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— The Axioms of ZFC
1.

10.

(Extensionality, Ext) two sets are equal whenever they have the same members:
VxVy(x=y < VYv(vex < vey)).
(Empty set) there is a set @ with no members: 3zVx(x ¢ z).
(Comprehension, Comp) for each x, and for each FOL(€)-formula (v, w), {v € x : ¢(v, W)} exists:
Ywg---Yw, Vx 3z Vv (v € z < v € x A ¢(v, W)).

4. (Pairing, Pair) for any two sets x and y, the pair {x, y} exists: Vx Vy 3zVv (v €z < (v =x Vv = y)).

(Union, Union) for any family of sets F', there is a set containing the elements of all of those sets:
VFAU Vv (veU < Ax(x € F Av € x)).
(Foundation, Found) for each x, there is a €-minimal element of x, meaning a member y € x withnoz € y
being in x:
Vxdy(y e x AVz(z € y = z ¢ X)).

7. (Infinity, Inf) an infinite set exists: AN(@ € N AVx(x € N — x U {x} € N)).

(Replacement, Rep) the image of a function over a set is a set: for each FOL(€)-formula ¢,
Ywg -+ Yw,¥D (Vx(x € D — 3ly (x,y,w)) = IR(y € R < Ix(x € D A g(x, y,0)))).
(Powerset, P) for each x, ®(x) exists: Vx AP Vv (v e P < Vy (y € v = y € x)).

(Choice, AC) for any family of non-empty family of non-empty, disjoint sets F', there is a set C which has
chosen one element from each z € F:

VF@¢ FAVx,ye F(xNy=0)—>3CVxe FAy (yexnC).

— Variant Axioms and Axiom Systems
i.
il.
iil.
iv.
V.

V1.
Vii.

Viii.

iX.

(Weak pairing, wPair) for any two x, y, there is a z with x, y € z.

(Weak union, wUnion) for any family F, thereis a z with Vx € F (x C z).

(Weak replacement, wRep) the image of a function over a set is contained in a set.

(Weak powerset, wP) for any x, there is a set containing all subsets of x.

(Collection, Coll) there is a range for a relation with over a given domain: for each FOL(&)-formula ¢,
Ywg---Vw, VD (Yx € D 3y ¢(x,y,w)) - IR Vx € DIy € R ¢(x, y,0)).

(Z,-Comprehension, ¥,-Comp) for each x, and for each ¥,,-formula ¢ (v, W), {v € x : ¢(v, W)} exists.

(X, -Collection, X,-Coll) Coll holds for X,,-formulas.

(Dependent choice, DC) for R C X x X, if Vx € X 3y € X (x R y) then there is a sequence (x, : n € w)
such that x, R x,4; foralln € w.

For every x, y, x X y exists.

— Set Theories
» BST consists of (1)—(6) plus (ix).

» WZF consists of (1), (2), (3), (6), (7), and (i)—(iv). wZFC also adds (10).

* ZF~ consists of (1)—(8) plus (v). ZFC™ also adds (10).

* ZF = ZF™ + P consists of (1)—(9). ZFC also adds (10).

* KP = BST — Comp + Xy-Comp + Xy-Coll, i.e. (1), (2), (4), (5), (6), Xo-Comprehension, and Xy-Collection.
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Chapter 1. Transitivity

Set theory is on one hand the study of collections and their use in mathematics. When mathematicians attempt to
make something precise, they do so using collections: functions are viewed as collections of pairs, a line or circle
is a collection of points, real numbers are certain collections of rational numbers, and so on. Set theory then serves
as a foundational role in mathematics in that questions like “what kinds of things exist?” and “are there any counter-
examples to this idea?”” become questions about what sets exist.

So we use set theory in an attempt to provide a foundation for valid mathematical reasoning, and in doing so, we are
unsurprisingly led to ask what is and isn’t valid by way of asking what sets do or don’t exist. This evolves into the
study of statements whose validity is impossible to determine—statements called independent of our mathematical
principles or axioms. Set theory then becomes the study of why these statements are independent.

On the other hand, set theory is the result of a historical process of discovery and definition. The standard axioms we
have set as the ultimate foundation of mathematical thought, ZFC, have been formulated and modified by people over
the last one and half centuries. As such, these principles are not some divine work but instead (supposedly) intuitively
clear principles and ideas that hold when thinking about collections. As one studies these principles more and more,
the theory of ZFC seems more and more canonical despite its cultured past. So although the precise form the axioms
take is not “universal”, it’s difficult to find any intuitively clear principles that aren’t already proven by ZFC.

