that this lines up with the notion of †01 as before: a set
X is †01 iff there is some computable x 2 N (viewed as the characteristic function of a computable set A � !) where
X D

S
code.�/2A N� D

S
x.code.�//D1 N� . The following definition and corollary are the only places where we don’t

drop the added generality, simply to make it clear what the hyperarithmetical hierarchy is on products of N and !.
B1 • 2. Definition

Let
�
M be polish with basic open sets ¹Mn W n < !º and A 2 M. Let x 2 BC. We define the borel set coded by

x D hx.0/ 2 !i_hxi 2 N W i < !i, here BM
x , as follows.

• If x is c†01, then BM
x D

S
x0.n/D1

Mn;
• If x is c…0

˛ and x.0/ D 0, then BM
x DM n BM

x0
;

• If x is c†0˛ for ˛ > 1 and x.0/ D 1, then BM
x D

S
i2! B

M
xi
.

For
�
M D

�
N , we just write Bx for BN

x .

One can easily show by induction that these are borel, and in fact give all of the borel sets.
B1 • 3. Corollary

For each ˛ < !1 and polish
�
M,

�
†
0;M
˛ D ¹BM

x W x 2 c†0˛º, and similarly for
�
…0
˛ and c…0

˛ . In particular,
B D ¹Bx W x 2 BCº.

Proof .:.

It should be clear that Bx is borel for every x 2 BC by induction. Fix an enumeration of basic open sets of
�
M,

¹Mn W n < !º. It suffices to show that for every ˛ < !1, �
†
0;M
˛ D ¹BM

x W x 2 c†0˛º. Proceed by induction on ˛.
The result on

�
†
0;M
˛ yields the result for

�
…
0;M
˛ since if X 2

�
†
0;M
˛ has borel code x 2 c†0˛ then M nX 2

�
…
0;M
˛

has borel code h0; xi 2 c…0
˛ .

As noted above, this holds for ˛ D 1: clearly every x 2 c†01 has BM
x as open, and every open set is

S
n2A Mn

for some A � ! and thus is coded by x D h2i_hA W i < !i 2 c†01.

For ˛ > 1, let x 2 c†0˛ . If x.0/ ¤ 1 then x 2 c†0
�
[ c…0

�
for some � < ˛, where we may then appeal

to the inductive hypothesis and the containments of the borel hierarchy. So we may assume x.0/ D 1 and
xi 2

S
�<˛ c†0

�
[ c…0

�
for each i < !. Inductively, each BM

xi
2
S
�<˛ �

†
0;M
�
[

�
…
0;M
�

and thus by properties of
the borel hierarchy, each Bxi

2
�
†
0;M
˛ . Note that BM

x D
S
i<! B

M
xi

is then in
�
†
0;M
˛ as this pointclass is closed

under countable unions. This shows ¹BM
x W x 2 c†0˛º � �

†
0;M
˛ .

Now suppose X 2
�
†
0;M
˛ as witnesses by X D

S
n<! Xn where for each n < !, Xn 2

S
�<˛ �

…
0;M
�n

for some
�n < ˛. Inductively, each Xn D BM

xn
for some code xn 2 c…0;M

�n
. Therefore h1i_hxn W n < !i 2 c†0˛ is a borel

code for X . This shows
�
†
0;M
˛ � ¹BM

x W x 2 c†0˛º and hence we have equality for all ˛. a

So whereas
�
†0
˛-sets are coded by c†0˛ codes, we can form†0˛.A/ by restricting ourselves to onlyA-computable codes.

This allows us to form the lightface borel hierarchy and its relativizations as follows.
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B1 • 4. Definition
ForA 2 N , the (relativized, orA-) hyperarithmetical hierarchy, also known as the lightface borel hierarchy, consists
of sets ¹BM

x W x 2 BC is A-computableº. This forms a (relativized) hierarchy as follows: for X � N , and ˛ < !1,
• X is †0˛.A/ iff X has an A-computable borel code x 2 c†0˛;
• X is…0

˛.A/ iff X has an A-computable borel code x 2 c…0
˛; and

• X is �0˛.A/ iff X is †0˛.A/ and…0
˛.A/.

The hyperarithmetical hierarchy is this hierarchy for A D ;.

This definition gives another hierarchy mirroring the argyle picture with the borel hierarchy in Figure 22A • 3. But
this time the length of the hierarchy is shortened significantly: to a countable ordinal !CK

1 < !1. This ordinal will be
defined later, but it suffices to think of it as the supremum of the ordinals reached by computable operations.

�01

†01

…0
1

�02

†02

…0
2

� � � ¨ �0!

†0!

�0!C1

…0
!

†0!C1

…0
!C1

� � � ��
0

!CK
1

†0
!CK

1

…0

!CK
1

D �11

D
D

¨
¨

¨

¨

¨
¨ ¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

B1 • 5. Figure: The hyperarithmetical hierarchy

We immediately get the containments from the fact that c†0˛ [ c…0
˛ � c†0

ˇ
for ˛ < ˇ, and similarly for c…0

ˇ
. We can

also re-characterize these pointclasses.
B1 • 6. Corollary

Let A 2 N . Therefore,
1. For ˇ � ˛,

�0ˇ .A/ � †
0
ˇ .A/ � †

0
˛.A/ � �

0
˛C1.A/, and

�0ˇ .A/ � …
0
ˇ .A/ � …

0
˛.A/ � �

0
˛C1.A/.

2. X is †0˛.A/ iff N nX is…0
˛.A/; and

3. For ˛ > 1, X 2 †0˛.A/ iff X is the A-computable union of sets in
S
�<˛…

0
�
.A/, meaning X D

S
n<! Bxn

for some A-computable sequence hxn 2 BC W n < !i.

Proof .:.

We only prove the result for A D ;, but the idea easily generalizes. All of the following easily hold for ˛ D 1,
so we assume ˛ > 1.

1. This is obvious from the fact that †0
ˇ
.A/ […0

ˇ
.A/ � �0˛.A/ for all ˇ � ˛ by Definition B1 • 1.

2. IfX has a computable borel code x 2 c†0˛ , thenN nX has a computable borel code h0; xi 2 c…0
˛ . Similarly

ifN nX 2 …0
˛ , then there is some computable borel code forN nX in c…0

˛ , x D hx.0/i_hxi W i < !i 2

! � !N .
• If x.0/ … ¹0; 1º, then N nX 2 †01 so that N n .N nX/ D X 2 …0

1 � †
0
˛ .

• If x.0/ D 0, then X D N n .N nX/ D Bx0
with x0 2 c…0

�
[ c†0

�
� c†0˛ for some � < ˛;

• If x.0/ D 1, then x 2 c…0
�
[ c†0

�
for some � < ˛. So inductively, N n X 2 †0

�
[ …0

�
implies

X 2 †0
�
[…0

�
� †0˛ .

3. †0˛ consists of sets whose borel codes are computable and either
a. in c†0

�
or in c…0

�
for some � < ˛; or

b. of the form x D h1i_hxi 2
S
�<˛ c†0

�
[ c…0

�
W i < !i.

For (a), if X 2 †0
�
for some � < ˛, then inductively X is the computable union of sets. If X 2 …0

�
for

some � < ˛, then there is some computable borel code x 2 c…0
�
for X . In this case X D

S
n<! Bx . For
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(b), eachBxi
by the reasoning just given can be represented as a computable union (possibly just as a single

set) of sets in
S
�<˛…

0
�
. In other words, write xn D h1i_hxni W i < !i so that x D h1i

_hx
k0

k1
W k < !i is

computable and in c†0˛ (we regard k 2 ! as a coded pair hk0; k1i) with Bx D
S
k<! Bxk0

k1

D X . a

We also get some nice closure properties for these pointclasses, as one would expect. Mostly this just comes the fact
that the constructions for the usual borel pointclasses can be done in a computable manner.

B1 • 7. Result
Let 1 � ˛ < !1 and A 2 N . Therefore

1. †0˛.A/ is closed under A-computable unions, and finite intersections;
2. …0

˛.A/ is closed under finite unions, and A-computable intersections;
3. �0˛.A/ is closed under finite unions, finite intersections, and complements.

Proof .:.

We again only prove the result for A D ; for the sake of notation.
1. If ¹Xn W n < !º � †0˛ , then without loss of generality, each Xn can be realized as the union of sets inS

�<˛ †
0
�
[…0

�
. So let Xn D

S
m<! Xn;m where for each n < !, ¹Xn;m W m < !º �

S
�<˛ †

0
�
[…0

�
.

Let xn;m 2
S
�<˛ c†0

�
[ c…0

�
be a computable borel code for Xn;m. As we can decode coded pairs

in a computable way, h1i_hxk0;k1
W k < !i 2 c†0˛ is a computable borel code for

S
k<! Xk0;k1

DS
n;m<! Xn;m D

S
n<! Xn 2 †

0
˛ . Hence †0˛ is closed under computable unions.

For finite intersections, supposeX is the computable union
S
n<! Xn 2 †

0
˛ and Y is the computable unionS

n<! Yn 2 †
0
˛ where Xn; Yn 2

S
�<˛ †

0
�
[…0

�
for each n < !. Note that X \ Y D

S
n;m<! Xm \ Yn.

For eachm; n, there is some � < ˛ with Xm; Yn 2 †0� […
0
�
where then Xm \ Yn 2 †0� […

0
�
inductively.

It follows that
S
n;m<! Xm \ Yn D X \ Y , and this is clearly a computable union so that X \ Y 2 †0˛ .

2. Suppose ¹Xn W n < !º � …0
˛ with xn a computable borel code for Xn for each n < !. If hxn W n < !i is

computable, then the set of codes of the complements is computable: hh0; xni W n < !i. SinceN nXn 2 †
0
˛

and there is a computable set of codes for these, by (1) the computable union
S
n<! N n Xn 2 †

0
˛ and

therefore the complement N n
S
n<! N nXn D

T
n<! Xn 2 …

0
˛ . Hence…0

˛ is closed under computable
intersections. For finite unions, suppose X; Y 2 …0

˛ . Therefore, .N nX/ \ .N n Y / 2 †0˛ by (1). Hence
the complement of this X [ Y 2 …0

˛ .

3. Closure under finite unions and intersections follows just from the fact that both †0˛ and …0
˛ are closed

under these. For complements, X 2 �0˛ implies X 2 †0˛ so that N nX 2 …0
˛ . But we also have X 2 …0

˛ ,
implying N nX 2 †0˛ . Hence X;N nX 2 †0˛ \…0

˛ D �
0
˛ . a

As with the borel pointclasses, we also get closure under continuous preimages restricted in the sense of Lemma
24A • 10: closure under computable preimages, even from other spaces.

B1 • 8. Result
Let

�
M and

�
W be topologies with basic open sets ¹Mn W n < !º and ¹Wn W n < !º respectively. Let f WM ! W

be such that f is A-computable for some A 2 N in the sense that
NGf D ¹hx; ni 2M � ! W f .x/ 2 Wnº 2 †

0;M�!
1 .A/.

Therefore for any ˛ > 0, X 2 †0;W˛ .A/ implies f �1"X 2 †0;M˛ .A/, and similarly for …0;W
˛ .A/, …0;M

˛ .A/ and
�
0;W
˛ .A/, �0;M˛ .A/.

Proof .:.

Work with A D ;. Firstly, we need a way of translating between the basic open sets in a computable way. We
don’t need to worry about empty preimages, since trivially ; 2 †0;M˛ .A/.
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Claim 1
If f is computable, then there is a computable function h W ! � ! ! ! such that f �1"Wn D

S
m<! Mh.n;m/

if f �1"Wn ¤ ;.

Proof .:.

Since f is computable, NGf 2 †
0;M�!
1 meaning for some computable p W ! ! ! (where we regard

p.n/ D code.p0.n/; p1.n//), NGf D
S
n<! Mp0.n/ � ¹p1.n/º. So f .x/ 2 Wn iff there is some m < !

such that x 2Mp0.m/ and n D p1.m/. So set

h.n;m/ D

´
p0.m/ if p1.m/ D n
p0.m

0/ for some fixed m0 with p1.m0/ D n otherwise.
Then f .x/ 2 Wn iff x 2

S
m<! Mh.n;m/. a

This provides a basis to define a function transforming codes. Let X 2 †0;W1 have f �1"X ¤ ;. Therefore
X D

S
n<! Wk.n/ for some computable k W ! ! ! where then

f �1"X D
[
n<!

f �1"Wk.n/ D
[
n<!

[
m<!

Mh.k.n/;m/ D
[
n<!

Mh.k.n0/;n1/ 2 †
0;M
1 .

This establishes the result for ˛ D 1, and we proceed by induction from here. Note that complements work
nicely with preimages, yielding the result for…0;W

1 and…0;M
1 as well. Going beyond†0;W1 , we need to translate

between more complex borel codes.
Claim 2

There is a computable g where for x 2 BC, BM
g.x/
D f �1"BW

x .

Proof .:.

Proceed by induction on ˇ for x 2 c†0
ˇ
[ c…0

ˇ
to define g.x/. The inductive definition is immediate: take

g.x/ D hx.0/i_hg.xn/ W n < !i for x … c†01, preserving the operations and merely applying them to the
hereditarily transformed codes. So suppose x 2 c†01 (i.e. suppose x.0/ � 2) then BW

x D
S
x0.n/D1

Wn

where x D hx.0/i_hxn W n < !i, in which case
f �1"BW

x D
[

x0.n/D1

f �1"Wn D
[

x0.n/D1

[
m<!

Mh.n;m/

for the h from Claim 1. So taking g.x/ D hx.0/i_hh.xn; n/ W n < !i completes the definition of g, which
is clearly computable:

g.hx.0/i_hxn W n < !i/ D

´
hx.0/i_hh.xn; n/ W n < !i if x.0/ � 2,
hx.0/i_hg.xn/ W n < !i otherwise.

a

Note that a simple induction shows g.x/ 2 c†0
ˇ
if x 2 c†0

ˇ
for all ˇ, and similarly for the other levels of the

hierarchy. In particular, for x 2 c†0˛ , f �1"BW
x D BM

g.x/
. Note that g.x/ 2 N is still computable because

x is and x 7! g.x/ is computable over N . Hence BM
g.x/
2

�
†
0;M
˛ with a computable code g.x/ 2 c†0

ˇ
, i.e.

BM
g.x/
D f �1"BW

x 2 †
0
˛ . a

In particular, if we are able to code pairs in a computable way, then there’s no worry about conflating the hierarchies on
�
N and on

�
N �

�
N , for example, as we just consider compuable preimages. More succinctly, this gives the following

for
�
N .
B1 • 9. Corollary

Let 1 � ˛ < !1 and A 2 N . Therefore †0˛.A/,…0
˛.A/, and �0˛.A/ are closed under A-computable preimages.

For the most part we will be concerned with the first few pointclasses of the hyperarithmetical hierarchy, mostly†01 and
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…0
1. So it’s useful to have a couple theorems about these pointclasses, mostly being the computable analogs of results

around
�
†0
1 and �

…0
1. These pointclasses will be important for us as they form the basis of the analytical hierarchy, which

is arguablymuchmore important than the hyperarithmetical hierarchy, especially because the family of hyperarithmetic
sets, †0

!CK
1

, is exactly the set �11.

Section B2. Ordinals and Computability

To determine how long the hyperarithmetical hierarchy can go, we need to think about how far computation can take
us, and this requires thinking about what ordinals are computable in the following sense.

B2 • 1. Definition
An ordinal ˛ is recursive iff there is some computable R � ! � ! such that R has order type ˛, i.e. h˛;2i Š
hdom.R/ [ ran.R/;Ri. The church–kleene ordinal !CK

1 is sup¹˛ 2 Ord W ˛ is recursiveº.

It’s not immediately obvious that ˛ < ˇ with ˇ recursive implies ˛ is recursive, but this is the case and the basis for
the following result.

B2 • 2. Corollary
!CK
1 < !1, and moreover every ˛ < !CK

1 is recursive, but !CK
1 isn’t recursive.

Proof .:.

To see that !CK
1 < !1, just note that there are only countably many computable subsets of ! � !. Clearly every

recursive ordinal is countable as h˛;2i Š hX;Ri for some X � ! implies j˛j � ℵ0. In particular, !CK
1 is the

supremum of countably many countable ordinals and is thus countable.

Now suppose ˇ is recursive. It suffices to show any ˛ < ˇ is recursive. If hˇ;2i Š hX;Ri with R computable,
then any ˛ < ˇ is isomorphic to an initial segment of R. In particular, for some n˛ < !, h˛;2i is isomorphic to
hdom.P /[ ran.P /; P i where n P m iff n R m^ n R n˛ . As n˛ D 0C 1C � � � C 1 is some fixed number, P is
computable, and therefore ˛ is recursive. Hence the set of recursive ordinals is closed downward, and therefore
˛ < sup¹ˇ W ˇ is recursiveº D !CK

1 implies ˛ is recursive.

Now suppose !CK
1 is recursive. As the supremum of recursive ordinals, this implies !CK

1 C 1 isn’t recursive, but
this makes no sense: if ˛ is recursive, so is ˛C 1 as follows. If h˛;2i Š hX;Ri then consider (to free up space)
R0 D ¹h2n; 2mi W hn;mi 2 Rº. Then say n P m iff n R0 m _ m D 1, taking R and then adding a point at the
end. This clearly has h˛ C 1;2i Š hdom.P / [ ran.P /; P i with P computable. Thus !CK

1 is recursive implies
!CK
1 C 1 is too, a contradiction. a

It is this sense that !CK
1 is analogous to !1 for recursion. And in a similar way, we can define !CK

1 .A/ as the supremum
of A-recursive ordinals and get that !1 D supA2N !CK

1 .A/.i

It’s useful to develop codes for such ordinals along the same lines as the borel codes. This gives representations for
these ˛ < !CK

1 as well as a means of carrying out effective definitions and inductions.

The benefit of this will be to give an alternative characterization of the hyperarithmetical sets analogous to Post’s
theorem for the arithmetical hierarchy on !. Recall that Post’s theorem says †0;!nC1 D †

0;!
1 .;.n// where ;.n/ 2 N is

the nth jump of ;, defined recursively by ;.0/ D ; and
;
.nC1/

D ¹e 2 ! W e is a (code of an) ;.n/-computable program that halts on input eº.
If we are to have characterization for †0;!˛ for ˛ � !, we need another way to define ;.˛/, especially for limit ˛.

iTo see this, for ˛ < !1, for f W ! ! ˛ a bijection,R D ¹ha; bi W f .a/ < f .b/º has h!;Ri Š h˛;2i where then ˛ isR-recursive.
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B2 • 3. Definition
The set of ordinal notations, also called Kleene’s O, is a set of natural numbers ordered by <O , both built up by
recursion:

• (base case) 0 2 O;
• (successor case) if n 2 O then code.0; n/ 2 O and 8m 6O n .m 6O code.0; n//;
• (limit case) if e computes im.ŒŒe��/ D ¹nk W k < !º � O and 8k < ! .nk <O nkC1/, then code.1; e/ 2 O

and 8k < ! 8m 6O nk.m 6O code.1; e//.