I state these two perspectives because it’s important to realize that what principles hold of the real world are not entirely
obvious. Indeed, a large chunk of this document is dedicated to why there are lots of principles we simply have no way
of knowing the truth about one way or the other if we take ZFC as our only starting point. Nevertheless, we are not
doomed to wallow in the weaknesses of ZFC. There are arguments to be made for other, less obvious principles that
can have tremendously deep consequences and explanatory power. So we may also act as scientists, having to use our
intuitions, imaginations, and available evidence to think about what lies beyond our limited knowledge.

Before getting too deep in the study, I want to give some notation. The only (non-logical) symbol really used in set
theory is the membership relation: “x € y” symbolizes “x is a member of the collection y”, or more succinctly, “x
is in y”. For example, N is typically used to denote the collection of all natural numbers. So 1 € N and 4 € N,
for example. We can also consider smaller sets. If we can list out all the elements of a set, we may denote the set by
enclosing the members in braces: the set of 1, 4, and 8 is {1, 4, 8}. Note that in general, x # {x}. To see why this is
true, consider a more physical analogy: if we take x to be a marble, {x} is a bag with one marble in it, whereas x is
just the marble itself. The concept is flexible enough to allow us to collect together many things at once, and thinking
about statements like the above is where set theory starts.

In practice, one cannot go too deep in set theory without understanding transitive sets. In general, a relation R is called
“transitive” iff for all relevant x, y, and z, if x R y and y R z, then x R z. Classic examples of this include equality,
and the ordering on the reals <, among many others. In the context of set theory, a collection is called transitive iff
the membership relation € is a transitive relation on it: X is transitive iff z € y € X implies z € X. On its own, this
property seems unmotivated or perhaps useless, but it plays one of the most fundamental roles in set theory. To hint
at an important connection, consider the totality of all sets, denoted here by V. So V is composed just of sets: any
member of V is a set and all of their members are sets too, and all of their members, and so on. This collection V is
therefore transitive. Transitive collections are then the first candidates for models of set theory: they are an attempt to
approximate V.

Transitive sets can also approximate V in truth. In particular, there are lots of statements “absolute” between transitive
structures in the sense that they all agree on whether they’re true or false. So we will be interested in this kind of
absoluteness, as this tells us information about V. In another sense, transitive sets interpret membership correctly. This
makes independence results around transitive sets important because the “reason” the statement is independent isn’t
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the result of misinterpretation. Misinterpretations are relatively easy to come by; formally, ZFC is regarded as a bunch
of formulas, and it’s impossible for such formulas to uniquely determine what exactly a set is and what properties they
have. So with transitive sets, independence results aren’t merely due to these weird misinterpretations but instead some
deeper facts about sets.

§0A. Philosophy

We begin with the philosophically basic notion of a collection: we take it as immediate that things exist, and that we
can consider collections of things as abstract objects. It is in this sense that we mean that these collections “exist”, and
hence we can take collections of collections, and so forth. We in the real world can then reason about these collections
and their properties. The simplest examples of this kind of reasoning comes from Venn diagrams, like the one pictured
below.

AN B,
things in

both A4
and B.

O0A-1. Figure: Example of a Venn-diagram

The first concept we then define is the collection of all sets, the actual set theoretic universe. More precisely, we begin
with the sets that are hereditarily sets, meaning for each x, every member of x is a set, and all of their members are
too, and so on.
0A-2. Definition
The universe of sets is the structure’ V. = (V, €), where V consists of all (and only) sets, and € denotes membership.

What exactly should this universe look like? Intuitively, we start with a set with no elements: the empty set, @. Then,
we can take the set of just this object {#}. Now we have two objects, and we can take collections of these: @, {0},
{{9}}, and {0, {#}}. And we can continue this iterative formation of sets. This iterative conception is at the heart of
modern set theory, and I hope to further motivate why it is true through the chapter. But first, we must acknowledge
how we will do this: indeed, the question of our base level axioms come into question.

We will go through the chapter introducing principles or axioms which are generally seen as statements true of V beyond
any doubt. Now we are interested not just in what is true of V, but also what we can prove about V from these axioms.
In particular, it is not immediately obvious whether certain statements are true or false. If we are to argue that we
cannot prove nor disprove them, then we need to have agreed upon, intuitively true axioms about V. It is, of course,
an open question whether our list of axioms exhausts all intuitively true statements about V. But given the power of
the axioms we present, it is difficult to find simple principles that are intuitively obvious but independent of the other
axioms.