The codes for ordinals can be decoded as follows, similar to how borel codes can be decoded.
B2 • 4. Definition

Let n 2 O. Therefore the ordinal coded by n is �n where
• (base case) �0 D 0;
• (successor case) �code.0;n/ D �n C 1; and
• (limit case) if code.1; e/ 2 O with ŒŒe��.k/ D nk for k < !, then �code.1;e/ D supk<! �nk

.
We call an ordinal ˛ notated iff there is an n 2 O with ˛ D �n.

We will use these to define ;.˛/ for ˛ < !CK
1 , but first we should show that these give precisely the recursive ordinals.

The idea is that ordinal notations give an alternative characterization of !CK
1 , mostly just by giving names to recursive

ordinals. This has the affect of trivially showing !CK
1 is countable just because there are only countably many notations

for ˛ < !CK
1 . But of course, to do this, we need to show that this really does give an alternative characterization of

!CK
1 , which is the main goal of this section.
B2 • 5. Theorem

!CK
1 D ¹�n W n 2 Oº. That is to say, all recursive ordinals are notated, and all notated ordinals are recursive.

Note that it’s rather difficult to directly compare whether n;m 2 O are codes for the same ordinal. This is mostly just
due to the fact that at limit stages, there are many possible ways to take the supremum, and showing the ordinals are
cofinal in the other ordinals just via their codes isn’t computable generally. In this sense, it’s more appropriate to view
O as having a tree-like order given by 6O , which can be seen as the tree of how these ordinal notations were built up.

It should be obvious that if n 6O m then �n � �m, but the converse need not happen: 6O is not linear. But the
following tells us we can still can regard 6O as a tree order, and thus get that every branch is well-ordered.

B2 • 6. Theorem
6O is a well-founded partial ordering. Moreover, if n 2 O, then 6O� pred6O

.n/ is linear.

Proof .:.

It should be clear that 6O is well-founded as it’s defined by structural recursion. Alternatively, one may note that
n 6O m as ordinal notations implies n � m as natural numbers. That 6O is a partial ordering should be clear
with transitivity built into the definition.

To see that 6O� pred6O
.n/ is linear, proceed by induction on 6O to show that 6O is total: every m0; m1 6O is

comparable, i.e. has m0 6O m1, m1 6O m0, or m1 D m0. If n D 0, then this requires m1 D m0 D n D 0. If
n D code.0;m/ and i 2 ¹0; 1º, thenmi 6O n is equivalent tomi D n_mi 6O m. Obviouslymi D n gives the
result, and for m0; m1 6O m, the inductive hypothesis then gives that m0 and m1 are 6O-comparable.

If n D code.1; e/where ŒŒe��.k/ D nk , thenm0; m1 6 n impliesm0 D nk0
andm1 D nk1

for some k0 ¤ k1 < !.
But then by Definition B2 • 3, k0 < k1 implies m0 6O m1, and similarly for k1 < k0. a

In fact, we can pretty easily calculate the order type of hpred6O
.n/;6Oi for any n 2 O: �n.

B2 • 7. Result
Let n 2 O. Therefore hpred6O

.n/;6Oi Š h�n;2i.
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Proof .:.

Proceed by induction on 6O . Write ˛n for the order type of hpred6O
.n/;6Oi. For n D 0, this is clear. For

n D code.0;m/, pred6O
.n/ D pred6O

.m/[ ¹mº inductively has order-type ˛n D ˛mC 1 D �mC 1 D �nC 1.
For n D code.1; e/, since pred6O

.n/ D
S
m<! pred6O

.ŒŒe��.m//, it follows that ˛n D supm<! ˛ŒŒe��.m/ D
supm<! �ŒŒe��.m/ D �n. a

Hence we can also chop off at initial segments to get another notated ordinal. In particular, ¹�n W n 2 Oº is closed
downwards.

B2 • 8. Corollary
Let n 2 O with ˛ < �n. Therefore there is some m 6O n with ˛ D �m.

Proof .:.

h˛;2i is an initial segment of h�n;2i Š hpred6O
.n/;6Oi. In particular, for f W �n ! pred6O

.n/ the isomor-
phism, �f .˛/ D ˛. a

This fact will be very useful as well-founded relations admit a kind of effective (often used to mean a generalization of
computable or explicit) version of transfinite recursion.

§B2a. Effective transfinite recursion

If we are going to talk about relations and functions on ordinals through their notations, we need a better way of defining
these things. The way we would normally do this in set theory is just to define them by transfinite recursion. But it’s
not clear that this will be effective in the sense that we can deal with this in a computable way through notations.

B2a • 1. Theorem (Effective Transfinite Recursion)
Let 4 be a wellfounded relation over X D dom.4/ [ ran.4/ � ! (writing x � y for x 4 y ^ x ¤ y). Let
f W ! ! ! be a (total) computable function. Suppose for all e 2 ! and x 2 X ,

pred�.x/ � dom.ŒŒe��/! x 2 dom.ŒŒf .e/��/.
Therefore, for some e0 2 !, ŒŒe0�� D ŒŒf .e0/��. Moreover, X � dom.ŒŒf .e0/��/.

Proof .:.

By the second recursion theorem, there is an e0 such that ŒŒe0�� D ŒŒf .e0/��. Now if X 6� dom.ŒŒe0��/, then there
is some 4-minimal x 2 X n dom.ŒŒe0��/ which then has pred�.x/ � dom.ŒŒe0��/ and thus x 2 dom.ŒŒf .e0/��/ D
dom.ŒŒe0��/, a contradiction. a

Note that 4 need not be computable, as in the case of 6O . A simple example of using effective transfinite recursion is
defining addition over ordinal notation: a function CO W ! � ! ! ! that gives an ordinal notation to the sum of the
ordinals that its two inputs notate.

B2a • 2. Example
There is a computableCO W ! � ! * ! such that

• O �O � dom.p/ with p"O �O � O; and
• �p.n;m/ D �n C �m for all n;m 2 O.

Proof .:.

By the Smn -theorem, there is an injective, total, computable s where for all e; e0; x; y,
ŒŒs.e; e0; x/��.y/ $ ŒŒe��.x; ŒŒe0��.y//.
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So now we defineCO by effective transfinite recursion. For any e; n;m 2 !, consider the function P defined by

P.e; n;m/ $

8̂̂̂<̂
ˆ̂:
n if m D 0
code.0; ŒŒe��.n;m0// if m D code.0;m0/

code.1; s.e; e0; n// if m D code.1; e0/

undefined otherwise.
As a computable function, P D ŒŒp�� for some p < ! and therefore by the Smn -theorem, there is a (total) com-
putable f W ! ! ! such that for each e 2 !, ŒŒf .e/��.n;m/ D P.e; n;m/.

6O is well-founded, and clearly pred6O
.x/ 2 dom.ŒŒe��/ implies x 2 dom.ŒŒf .e/��/ as we only need to continually

decode the things that resemble ordinal notations building up to x. Thus by Effective Transfinite Recursion
(B2 a • 1), there is an e0 2 ! with ŒŒe0�� D ŒŒf .e0/��. We then defineCO D ŒŒe0�� and write nCO m forCO.n;m/.

We get by an easy induction on m that
• nCO 0 D n;
• nCO code.0;m/ D code.0; nCO m/; and
• nCO code.1;m/ D code.1; e0/ where m and e0 compute mk and nCO mk for k < ! respectively.

And therefore, assumingCO"O �O � O,CO satisfies, as desired,
• �nCO0 D �n C �0;
• �nCOcode.0;m/ D �nCOm C 1; and
• �nCOcode.1;m// D supk<! �nCOmk

where ŒŒm��.k/ D mk .
Now we show that if n;m 2 O, n CO m 2 O. This is the result of induction: m D 0 clearly yields the result.
m D code.0;m0/ yields nCO m D code.0; nCO m

0/ 2 O inductively. The following claim gives the limit case.
Claim 1

Let n;m;m0 2 O with m0 6O m0 and assume nCO m; nCO m
0 2 O. Therefore nCO m 6O nCO m

0.

Proof .:.

Without loss of generality, we assume m <O m0, as the result is obvious if m D m0. Proceed by induction
on m0. For m0 D 0, this is immediate. For m0 D code.0;m�/, inductively, nCO m

� 2 O with m 6O m0

and therefore
nCO m 6O nCO m

� <O code.0; nCO m
�/ D nCO m

0.
For m0 D code.1; e/ where ŒŒe��.k/ D m0

k
with m0

k
6 m0

kC1
for k < !. m <O m0 then requires m 6O m0

k

for some k < ! and therefore inductively,
nCO m 6O nCO m

0
k 6O nCO m

0. a

This shows the limit case of n;m 2 O ! nCOm 2 O as follows. Ifm D code.1; em/ and nCOm D code.1; eC/

(here em and eC computemk and .nCO m/k for k < ! respectively), thenmk 6 mkC1 implies by Claim 1 that
.nCO m/k D nCO mk 6O nCO mkC1 D .nCO m/kC1.

Thus nCO m 2 O and thereforeCO"O �O � O. a

There are a variety of useful and expected properties ofCO interacting with 6O . For example, consider the following.
B2a • 3. Corollary

For all n;m 2 !,
1. n;m 2 O iff nCO m 2 O;
2. n;m 2 O and m ¤ 0 implies n <O nCO m;
3. n;m;m0 2 O and m0 <O m iff nCO m

0 <O nCO m;
4. n;m;m0 2 O and m D m0 iff nCO m D nCO m

0.
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Proof .:.

We show each direction simultaneously by induction, meaning that the inductive hypothesis is that all of the
above! directions hold, or the inductive hypothesis is that all of the directions hold.