How we state these axioms is important if we are to have a precise notion of proof or the lack thereof. Usually,
mathematical statements are written in a codified version of natural language, where notation replaces the normal
words of English, Russian, or whatever other language. This is no different for us, but we rely on notation even more
to ensure that we can carry out everything in a formal system using just basic reasoning about finite objects, namely
formulas. This then begs the question, what formal system should we use?

iStructures are regarded as ordered lists with the first entry denoting the domain of discourse or “universe”, and the other entries denoting the
relevant relations and functions we're considering over that universe. Angle brackets are generally used to denote ordered lists in set theory.
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Note that there is an important distinction in logic between the reasoning we use in the real world and the reasoning a
certain subject allows. For example, we in the real world have the ability to conclude ¢ = ¢ froma = b and b = c.
However if we consider only the sentential/propositional connectives there—“and” and “implies”—we cannot make
the same conclusions. From the perspective of propositional logic, “a = b and a = ¢” is no different from “4 and B”
where A and B are two completely unrelated propositions: the logic no longer considers the meaning of equality, only
the meaning of these sentential connectives. To distinguish the two logics, the reasoning we use in the real world
is called the meta-theory whereas the reasoning a certain subject (like propositional logic) allows is called the logic
system.! The reasoning of a logic system is entirely formal, following from strings of symbols, but with the proper
setup, it can characterize a portion of the meta-theory, like the simple example of propositional logic.

The more complicated example of first-order logic is where we will state our axioms. This is both because it has the
expressive power needed to present the axioms, and because there are a great deal of important results related to it, as
we will see in the first section. To give a more cultural reason, first-order logic is not the only logic system one can use
to study mathematics, but most other logic systems can be reformulated in terms of set theory with arguments that take
place in first-order logic. In fact, second order logic is sometimes called “set theory in sheep’s clothing”. Generally,
first-order logic is the framework in which the results of set theory are given, and results about set theory are generally
about it in this framework.

Now a priori, there’s no guarantee that the world behaves in accordance with the axioms of ZFC (the standard axioms
of set theory). The axioms are taken to be intuitively obvious, but in fact, we would need to reject them as part of
the meta-theory if it turned out that this system were inconsistent. Furthermore, constructions allowed by ZFC like R
and N can be called into question if we reject certain axioms like the existence of N. How then do we regard such
statements as “|R| > |N|”? Is this a meta-theoretic fact, or is this better regarded as a formula of first-order logic
following from certain axioms? There are a few ways to address these concerns. Two major positions are presented
here.

One stance is a purely formalist one. This view will neglect to say anything substantial about the meta-theory, taking
only the most basic algorithmic reasoning needed for the study of logic for granted. The formalist approach then
doesn’t connect the reality of the meta-theory with results of axioms like ZFC, and it in some sense ignores whether the
theories we study are important at all. No commitments are made for whether the natural numbers N exist or whether a
statement like |[R| > |N| has any meaning in the meta-theory. But the formalist will deny that the sequence of symbols
“|IR| > |N|” has any actual meaning. Instead, the formalist will view the statements about ‘N’ or ‘R’, for example,
as merely symbols algorithmically changed from other symbols collectively called ZFC.i So the results of theories in
the logic system are seen purely as symbolic manipulation with no connection to the meta-theory. At best, a formalist
will say the symbols in the logic system can be translated into arguments in the meta-theory where they should have
been given in the first place. At worst, a formalist will say the symbols are devoid of content.

Another stance is a platonist one. This view will hold that the results of axioms like ZFC in the logic system do
characterize a fragment of the meta-theory—in particular, V. Not only is there a standard meaning of the statement
“IR| > |N|”, but there is an actual fact of the matter, and we can learn such facts through study of theories in things like
first-order logic. By and large, a platonist stance is held by mathematicians that want to claim that their conclusions
are actually true and not merely derived from playing with symbols. Indeed most of mathematics is not done through
symbolic algorithms like truth tables but instead through intuitions and clever constructions. That said, a platonist stance
isn’t strictly necessary, since often meta-theoretic arguments can be reformulated as symbolic ones and vice-versa. In
this way the two stances are not incompatible.

This work will take more of a platonist stance. More precisely, ZFC is held as a collection of true statements about V, and
this is used to reason about ZFC as presented symbolically. Later it will be useful when thinking about independence
results to adopt a slightly different outlook where there might be expansions of this universe (such expansions would
be incompatible with Definition 0 A »2). The results we give can be translated into any of these frameworks pretty

iiElsewhere in the literature, you might see other words like the object language, proof system, or perhaps just logic to refer to logic system or
how it's written.
Mor whatever other foundation they are studied in.
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easily, so the view adopted is partially for pragmatic and pedagogical reasons.

Section 1. Logic and Model Theory

We begin with an overview of symbolic logic, because most of the rest of this document will assume some familiarity
with the basics of first-order logic, particularly the meaning of - and F, as well as the associated concepts of formulas,
sentences, theories, and models or structures. Rather than spend an inordinate amount of time giving the fine details of
first-order logic, the reader is referred to any introductory logic text, like [7]. So instead an overview is given with most
details omitted. Many students of set theory will already have experience with these concepts. The reader intending to
skip this section should just be aware of two things: for a signature or vocabulary o, the language of first-order logic
is written FOL(0'); and if we have a formula with parameters, we say it is a FOLp(o) or FOLp-formula.

There are two parts to introduce first-order logic as with almost any logic system. Firstly there is a syntactic component
ruling what can be said. Secondly there is a semantic component that gives meaning to these formulas. This separation
is similar to the separation between the grammar and spelling of English, and the meaning of sentences. There are a
number of steps in this introduction. Continuing the natural language analogy, we need to

1. determine the alphabet we’re using;

2. determine how to spell words with this alphabet;
3. determine how to “reason” with these words;

4. determine the meaning of these words; and

5. connect spelling with meaning.

§1A. The alphabet and its formulas

To start, the alphabet of first-order logic is better regarded as a collection of alphabets that are all variations on a
simpler alphabet. In particular, they all share the so called logical symbols given below that allow us to make basic
formulas that are statements of equality and inequality: “x # y”, “vs = v1¢”. From these basic statements—so called
atomic formulas—we can build up larger formulas using simple rules. For things already determined to be formulas,
we can connect them using formula connectives, or quantify them over some variable. So for ¢ and v already for-
mulas, “(¢ A ¥)”, “—¢”, “Ix ¢”, and so forth are all formulas too. Although these symbols have no actual meaning

introduced, it’s useful to have an idea for what they are supposed to represent.

Symbol ‘/\9 G\/’ G_|’ ‘%’ Ge’ ‘3’ GV’
Usual Meaning | “and” “or” “not” “implies” “iff” (i.e. “equivalent to”) “there exists” “for all”
Symbol [ ‘X’, ‘yv’ ‘voa’ ‘U]’, etc. g(o’ g)a, c’a’ etc.

Usual Meaning | equality variables various grammatical marks or punctuation

This allows us to build formulas like “dx Iy (—x = y)” and “(x = x A =x = x)”. We cannot, however, make ordi-
nary mathematical statements like “x = y 4+ z” or “dz (z - x~! < z 4 y)” yet. To make such statements we need a
bigger alphabet. In particular, we have the concept of a signature or vocabulary to expand the logical symbols with
non-logical symbols like ‘4’ or ‘<’ above.
TA-1. Definition

A signature is a collection of symbols that are divided into constant symbols, relation symbols, and function symbols

with the corresponding number of arguments.

The first-order language associated with a signature o is denoted FOL(0).

For example, those familiar with some algebra will know that rings and fields generally use a signature of just function
symbols: {+,-,0, 1}. This expands the signature usually used with groups: {-, 1}. Partial orders and graphs will use
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only relation symbols for the order and the edges. Most importantly for us, set theory uses the signature with only one
element {€}."V

The rules for forming formulas change very little from when there were just logical symbols. Essentially, one just
needs to respect the number of arguments for the relation and function symbols. So if “ f is a function symbol with
two arguments, you can’t write “ f(x, y,z)” or “ f(¢)”. The same applies to relation symbols. Building terms 71, ...,
1, by composing function symbols and variables, we can let relations holding between terms—i.e. strings of the form
“R(ty,--- ,ty)” or “t; = t;”—Dbe the basic building blocks of formulas. Then we can build the rest of the formulas in
the same way as before with connectives and quantifiers.