1. It suffices to show the direction: that nCO m 2 O implies n;m 2 O. Proceed by induction on nCO m.
• If nCO m D n then m D 0 2 O and n D nCO m 2 O.
• If nCO m D code.0; k/ for some k 2 O, then m D code.0;m0/ for some m0 and thus inductively,
k D nCO m

0 implies n;m0 2 O and so m0 2 O.
• If n CO m D code.1; e/ for some e 2 ! with ŒŒe��.k/ <O ŒŒe��.k C 1/ for all k 2 !, then m D

code.1; e0/ for some e0 where then nCO ŒŒe
0��.k/ 2 O for each k 2 ! implies ŒŒe0��.k/ 2 O inductively.

ŒŒe��.k/ D nCO ŒŒe
0��.k/ <O nCO ŒŒe

0��.k C 1/ D ŒŒe��.k C 1/

implies that ŒŒe0��.k/ <O ŒŒe0��.k C 1/ by (3) for all k < !. Hence m D code.1; e0/ 2 O.

2. Suppose n;m 2 O with m ¤ 0. We will show n <O n CO m. Proceed by induction on m ¤ 0. For
m D code.0;m0/, we have inductively n 6O nCO m

0 <O nCO m. For m a limit, inductively
n 6O nCO mk <O nCO mkC1 6O nCO m

where m D code.1; e/ with ŒŒe��.k/ D mk for k < !.

3. Suppose n;m0; m 2 O with m0 <O m. Proceed by induction on m to show nCO m
0 <O nCO m.

• Form D code.0;m�/, this is clear as nCOm
0 6O nCOm

� <O nCO code.0; nCOm
�/ D nCOm.

• For m D code.1; e/ where ŒŒe��.k/ D mk for k < !, we have m0 <O mk for some k < ! where then
inductively, nCO m

0 <O nCO mk 6O nCO m.
For the converse, suppose n CO m0 <O n CO m. Proceed by induction on n CO m. Note m ¤ 0 as
otherwise n 6O nCO m

0 6O nCO 0 D n results in nCO m
0 D nCO m. So clearly nCO m ¤ 0.

• If nCO m D code.0; nCO m
�/ then m D code.0;m�/ where then inductively m0 6O m� <O m.

• If n CO m D code.1; e/ then ŒŒe��.k/ D n CO ŒŒe0��.k/ where m0 D code.1; e/. So n CO m0 <O

nCO ŒŒe
0��.k/ for some k < ! where then inductively m0 <O ŒŒe0��.k/ 6O m.

4. It suffices to show the  direction: that n CO m D n CO m0 implies m D m0. We have by (3) that
nCO m 6O nCO m

0 implies m 6O m0 and nCO m
0 6O nCO m implies m0 6O m so that m0 D m. a

B2a • 4. Corollary
Let s W ! ! ! be computable such that ŒŒs.e/�� is total for all e 2 !. Therefore, there is a computable function
(written with the notation e 7!

P
O;k<! ŒŒs.e/��.k/) with the following properties:

• If
P

O;k<! ŒŒs.e/��.k/ 2 O, then ŒŒs.e/��.k/ 2 O for all k < !;
• If 0 <O ŒŒs.e/��.k// for all k < !, then

P
O;k<! ŒŒs.e/��.k/ 2 O.

• If
P

O;k<! ŒŒs.e/��.k/ 2 O, then �P
O;k<! ŒŒs.e/��.k/

D
P
k<! �ŒŒs.e/��.k/.

Proof .:.

Define by recursion the partial sums:
S.e; 0/ D ŒŒs.e/��.0/

S.e; nC 1/ D S.e; n/CO ŒŒs.e/��.nC 1/.
This definition makes sense since each ŒŒs.e/�� is total. By the Smn -theorem, there is a (total) computable f W ! !
! such that for each e < !, S.e; n/ D ŒŒf .e/��.n/ for all n < !. This ŒŒf .e/�� is also total since ŒŒs.e/�� is. So then
we just set

P
O;k<! ŒŒs.e/��.k/ to be code.1; f .e//, and we now appeal to the results in Corollary B2 a • 3.

• Suppose
P

O;k<! ŒŒs.e/��.k/ 2 O. Thus
ŒŒf .e/��.n/ <O ŒŒf .e/��.nC 1/ D ŒŒf .e/��.n/CO ŒŒs.e/��.nC 1/ implies 0 6O ŒŒs.e/��.nC 1/ 2 O.
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• Similarly, if 8k < ! .ŒŒs.e/��.k/ 2 O/, then each ŒŒf .e/��.k/ 2 O by an easy induction. Moreover,
if each ŒŒs.e/��.k/ ¤ 0, then ŒŒf .e/��.k/ <O ŒŒf .e/��.k/ C ŒŒs.e/��.k C 1/ D ŒŒf .e/��.k C 1/ impliesP

O;k<! ŒŒs.e/��.k/ 2 O.
• By an easy induction, �ŒŒf .e/��.N/ D

P
k<N �ŒŒs.e/��.k/ so that

�P
O;k<! ŒŒs.e/.k/��

D sup
N<!

�ŒŒf .e/��.n/ D
X
k<!

�ŒŒs.e/��.k/. a

Another example of effective transfinite recursion is in showing pred6O
.n/ is †0;!1 for each n 2 O (although 6O is

not †0;!˛ for any ˛). For the following, write We for dom.ŒŒe��/.
B2a • 5. Example

There are computable functions predprgm W ! ! ! (for “predecessor program”) and orderprgm W ! ! ! (for “order
program”) where for any n 2 O,

1. Wpredprgm.n/ D ¹m 2 O W m 6O nº; and
2. Worderprgm.n/ D ¹hm;m

0i 2 O �O W m 6O m0 6O nº.

Proof .:.
1. It suffices to find a computable p such that for all n; e 2 !, Wp.0/ D ;, and

Wp.code.0;n// D Wp.n/ [ ¹nº

Wp.code.1;e// D
[

k2We

Wp.ŒŒe��.k//

It’s not difficult to see that such a p satisfies (1). To build such a p, we use Effective Transfinite Recursion
(B2 a • 1). Let e0 be such that ŒŒe0�� D ; so thatWe0

D ;. To ease up notation, we sayWŒŒe��.n/ D ; if n … We .
Claim 1

There are computable s W ! � ! ! ! (for “successor”) and ` W ! � ! ! ! (for “limit”) where
Ws.e;n/ D WŒŒe��.n/ [ ¹nº, and W`.e;e0/ D

[
n<!

WŒŒe��.ŒŒe0��.n//.

Proof .:.

Define s0 W !3 * ! and `0 W !3 ! ! by

s0.e; n;m/ $
´
0 if m D n
ŒŒŒŒe��.n/��.m/ otherwise.

By the Smn -theorem, there is a (total) computable function s W !2 ! ! where ŒŒs.e; n/��.m/ $ s0.e; n;m/

for all e; n;m 2 !. It should be clear that Ws.e;n/ D We.n/ [ ¹nº. Similarly, we can define the function
`0.e; e0; n/ D y iff y D 0 ^ 9m0; m1 2 !

�
ŒŒŒŒe��

�
ŒŒe0�� .n/

�
��.m0/ D m1

�
.

As `0 regarded as a relation is†0;!1 , `0 as a function is computable. By the Smn -theorem, there is a (total)
computable ` W !2 ! ! where ŒŒ`.e; e0/��.n/ D `0.e; e0; n/ for all e; e0; n 2 !. a

We can make use of s and ` in defining predprgm through some p. Firstly, we must find our iteration operator
f from Effective Transfinite Recursion (B2 a • 1). In particular, we set

g.e; n/ D

8̂̂̂<̂
ˆ̂:
e0 if n D 0
s.e;m/ if n D code.0;m/
`.e; e0/ if n D code.1; e0/

0 otherwise.
This g is computable and in fact total as both s and ` are total. By the Smn -theorem, there is some (total)
computable f W ! ! ! where ŒŒf .e/��.n/ D g.e; n/ for all e; n < !. This f will be as in Effective Transfinite
Recursion (B2 a • 1). The hypothesis of the theorem is immediate because every ŒŒf .e/�� is total since g is total.
Therefore by Effective Transfinite Recursion (B2 a • 1), there is some e1 where ŒŒe1�� D ŒŒf .e1/��. This p D ŒŒe1��
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then satisfies
Wp.0/ D We0

D ;

Wp.code.0;n// D Ws.e1;n/ D WŒŒe1��.n/ [ ¹nº D Wp.n/ [ ¹nº

Wp.code.1;e// D W`.e1;e/ D
[
n<!

WŒŒe1��.ŒŒe��.n// D
[
n<!

Wp.ŒŒe��.n//,

as desired. Hence p D predprgm witnesses the result.
2. This is easy to derive from (1). In particular, consider the function defined as a †0;!1 -relation

h.n;m;m0/ D y iff y D 0 ^m 2 Wpredprgm.n/ ^m
0
2 Wpredprgm.n/ ^m 2 Wpredprgm.m0/.

This yields by the Smn -theorem a (total) computable orderprgm W ! ! ! where ŒŒorderprgm.n/��.m;m0/ D

h.n;m;m0/ for all n;m;m0 2 !. In particular, Worderprgm.n/ D ¹hm;m
0i 2 O � O W m 6O m0 6O nº for all

n 2 O. a

This allows us to show that all notated ordinals are recursive.
B2a • 6. Corollary

¹�n W n 2 Oº � !CK
1 .

Proof .:.