Now we remark that often formulas are written in short-hand, meaning we don’t include so many parantheses, and
introduce symbols which are defined in the original signature. For example, “x C y” can be defined by

xCy iff Vz(zex —>zey).
Such defined notions affect nothing since they can be replaced by their defining formulas. In general, we’re satisfied
giving instructions for how to construct a formula as opposed to giving it explicitly. The same principle also holds for
proofs. For an explicit example of this, the quantifier ‘3!” is generally used to mean “there exists a unique”. We use
“I!x @(x)” merely as shorthand for “Ix Vy (p(y) < x = y)”.

§1B. The proofs of formulas

With the notion of formula comes the notion of proof: a means of manipulating formulas. The concept of proof
should be fairly familiar at this point. Note that in setting up the proof system, we should be trying to emulate valid
reasoning in the meta-theory, though there is no association of meaning with formulas yet. A priori, there’s no reason
we couldn’t allow ourselves to conclude “p A ¥” from “p Vv ”—“both” from “at least one”. So there is some careful
setup required in what precisely is allowed—so called logical axioms. The following is an informal definition, omitting
what precisely a logical axiom is.”
— 1B-+1. Definition
Let T be a collection of formulas, and ¢ a formula. T proves ¢, or T |- ¢, iff there is a sequence of formulas where
every member

1. is a given assumption, i.e. a member of T'; or
2. isalogical axiom, e.g. x = x or (——y) <> V¥; or
3. follows from previous ones by given rules of inference, e.g. ¥ follows from ¢ and ¢ — .

For example, one can prove “VxVy(x + y = y + x)” from the axioms of peano arithmetic, PA, which are then re-
garded as given assumptions in the above. A collection of formulas is generally called a theory. Note that the statement
T = ¢ for “there is a proof of ¢ from the formulas 7 is a meta-theoretic one about the logic system.

And as with formulas, it’s rare to give proofs as just a sequence of formulas, because they are hard to read and compre-
hend. Even when annotated, it’s hard to see at a glance that the formulas obey the definition. For example, consider
the following tedious proof of the obvious fact that ¢ — ¢ for any formula ¢.

L. (¢p = (¢ = @) = (from axiom scheme (¢ — ) = ((¢p = (¥ = x)) = (¢ = x))
((p = (¢ > 9) > 9) = (¢ > ¢)) where Y is (¢ — ¢)and y is ¢)

2.9 = (¢ = @) (from axiom scheme ¢ — (Y — ¢) where ¥ is ¢)

3.(p > (¢ = ) > @) = (¢ = @) (1, 2 and Modus Ponens)

4.9 — ((¢ = ¢) = @) (from axiom scheme ¢ — (Y — @) where ¥ is ¢ — @)

500> ¢ (3, 4 and Modus Ponens)

So often proofs are given as instructions for creating a proof rather than just a sequence of formulas. This perspective

v Arguably set theory uses many more symbols, e.g. ‘C’, ‘@’, and so forth. But these can be better regarded as short-hand for statements which
use only ‘€’ and ‘=".

YMany texts make do with a list of around fifteen axioms, axiom schemes, and rules of inference. So it should be clear why the exact details are
omitted here.
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is useful when arguing in the meta-theory about proofs in the logic system.

This concludes the syntactic portion of first-order logic, and now we will look towards interpreting these formulas,
since thus far formulas are regarded merely as a bunch of markings on paper formed in a certain way.

§1C. The semantics of formulas

Now we will move on to the semantics of first-order logic, looking at how to interpret these formulas and reason from
them in the meta-theory. In some sense the goal is to answer “what makes a formula true?”. Answering this requires
first fixing a context we ask the question in, and then we build up a notion of truth in just the same way we’ve built up
formulas. The explanations given here relate somewhat back to the real world insofar as they assume that structures,
relations, functions, and so forth exist. So we might as well assume that we’re working in V, where we know that these
things exist.

Firstly, we have the notion of a structure. This is in some sense where we evaluate truth. For example, when we ask
whether the group operation - is commutative, we answer relative to some particular group. The question can be asked
of any group, but the answer depends on the group we evaluate in. For a less mathematical example, “how many
citizens are there?” can be asked of any particular nation, but the answer depends on the nation. More generally, we
can ask questions in a fixed signature, but the answer depends on the structure.

1C-1. Definition
Let o be a signature. A FOL(0)-structure or model is a pair M = (M, ¢) where M is the universe of M, and

1. For every n-place relation symbol R in o, there is one RM € ¢ with RM a relation on tuples of M ; and
2. For every n-place function symbol f in o, there is one fM € ¢ with M a function from tuples of M to M.

Intuitively, ¢ tells us how the model interprets the symbols of the signature o, and the members of ¢ are the interpre-
tations of the members of 0. For example, the signature 0 = {<} has models which are really just any set equipped
with a binary relation. For example (N, <) is a {<}-model, and so is any graph (G, E') where E is the edge relation of
the graph. Under this definition, for any signature o, any o-model is also an #-model where there are no non-logical
symbols, and the only statements are about equality."" In fact for any o-model is also a §-model for any § C o.

The interpretation of the signature essentially determines truth of the atomic formulas: the structure (N, <) says that
“3 < 27 is false and that “2 < 5” is true. Hence “3 < 2 v 2 < 57 is true while “3 < 2 A 2 < 57 is false for (N, <).

By following the construction of any given formula, this association of a symbol in ¢ with the interpretation in ¢

presents how to tell whether any given formula is true or false in a given structure in the natural way we read formulas.

Note that there will always be a fact of the matter in any given structure of whether a formula is true or false in it, even

if it isn’t possible to determine practically. Explicitly, we have the following definition.

— 1C+2. Definition
Let o be a signature with R in o a relation symbol. Let ¢ and 1 be FOL(0)-sentences; and let M a FOL(0)-model

with various m; € M. Write
Mk “R(my,--- ,my,)” ifandonlyif RM(my,---,my,) holds,

ME “m; = my” ifand only if m; = ma,

ME“pAy” ifandonlyif MFgandMFE v,

M E “=g” ifand only if M ¢,

ME “Vx ¢o(x)” ifand only if M FE “p(m)” foreverym € M,
M E “Ix ¢(x)” ifand only if M E “p(m)” for some m € M.

Implicit in this is the ability to interpret terms in the signature, and this is done exactly as one would expect. For
example, the interpretation of ““ f(my, g(m3))” is just fM(my, gM(m5)). For a more concrete example, “3 + (5 -2)”
has an interpretation of 13 in the structure of arithmetic N = (N, 0, 1, +, -).

Viwe can still say meaningful things in this language, but mostly this is about the number of things: 3xV y(x = y) will require that there is only
one element, for example. Some systems also drop the need for equality, in which case there are no formulas without relation symbols.
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Free variables are left uninterpreted, so this is why we only deal with sentences. Also note that we are mixing formal
symbols and non-formal ones, leaving the parameters implicit when needed. It’s important to realize that parameters
can only be used when we’ve fixed a particular model. Parameters—Ilike m,m, € M in the above—are not symbols
in the language, and so cannot be referenced in general. In some sense, parameters are used here merely to build up a
notion of truth.

With this concept (or at least the use of ‘F’) firmly in place, notation will be slightly abused in the following ways.

1C+3. Definition
Let o be a signature, and let ¢ and v be formulas, and T a theory all in FOL(0'). Let M be a FOL(o)-structure. Write
ME T ifandonlyif M F 6 forevery sentence 6 € T.
¢ Ey ifand onlyif every o-model M with M F ¢ also has M = .
T Ey ifandonlyif every o-model M with M E T also has M F .

For example, “(¢ A ¥)” F ¢, since any model M  “(¢ A ¥)” has M E ¢ by Definition 1 Ce 2.

These definitions comprise all the semantics of first-order logic, and they all take place all in the meta-theory, meaning
that ¢ E  if there is a meta-theoretic argument about models of ¢. Alternatively, it might be the case that all models
of ¢ also model ¥ merely by chance with no intelligible reason behind it. So far this situation hasn’t been ruled out. It
is up to the next subsection to dispel this possibility.

§1D. Connecting syntax and semantics

We now have the basic setup for working in mathematics. On the one hand, we can symbolically manipulate our way
to various formulas, and on the other, we can argue in the meta-theory about whether certain structures satisfy a given
formula. The central question, however, is whether there is any connection between the two, that is, whether “T - ¢”
and “T F ¢” have any relationship.

Clearly, we should have set up our proof system to be sound, that is to say that if 7 - ¢ then T E ¢. This way we
aren’t making any “mistakes” in our symbolic manipulations. Proving that any given proof system is in fact sound can
be done fairly easily through meta-theoretic arguments about structures. Mostly this amounts to checking that each
logical axiom and rule of inference holds in every model.