Let n 2 O be arbitrary. By Result B2 • 7 and Example B2 a • 5,
h�n;2i Š hpred6O

.n/;6Oi Š hWpredprgm.n/;Worderprgm.n/i

is a †0;!1 -well-ordering. If pred6O
.n/ is finite, then clearly �n is recursive. So assume pred6O

.n/ is infinite, and
therefore there is some (total) computable bijection f W ! ! Wpredprgm.n/. Hence if we define

hm;m0
i 2 R iff hf .m/; f .m0/i 2 Worderprgm.n/,

we get thatR is computable since f is total with im.f / � Wpredprgm.n/ D dom.Worderprgm.n//[ ran.Worderprgm.n//.
So R is computable with h!;Ri Š hWpredprgm.n/;Worderprgm.n/i Š h�n;2i. Hence �n is recursive. a

§B2b. From ordinals to notations

Now in showing all recursive ordinals are notated, we need a way of translating from notations to well-orders, or rather
from notations to (codes of) programs computing well orders. There are a few steps in doing this. First we have the
following technical lemma.

B2b • 1. Lemma
There is a computable function d W ! ! ! where for all e 2 !,

1. d.e/ 2 O iff We � O;
2. We � O implies �n < �d.e/ for all n 2 We .

Proof .:.

Consider the sums as defined in Corollary B2 a • 4. First we must enumerate the elements of We [ ¹0º, and then
we sum these codes.

Claim 1
There is an s W ! ! ! where

• s W ! ! ! is total, and computable;
• ŒŒs.e/�� is total for each e < !; and
• ŒŒs.e/�� enumerates We [ ¹0º for each e < !.
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Proof .:.

Define by recursion
g.e; 0/ D 0

g.e; nC 1/ D

´
y1 for y D code.y0; y1/ the least y � n where 8m � n .y1 > g.e;m// ^ ŒŒe��.y0/ D y1,
0 if there is no such y � n.

g is computable, total, and n 7! g.e; n/ enumerates We [ ¹0º. By the Smn -theorem, there is an s where
ŒŒs.e/��.n/ D g.e/.n/ for e; n < !. This s has the desired properties. a

We then define d.e/ D
P

O;n<! code.0; ŒŒs.e/��.n// and use the properties of Corollary B2 a • 4.
1. Suppose d.e/ 2 O. So that code.0; ŒŒs.e/.n/�� and thus ŒŒs.e/��.n/ are inO. Hence im.ŒŒs.e/��/ D We[¹0º �

O and so We � O. Similarly,We � O implies 0 ¤ code.0; ŒŒs.e/��.n// 2 O for each n < ! so d.e/ 2 O.
2. Suppose We � O and thus d.e/ 2 O. Let n 2 We so that ŒŒs.e/��.m/ D n for some m < !. We then have

�n < �n C 1 D �ŒŒs.e/��.m/ C 1 �
X

k�m
.�ŒŒs.e/��.k/ C 1/ � �d.e/. a

The benefit of this lemma is proving the next result, connecting well-founded relations with notations that potentially
extend them. First we identify †0;!1 -relations with their codes in the following sense: Re is the relation defined by

Re.x; y/ iff hx; yi 2 dom.ŒŒe��2/,
where ŒŒe��2 W !2 * ! is the computable partial function computed by e 2 !. Note that for functions with one input,
we still refer to We for dom.ŒŒe��1/.

B2b • 2. Lemma
There is a computable function relcode W ! ! ! such that

1. Re is well-founded iff relcode.e/ 2 O;
2. Re is well-founded implies the order-type of Re is � �relcode.e/.

Proof .:.

Generally, we want to overshoot and then take an initial segment. So it’s useful to know that we can do this in a
computable way with the codes.

Claim 1
There is a (total) computable i W !2 ! ! such that for any e; c, Ri.e;c/ is Re � predRe

.c/. In other words, for
any e; c; n;m 2 !, Ri.e;c/.n;m/ iff Re.n;m/ ^Re.n; c/ ^Re.m; c/.

Proof .:.

Define I W !4 ! ! as follows and apply the Smn -theorem:
I.e; c; n;m/ D ŒŒe��.n;m/C ŒŒe��.n; c/C ŒŒe��.m; c/

Thus there is a (total) computable i W !2 ! ! where ŒŒi.e; c/��.n;m/ D I.e; c; n;m/ for all e; c; n;m <

!. In particular, hn;mi 2 Ri.e;c/ iff hn;mi 2 dom.ŒŒi.e; c/��/ iff hn;mi; hn; ci; hm; ci 2 dom.ŒŒe��/ iff
hn;mi; hn; ci; hm; ci 2 Re , as desired. a

In particular, Ri.e;c/ D ; if c … dom.Re/ [ ran.Re/. Now we order the domain and ranges of these relations.
Claim 2

There is a (total) computable c W !2 ! ! such that for any e; e0; n 2 !,

Wc.e;e0/ D

´
; if Re0 D ;

¹ŒŒe��.i.e0; n// W n < !º otherwise.
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Proof .:.

Consider the function C.e; e0; m/ defined to be the least n D code.n0; n1; n2; n3/ where ŒŒe0��.n0; n1/ D n2
and m D ŒŒe��.i.e0; n3//. If there is no such n, C.e; e0; m/ is undefined. Note that C.e; e0; m/ is defined iff
Re0 ¤ ; and m 2 ¹ŒŒe��.i.e0; n// W n < !º. C is computable and hence by the Smn -theorem, there is some
(total) computable c W !2 ! ! where ŒŒc.e; e0/��.m/ D C.e; e0; m/ and therefore Wc.e;e0/ D ; if Re0 D ;

and otherwise Wc.e;e0/ D ¹ŒŒe��.i.e
0; n// W n < !º. a

Nowwe can use the function d fromLemmaB2 b • 1 in conjunction with Effective Transfinite Recursion (B2 a • 1)
as follows. By the Second RecursionTheorem, there is an e0 where for all e0 2 !, ŒŒe0��.e0/ D d.c.e0; e

0//. Write
relcode D ŒŒe0�� and c0.e/ D c.e0; e/ so that relcode.e/ D d.c0.e//. It follows that

Wc0.e/ D

´
; if Re D ;
¹relcode.i.e; n// W n < !º otherwise.

This finishes our definition of relcode, and now we must confirm the associated properties.
1. Suppose Re is well-founded. If Re D ;, then clearly Wc0.e/ D ; so that relcode.e/ D d.c0.e// 2 O by

Lemma B2 b • 1 (1).

Now suppose relcode.e/ D d.c0.e// 2 O, implying that Wc0.e/ � O, and therefore relcode.i.e; n// 2 O

for all n < !. Moreover, by Lemma B2 b • 1 (2), �relcode.i.e;n// < �relcode.e/ for all n < !. By induction on
the notations according to the ordinals they code, we may assume inductively that Ri.e;n/ is well-founded
for all n < !. But then Re must be well-founded, as otherwise, any ill-founded Re-sequence lies below
some n 2 ! and thus Ri.e;n/ would be ill-founded; a contradiction.

2. Suppose Re is well-founded. By (1), relcode.e/ D d 0.c.e// 2 O so that relcode.i.e; n// 2 O and
�relcode.i.e;n// < �relcode.e/ for all n < !. So by induction on the notations according to the ordinals they
code, the ordertype of Ri.e;n/ D Re � predRe

.n/ is at most �relcode.i.e;n// for each n < !. Therefore, the
ordertype of Re , being supn<! ordertype.Ri.e;n//, is at most supn<! �relcode.i.e;n// � �relcode.e/. a

It turns out that we cannot improve the inequality to an equality in (2) above. While the order type of Re will be an
initial segment of the ordinal notated by relcode.e/, we won’t be able to figure out how and where to cut this in a
uniform, computable way. Nevertheless, this does give the final result needed to prove Theorem B2 • 5: that notated
ordinals are precisely the recursive ones.

B2b • 3. Corollary
Every recursive ordinal is notated. In particular, !CK

1 � ¹�n W n 2 Oº and so !CK
1 D ¹�n W n 2 Oº.

Proof .:.

Let ˛ < !CK
1 be arbitrary. Let hdom.R/[ ran.R/;Ri Š h˛;2i with R � !2 computable. Say R D Re for some

e 2 !. Since Re is well-founded, relcode.e/ 2 O with ˛ � �relcode.e/ by Lemma B2 b • 2. Since ¹�n W n 2 Oº is
closed downwards by Corollary B2 • 8, ˛ D �n for some n 6O relcode.e/ and therefore !CK

1 � ¹�m W m 2 Oº.
The other containment is Corollary B2 a • 6. a
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Section B3. The Length of the Hyperarithmetical Hierarchy

Section B4. Identifying the Hyperarithmetical Hierarchy with �1
1

Section B5. Admissible Sets and Kripke–Platek Set Theory
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Appendix C. Gory Details of the Forcing Relation

Section C1. Gory Detail of the Forcing Relation and Its Definability

It’s not recommended to read any of this section. The results of it are useful, but the proofs are long, technical, and
uninteresting. I will repeat for emphasis: do not read this section if you do not have to. This is mostly for the curious
and the skeptical. First we show the definability of each relation ¹hp; E�i 2 P �VP W p  “'.E�/”º for ' a formula. To
do this, we just straight up define a relation � with all the properties we’d like it to have, and then we show that it is
equivalent to . The motivation behind the definition is a result about . First, we have the following useful fact.

C1 • 1. Definition
Let P be a preorder with p 2 P . A setD � P is dense below p iff for every q 6 p, there is some r 6 q with r 2 D.
Equivalently,D is dense below p iffD [ .P n P6p/ is dense in P (here P6p D ¹q 2 P W q 6 pº).

C1 • 2. Result
Let V � ZFC be a transitive model. Let P 2 V be appropriate for forcing. Suppose G be P -generic over V with
p 2 G. Therefore, G \D ¤ ; for everyD � P that is dense below p.

Proof .:.

As P is appropriate for forcing, we can always extend. In particular, a set D is dense iff D n ¹q 2 P W p 6P qº

is dense (removing an initial segment doesn’t change long-term behavior of being able to extend into the set).
HenceD[ .P nP6p/ is dense impliesD[ .P n¹q 2 P W q 6P p_p 6P qº/ is dense. HenceG has a non-empty
intersection with this. So there is some q 2 G inD or else not comparable to p.

C1 • 3. Motivation
Let V � ZFC be a transitive model we can force with P 2 V over, where P is appropriate for forcing. Let ' be a
formula. Therefore, the following are equivalent.

• p  ';
• 8p� < p .p�  '/;
• D D ¹p� < p W p�  'º is dense below p.

The proof of this result will follow from the rest of our work in this section.
C1 • 4. Definition

Let P D hP ;6i be a preorder. We define p � “'.E�/”, read as p �-forces “'.E�/”, by structural induction on ' and
P -name rank of E� .

• p � “�1 D �2” iff for each h�1; q1i 2 �1,D1 is dense below p; andD2 is too for each h�2; q2i 2 �2; where
D1 D ¹p

� 6 p W p� 6 q1 ! 9h�; qi 2 �2 .p
� 6 q ^ p� � “� D �1”/º

D2 D ¹p
� 6 p W p� 6 q2 ! 9h�; qi 2 �1 .p

� 6 q ^ p� � “� D �2”/º.
• p � “�1 2 �2” iff ¹p� 6 p W 9h�; qi 2 �2 .p

� 6 q ^ q � “� D �1”/º is dense below p.
• p � “'.E�/ ^  .E�/” iff p � “'.E�/” and p � “ .E�/”.
• p � “:'.E�/” iff every p� 6 p has p 6� “'.E�/”.
• p � “9x '.x; E�/” iff ¹p� 6 p W 9� 2 VP .p� � '.�; E�//º is dense below p.

So we always have p � “; D ;” just vacuously. So to confirm whether p � “¹h;; piº D ¹h;; qiº”, we need to see
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whether (plugging �1 D ; D �2 and q1 D p, q2 D q into Definition C1 • 4)
D1 D ¹p

� 6 p W p� 6 p ! .p� 6 q ^ p�  “; D ;”/º
D ¹p� 6 p W p� 6 q ^ p�  “; D ;”º
D ¹p� 6 p W p� 6 qº is dense below p, and

D2 D ¹p
� 6 p W p� 6 q ! .p� 6 p ^ p� � “; D ;”/º

D ¹p� 6 p W p�
2 Pº is dense below p.

Here, D1 represents where �1 D ¹h;; piº will be a subset of �2 D ¹h;; qiº according to p. Similarly, D2 represents
when �2 will be a subset of �1 according to p: always. So p � “�1 D �2” iff (becauseD2 is clearly dense below p)
¹p� 6 p W p� 6 qº is dense below p. Note that with a P -generic filter G, p 2 G implies G \D1 ¤ ;, which implies
q 2 G and thus .�1/G D ¹;º D .�2/G .

This gives some motivation that � is well-defined: because we’re always decreasing P -name rank in the atomic
formulas, eventually we go down to the P -name ; where equality and membership are easy to calculate. Of course,
this doesn’t mean � is easy to calculate, as it can be unclear whether certain sets are dense or not.

Inductively, we have the following result about � (in V).
C1 • 5. Lemma

Let P D hP ;6i be appropriate for forcing. Let ' be a formula and E� P -names. Therefore, the following are
equivalent.

1. p � “'.E�/”;
2. 8p� 6 p .p� � “'.E�/”/;
3. D D ¹p� 6 p W p� � “'.E�/”º is dense below p, i.e.D [ .P n P6p/ is dense in P .

Proof .:.
• That (2) implies (1) is immediate since p 6 p. That (2) implies (3) is also immediate since thenD D P6p .

• Suppose (1) holds, working towards (2). We proceed by structural induction on ' and the P -rank of E� .
More precisely, let ' be the <lex-least formula with some E� where (1) holds but (2) fails. Then we set E� to
be witnesses of least P -rank. Let p� 6 p be such that p� 6 “'.E�/”.

– If “'.E�/” is of the form “�1 D �2”, “�1 2 �2”, or “9x  .x; E�/”, then (2) follows easily, since those
sets being dense below p implies they are dense below p�.

– If “'.E�/” is of the form “: .E�/”, then every p� 6 p has p� 6� “ .E�/”. In particular, for any
p�� 6 p� 6 p, p�� 6� “ .E�/” and therefore p� � “: .E�/” by definition. So (2) holds.

– If “'.E�/” is of the form “�.E�/ ^  .E�/”, then p � “�.E�/” and p � “ .E�/” so inductively every
p� 6 p has p� � “�.E�/” and p� � “ .E�/” and so the conjunction is �-forced: p� � “'.E�/”
so (2) holds.

• Suppose (3) holds, working towards (1). We again proceed by induction on ' and E� .
– If “'.E�/” is of the form “�1 D �2”, “�1 2 �2”, or “9x  .x; E�/”, then (2) follows easily just from
properties of denseness. Explicitly, if ¹p� 6 p W D0 is dense below p�º is dense below p, then D0

is dense below p: we just extend twice. To show (1), we just need to notice that we don’t need to
restrict the dense set definitions of Definition C1 • 4 to extensions of p. Then we’re working with the
same dense sets for all elements and thus we can apply this observation.

– If “'.E�/” is of the form “: .E�/”, then suppose (1) fails: there is some p� 6 p with p� � “ .E�/”.
By density of D, there is a p�� � “: .E�/”, meaning p�� 6 “ .E�/”. But this contradicts that (1)
implies (2) since p� �-forces it and p�� 6 p�. Hence (1) holds.

– Suppose “'.E�/” is of the form “�.E�/ ^  .E�/”. Since
D D ¹p� 6 p W p� � “�.E�/ ^  .E�/”º

is dense below p, then in particular,
D � D0 D ¹p

� 6 p W p� � “�.E�/”º
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D � D1 D ¹p
� 6 p W p� � “ .E�/”º

are both dense below p. Inductively, then p � “�.E�/” and p � “ .E�/”, so p �-forces the
conjunction: p� � “'.E�/”, meaning so (1) holds. a

This allows us to show the analogues of Definition 31D • 8 and Theorem 31B • 6 for �-forcing. We unfortunately need
to prove these simultaneously rather than focusing on just one or the other.

C1 • 6. Lemma
Let V � ZFC be a transitive model we can force with P 2 V over, where P is appropriate for forcing. Let p 2 P ,
E� 2 V P , and G be P -generic over V . Therefore
(a) p � “'.E�/” implies p  “'.E�/”; and
(b) if VŒG� � “'.E�G/”, then there is some p 2 G with p � “'.E�/”.

Proof .:.

As before, proceed by structural induction on ' and P -rank of E� (by which I mean induction on the max of the
P -ranks of E� ). Let G be P -generic over V with p 2 G, P D hP ;6P i. First we show the result for atomic
formulas, and then we induct on '.
(a) Suppose p � “'.E�/”. We must show VŒG� � “'.E�G/”.

• Suppose “'.E�/” is “�1 D �2”. We shall show .�1/G � .�2/G in VŒG�, because the other containment
is similar. So let .�1/G 2 .�1/G be arbitrary. Therefore, there is some q1 2 G with h�1; q1i 2 �1.
Since p�  “�1 D �2”, by Definition C1 • 4, the set

D1 D ¹p
� 6 p W p� 6 q1 ! 9h�; qi 2 �2 .p

� 6 q ^ p� � “� D �1”/º
is dense below p. Hence, asG is generic, G\D1 ¤ ;. Hence there is some p� and h�; qi 2 �2 such
that
1. p� 2 G;
2. p� 6 p; q1; q; and
3. p� � “� D �1”.

(1) and (2) imply q 2 G and thus �G 2 .�2/G . (3) implies by the inductive hypothesis that
p  “� D �1” (we’re looking at the same formula ' but now with parameters � and �1 which
have maximum P -name rank less than the maximum P -name rank of �2 and �1) and so VŒG� �
“.�1/G D �G 2 .�2/G”. As .�1/G was arbitrary, it follows that VŒG� � “.�1/G � .�2/G”. The other
containment follows analogously.

• Suppose “'.E�/” is “�1 2 �2”. Since p � “�1 2 �2”, the set
D D ¹p� 6 p W 9h�; qi 2 �2 .p

� 6 q ^ q � “� D �1”/º
is dense below p. In particular, G \D ¤ ; and so there is a p� and h�; qi 2 �2 such that
1. p� 2 G;
2. p� 6 p; q; and
3. p� � “� D �1”.

(1) and (2) imply that q 2 G so that VŒG� � “�G 2 .�2/G”. (3) implies by the previous case above
that VŒG� � “�G D .�1/G” and thus VŒG� � “.�1/G 2 .�2/G”.

(b) Suppose VŒG� � “'.E�/”. We must show there is some p 2 G with p � “'.E�/”.
• Suppose VŒG� � “.�1/G D .�2/G”. To see that some p 2 G has p � “�1 D �2”, it suffices to
consider the dense set of Lemma C1 • 5. In particular, consider the set of all p� 6 p such that
p� � “�1 D �2”. This isn’t exactly easy to get a handle on, so instead consider the setD of p where
p  “�1 D �2” or we have a conflict with the dense sets of Definition C1 • 4: either
(i) there is a h�1; q1i 2 �1 where p 6 q1, and for every h�2; q2i 2 �2 and every q�

2 6 q2, if
q�
2 � “�1 D �2” then q�

2 ? p; or
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(ii) there is a h�2; q2i 2 �2 where p 6 q2, and for every h�1; q2i 2 �1 and every q�
1 6 q1, if

q�
1 � “�1 D �2”, then q�

1 ? p.
The idea is that there can be no p 2 G that satisfies either (i) or (ii). The issue is that (the handling
of these two are analogous) if p satisfies (i) along with h�1; q1i 2 �1, we would have q1 2 G so
that VŒG� � “.�1/G 2 .�1/G D .�2/G”, meaning VŒG� � “.�1/G D .�2/G” for some h�2; q2i 2 �2.
By the inductive hypothesis on P -name rank, there is then some q 2 G where q � “�1 D �2”.
Without loss of generality (G is a filter) we can assume q 6 q2 so that by (i) q ? p, contradicting
that q; p 2 G and G is a filter.

Thus if there are no p � “�1 D �2” in G, then G \D D ;. So it suffices to show that D is dense,
yielding that G \ D ¤ ; and thus there is a p 2 G that �-forces “�1 D �2”. So let p 2 P be
arbitrary, working towards a p� 2 D. Assume without loss of generality that p 6� “�1 D �2”. Thus
by Definition C1 • 4 (the other possibility being similar, yielding an extension witnessing to (ii)) there
is a h�1; q1i 2 �1 with

D1 D ¹p
� 6 p W p� 6 q1 ! 9h�2; q2i 2 �2 .p

� 6 q ^ p� � “�1 D �2”/º
not dense below p. In particular, there is some p� 6 p with no p�� 2 D1, meaning for all p�� 6 p�,

p�� 6 q1 ^ 8h�2; q2i 2 �2 .p
��
66 q2 _ p

��
6� “�1 D �2”/.

We now show that p� satisfies (i). The above shows that in particular, p� 6 p� has p� 6 q1. Note
that if h�2; q2i 2 �2, q�

2 6 q2 and q�
2 � “�1 D �2”, then any common extension r 6 q�

2 ; p
� has

r D p�� contradict the above. Thus this would imply q2 ? p� and thus that p� satisfies (i). Therefore
D is dense.

• Suppose VŒG� � “.�1/G 2 .�2/G”. This means there is some h�2; q2i 2 �2 with q2 2 G and VŒG� �
“.�1/G D .�2/G”. By the argument above, there is then some p 2 G with p � “�1 D �2”. So if
p� 6 p; q2, by Lemma C1 • 5, every p�� 6 p� has p�� 6 q2 and p�� � “�1 D �2”. Thus by
definition, p�  “�1 2 �2”.

So far, we have (a) and (b) for atomic formulas. The inductive steps are much easier, and we prove (a) and (b) by
structural induction on '.

• Suppose ' is “� ^  ”.
(a) If p � “'.E�/” then p �-forces each conjunct. By the inductive hypothesis, p forces each conjunct,

and thus the conjunction “'.E�/”.
(b) If VŒG� � “'.E�G/” then inductively there are p1; p2 2 G with p1 � “�.E�/” and p2 � “ .E�/”.

As G is a filter, there is some common extension p 6 p1; p2 where then p �-forces both (by Lemma
C1 • 5) and thus the conjunction “'.E�/”.

• Suppose ' is “: ”. This case is the only reason why we needed to prove (a) and (b) together.
(a) Suppose p � “: .E�/” but some generic G has p 2 G with VŒG� � “ .E�/”. By the inductive

hypothesis on (b), there is some q 2 G with q � “ .E�/”. But then a common extension p� 6 p; q

has (by Lemma C1 • 5) p� � “ .E�/”, contradicting Definition C1 • 4.
(b) Suppose VŒG� � “: .E�/”. Consider the setD of p 2 P that decide  :

D D ¹p 2 P W p � “ .E�/” _ p � “: .E�/”º.
It should be clear thatD is dense in V, since either we can extend an arbitrary p to a p� � “ .E�/”
or else every p� 6 p doesn’t �-force “ .E�/”, in which case p 6 p �-forces “: .E�/”. Hence
G \ D ¤ ; as witnessed by some p 2 G. We obviously can’t have p � “ .E�/” as this would
imply inductively that p  “ .E�/” and thus VŒG� � “ .E�/”. Hence p � “: .E�/” witnesses the
result.

• Suppose ' is “9x  ”.
(a) Suppose p � “9x  .x; E�/” so that ¹p� 6 p W 9� 2 V P .p� � “ .�; E�/”/º is dense below p.

Thus if G is generic and p 2 G, then there is some p� 6 p with p� � “ .�; E�/” for some P -name
� . By the inductive hypothesis, VŒG� � “ .�G ; E�G/” and thus VŒG� � “9x  .x; E�G/”. As G was
arbitrary, it follows that p  “9x  .x; E�/”.
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(b) Suppose VŒG� � “9x  .x; E�G/”. Let �G be a witness to this. Thus VŒG� � “ .�G ; E�G/” and so
inductively, there is some p 2 G with p � “ .�; E�/” and in particular, since every p� 6 p

�-forces this, by Definition C1 • 4 p � “9x  .x; E�/”. a

This allows us to prove the desired results about the actual forcing relation.
C1 • 7. Corollary

Let V � ZFC be a transitive model we can force with P 2 V over, where P is appropriate for forcing. Let p 2 P ,
E� 2 V P , and ' a formula. Therefore in V, p � “'.E�/” iff p  “'.E�/”.

Proof .:.

The (!) direction follows from Lemma C1 • 6 (a). For the ( ) direction, suppose p  “'.E�/”, but p 6� “'.E�/”.
Hence by Lemma C1 • 5, D D ¹p� 6 p W p� � “'.E�/”º is not dense below p, meaning there is some p� 6 p

that cannot be extended into D, i.e. every p�� 6 p� has p�� 6 “'.E�/”, i.e. p� � “:'.E�/”. But then
p�  “:'.E�/”, contradicting that p > p�  “'.E�/”. a

The above proof requires some philosophical assumptions: namely that we can force over V with P . This is clear when
V is countable by Theorem 31D • 1,i but otherwise, one could read the conclusion of the proof above that instead p�

has no generic G with p� 2 G.

One consequence of the equivalence between forcing and �-forcing is the following from Lemma C1 • 6 (b).
C1 • 8. Corollary

Let V � ZFC be a transitive model we can force with P 2 V over, where P is appropriate for forcing. Let G be
P -generic over V . Let E� 2 V P . Therefore VŒG� � “'.E�G/” iff there is some p 2 G with p  “'.E�/”.

Moreover, we can finally confirm the results of Motivation 31B • 3. The only interesting case here is (4).
C1 • 9. Theorem

Let V � ZFC be a transitive model we can force with P 2 V over, where P is appropriate for forcing. For p 2 P ,
write p� 2 P for an arbitrary p� 6 p (an arbitrary point in time after p). Let ' be a formula with parameters in V P .
Therefore,

1. p  ' iff every p�  ';
2. p  “:'” iff every p� 6 ', i.e. you can conclude it’s false iff you will never discover that it’s true;
3. p  “' ^  ” iff p  ' and p   ;
4. if p  “9x '.x/” then there is some p� 6P p and � where p�  “'.�/”; and
5. if p  ', and ' is logically equivalent to  , then p   ;

Proof .:.
1. This follows from Lemma C1 • 5 and Corollary C1 • 7: p  ' implies p � ', which implies every
p� � ', which implies every p�  '. The converse follows similarly.

2. This follows from Corollary C1 • 7 and Definition C1 • 4.
3. This follows from Definition 31B • 2.
4. Suppose p  “9x '.x/”. Let p 2 G which is P -generic over V. Since VŒG� � “9x '.x/”, there is some
� 2 VP where VŒG� � '.�G/ and thus some condition of G forces this: q 2 G has q  “'.�/”. As G is
a filter, there is some common extension p� 6P p; q which then forces “'.�/”.

5. If ' is logically equivalent to  , then any generic extension VŒG� � “' $  ” so if p 2 G and VŒG� � ',
then clearly VŒG� �  .

iD D ¹D 2 V W V � “D is dense in P”º � V must also be countable if V is.
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Section C2. ZFC in the Generic Extension

Our goal is now to prove Theorem 31D • 13. Doing this amounts mainly to finding the right P -names for certain sets
that a particular axiom of ZFC claims the existence of. Now ostensibly, we could just apply a result like Corollary
C1 • 8 and begin by, for each axiom ' of ZFC, finding an element of the preorder that forces ZFC. This isn’t exactly
easy to do if, say, 1P  ZFC (which will be the case if V � ZFC). Mostly this is because while  is defined, that
doesn’t mean it’s computable, as whether certain sets are dense isn’t always immediate.

We now collect together the implications of how much set theory V satisfies on how much set theory VŒG� satisfies. As
a bit of notation, we refer to V as the ground model and VŒG� as the generic extension. Also, P refers to the powerset
axiomwhile ZF� refers to ZF�PCCol, where Col is the axiom scheme of collection. Collection is strictly stronger than
replacement, as there is a complicated forcing where replacement holds in the generic extension, but not collection [30].

C2 • 1. Theorem
Let V � ZFC be a transitive model we can force with P 2 V over, where P is appropriate for forcing. Let G be
P -generic over V . Therefore,

• V � ZF� implies VŒG� � ZF � P;
• V � ZF implies VŒG� � ZF;
• V � ZFC implies VŒG� � ZFC.

To prove these inequalities, we need to prove various closure properties of the generic extension given by appropriate
names in the ground model. The existence of these names follows from the amount of set theory the ground model
satisfies.

Note that I will often use “a name”, “a P -name”, and “a name in V ” all for the same thing: an element of V P for some
given element of V ŒG�.

C2 • 2. Theorem
Let V be a transitive model we can force with P 2 V over, where P is appropriate for forcing. Let G be P -generic
over V . Suppose V � ZF � P. Therefore VŒG� � ZF � P � Rep, where Rep is the axiom scheme of replacement.

Proof .:.
• The axioms of extensionality and foundation follow from the fact that V ŒG� is transitive.
• The empty set axiom follows from the fact that ; 2 V so that L; 2 V and thus L;G D ; 2 V ŒG�.
• Pairing follows easily: for x; y 2 V ŒG�, let Px; Py 2 V P be two P -names for x and y respectively: PxG D x
and PyG D y. Consider the P -name in V

� D ¹h Px; 1P
i; h Py; 1P

iº.
Since any filter has 1P 2 G, �G D ¹ PxG ; PyGº D ¹x; yº. Hence V ŒG� is closed under pairs, and so as a
transitive set, VŒG� � Pair.

• Comprehension requires some work. Let ' be a formula, and x 2 V ŒG�. We’d like to show ¹y 2 x W
VŒG� � “'.x; y; Ew/”º 2 V ŒG� for any parameters Ew 2 V ŒG�.
So let EPw be P -names for the parameters, and Px a P -name for x. For any y 2 x (with name Py 2 dom. Px/)
such that VŒG� � “'.x; y; Ew/”, there is some p 2 G such that p  “ Py 2 Px ^ '. Px; Py; Ew/”. So consider the
set

� D ¹h�; pi 2 dom. Px/ � P W p  “� 2 Px ^ '. Px; �; EPw/”º.
Thus any �G 2 �G has h�; pi 2 � with p 2 G, and hence VŒG� � “� 2 x ^ '.x; �; Ew/”. The argument
given above shows that any y 2 x with VŒG� � “'.x; y; Ew/” has some Py and p 2 G with h Py; pi 2 � .
Hence this � witnesses this arbitrary instance of comprehension, and thus VŒG� � Comp.
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• For union, for X 2 V ŒG�, we need to show
S
X 2 V ŒG�. Because comprehension holds, we only need

to show there is some Y 2 V ŒG� with
S
X � Y , because then we can consider in V ŒG� the set ¹y 2 Y W

9x 2 X .y 2 x/º D
S
X .

So let PX be a name for X . Consider the set
� D ¹h�; pi W 9h� 0; p0

i 2 PX .h�; pi 2 dom.� 0//º.
This clearly works as x � �G not only for h Px; pi 2 PX with p 2 G but for all x with Px 2 dom.x/. HenceS
PXG D

S
X � �G . Thus VŒG� � Union.

• For infinity, just note that the name L! D ¹h Ln; 1P i W n 2 !º 2 V P witnesses that ! 2 V ŒG�.

With the addition of powerset in the ground model, we also get powerset in the generic extension.
C2 • 3. Lemma

Let V be a transitive model we can force with P 2 V over, where P is appropriate for forcing. Let G be P -generic
over B . Suppose V � ZF. Therefore VŒG� � P

Proof .:.

Let x 2 V ŒG�. We need to show that P .x/\V ŒG� 2 V ŒG�, meaning that there is a set in V ŒG� that collects every
subset of x in V ŒG�. By Theorem C2 • 2, VŒG� � Comp so it suffices to find Y 2 V ŒG� with P .X/\ V ŒG� � Y ,
since then we just consider P .x/ \ V ŒG� D ¹y 2 Y W y � xº 2 V ŒG�.

So let Px be a name for x. If �G � x in V ŒG�, then there is some p 2 P with p  “�G � Px”. So consider
� D ¹h�; pi 2 P .dom. Px/ � P/ � P W p  “� � x”.º

This is a set in V by the powerset axiom in V. If h�; pi 2 � with p 2 G, then VŒG� � “�G � x” and thus �G �
P .x/\V ŒG�. Recall Result 32 E • 2, which says that any y 2 V ŒG� with y � x has a name Py 2 P .dom. Px/�P/.
So if VŒG� � “y � x”, there is some p 2 G with p  “ Py � Px”, and so h Py; pi 2 � has y D PyG 2 �G . Hence
�G D P .x/ \ V ŒG� witnesses this instance of powerset, and so VŒG� � P. a

This shows that V � ZF implies VŒG� ` ZF � Rep. In order to confirm replacement we need the axiom scheme of
collection in the ground model. This follows from powerset and replacement, but without powerset, we might not have
the axiom scheme of collection. So when we jump from V � ZF � P to V � ZF, we can confirm two axioms in VŒG�:
P and Rep.

First we introduce the axiom scheme of collection, and then we show this follows from ZF. We introduce this axiom,
because it is used in the proof that V � ZF implies VŒG� � ZF. Of course, we could just proof the particular instance(s)
we need during the proof, but this isn’t exactly instructive.

C2 • 4. Definition
The axiom scheme of collection (Col) states the following: if ' is a relation on a setD, then there is a set containing
'-relatives of each x 2 D. Symbolically, Col consists of all formula of the form

8 Ew;D .8x 2 D 9y '.x; y;D; Ew/! 9R 8x 2 D 9y 2 R '.x; y;D; Ew//.
where ' is a formula.

The Ew just allow parameters. Note that this clearly stronger than replacement, which requires ' to define a function
overD:

8 Ew8D .8x 2 D 9Šy '.x; y; Ew/! 9R 8x 2 D 9y 2 R '.x; y; Ew//.
C2 • 5. Lemma

ZF ` Col

Proof .:.

For each ', Ew, andD, consider the collection of all relatives of elements inD:
R0
D ¹y W 9x 2 D '.x; y;D; Ew/º.
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Note that this is potentially a proper class. But with powerset, we can consider
R D ¹y W 9x 2 D .'.x; y;D; Ew/ ^ 8z .'.x; z;D; Ew/! rank.z/ � rank.y///º.

This will be a set, because we’ve defined a function f W D ! V where f .x/ is the least rank of a y with
'.x; y;D; Ew/. This yields f "D � Ord as a set of ordinals, and thus R � Vsupf "D yields that R is a set by
comprehension. a

The above idea (considering only the elements of least rank) has been dubbed “Scott’s trick” as per Scott’s Trick
(9C • 1).

C2 • 6. Lemma
Let V be a transitive model we can force with P 2 V over, where P is appropriate for forcing. Let G be P -generic
over V . Suppose V � ZF � PC Col. Therefore VŒG� � Rep.

Proof .:.

Let ' be a formula with parameters in V ŒG�, and letD 2 V ŒG�. Suppose
VŒG� � “8x 2 D 9Šy '.x; y;D/”. (�)

We need to find a P -name for the range of ' restricted toD. Note that there is somepD 2 P forcing (�) (translated
with parameters as P -names).

Consider the formula  .p; �; �/ stating:
p 2 P ^

�
p  “'.�; �; PD/” _ :9� p  “'.�; �; PD/”

�
.

In V, for each h�; pi 2 dom. PD/ � P , there is a � 2 V P where  .p; �; �/ holds (� can be anything if :9� p 
“'.�; �; PD/”). By collection in V, there is a set R � V P where each h�; pi 2 dom. PD/ � P has a � 2 R. As
R � V P is a set, � D R � P is a P -name.

To see that �G 2 V ŒG� satisfies our requirements, suppose VŒG� � “x 2 D”. We can take x D �G for � 2
dom. PD/. Since (�) holds, there is some y where VŒG� � “'.x; y;D/”. This is forced by some p 2 P : p 
“'.�; Py; PD/”. Hence there is a � 2 R where p  “'.�; �; PD/”, and thus VŒG� � “�G 2 �G ^ '.x; �G ;D/”,
yielding the result. This shows this arbitrary instance of replacement holds in VŒG�, and thus VŒG� � Rep. a

So we can conclude V � ZF implies VŒG� � ZF. The last thing to consider is choice. There are multiple versions of
AC, but we will consider one that’s easy to use. In particular, we’re using the version that says every set is covered by
an ordinal.ii

C2 • 7. Theorem
Let V be a transitive model we can force with P 2 V over, where P is appropriate for forcing. Let G be P -generic
over V . Suppose V � ZFC. Therefore VŒG� � ZFC.

Proof .:.

We have by the previous lemmas that VŒG� � ZF. So we only need to prove VŒG� � AC, and it suffices to show
that for any x 2 V ŒG�, there is an f 2 V ŒG� and an ˛ 2 Ord \ V ŒG� where VŒG� � “f W ˛ ! x is surjective”.
Let Px be a name for x. By AC in V, there is a surjection F W ˛ ! dom. Px/ for some ˛ 2 Ord \ V . Thus

f D ¹hhh L�; F.�/ii; 1P
i W � < ˛º

works. (Here, hha; bii is a name for haG ; bGi, and in particular is
°˝
¹ha; 1P iº; 1P

˛
;
˝
¹ha; 1P i; hb; 1P iº; 1P

˛±
.) If we

consider fG , we have that any of its elements is of the form h�; F.�/Gi where F.�/ 2 dom. Px/ and � < ˛. And
so we can regard fG as a function from ˛, and it should be clear that VŒG� � “x � im.fG/”. Hence this version
of AC holds in VŒG�. a

iiWe get an injection from g W x ! ˛ just by setting g.y/ to be the least ˇ with f .ˇ/ D y where f W ˛ ! x is the surjection. This yields a
well-order of x. Note that in ZF, we have that x can always be surjected onto various ordinals, but the reverse is equivalent to x having a well-order.
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