Quite a striking result in the study of first-order logic is the completeness theorem which says that the converse also
holds with our notion of proof.

1D+1. Theorem (Completeness)
Eet o be a signature, and let T be a theory, and ¢ a formula in FOL(c). Therefore T E ¢ implies T - ¢.

Proof ...

Suppose T E ¢, but T I ¢. This means 7' U {“—¢”} is consistent (assuming the proof system is good), meaning
that it doesn’t prove a contradiction “@ A —¢”. Note that T U {“—¢”} cannot have a model, however, as this
model would satisfy 7" and “—¢”, contradicting that T = ¢. To get our contradiction, we will construct a model
of T U {*“—¢”} out of syntax.

Call a FOL(0)-theory T complete iff for every FOL(o)-sentence ¢, either ¢ is in T, or “—¢” is in T. By well-
ordering the FOL(0)-sentences, we can successively decide whether to put a given sentence in an expansion 7
or not according to whether the resulting expansion of 7" would be consistent (i.e. put it in if it is, if it’s not, then
leave it out). Hence we can expand T U {“—¢”} to a theory Ty which is consistent and complete: just the result
of this process.

Now by ordering Ty and proceeding through each formula one-by-one (i.e. well-ordering Ty), for each existental
statement ¢, being “Ix ¥ (x)” in Ty, associate a unique constant c,, and add in the statement “i(c,)” to the
new theory 7 in the expanded signature ;. Also expand to make sure 77 is still consistent and complete now
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in FOL(07). Repeating this process infinitely many times to take the closure under this propety, we end up with
a complete, consistent (assuming the proof system is good) theory 7, in an expanded signature o, such that if
“Ix ¥ (x)” is in Ty, then “yr(c)” is in T, for some constant symbol ¢ of o,,.

Now we construct a model of Ty, which is then still a model of 7" (by forgetting about the constants of o, we
end up with a FOL(o)-model rather than a FOL(o,,)-model). Firstly, for ¢ a constant symbol of a,,, consider the
equivalence class [c] consisting of all the other constants d such that T,, - “d = ¢”. This is an equivalence
class as Ty, is complete (assuming we’ve set up the proof system correctly). Now consider the structure M with
universe M being the set of these equivalence classes, and with function interpretations given by

MAdi), - [dn]) = [do] iff Ty b “f(dr,---,dn) = do”,

and similarly for relations (again, assuming the proof system is good, this is well-defined). The resulting structure
then satisfies M = T,,, and so we have a model of T U {“—¢”}, and so T ¥ ¢. =

This identifies the “accidental truth” of being true by chance in all models with the “justified truth” of proof. This
also allows us to make conclusions from valid arguments in the meta-theory about models, and conclude that there
are syntactic proofs of these results. Most important for our purposes is the fact that if 7 I/ ¢, then T F ¢. In
particular, if T is consistent—meaning T I “(¢ A —¢)”—then there is a model of 7. This connection between finite
sequences of formulas and the existence of structures is somewhat surprising considering that structures can be very
large. Furthering this relation between the finite and the infinite is the compactness theorem.

Given that proofs are finite, the compactness theorem for proofs can yield important results when paired with Com-
pleteness (1D 1).

1D-+2. Theorem (Compactness)
PZFC) Let 7" be a theory. Therefore 7 has a model if and only if each finite A C T has a model.

Proof ...

If T has a model, then clearly every finite subset does too. But if 7" doesn’t, then for any formula ¢, T F
“(¢ A —p)”, because no model M E T. By Completeness (I1D<1), T - “(¢ A —¢)”. Since proofs are finite,
there is some finite subset A € T which contains all the formulas of 7" used in proving “(¢ A —¢)”. This finite
subset then also has A - “(¢ A —¢)”, and so by soundness, A F “(¢ A —¢)”. Hence this finite subset of T can’t
have a model. .

These two theorems are very useful for their ability to generate models. As noted above, consistent theories have
models which say that they’re true. This is the kind of black magic that allows us to form models that satisfy all of the
axioms of arithmetic, but aren’t just N. Adding to this black magic is the Lowenheim-Skolem theorem, which is the
final theorem we need in the background of first-order logic, and it again allows us to conclude the existence of models
with extremely nice properties. The proof of this is basically a more careful version of Completeness (1 D ¢ 1), but we
are not yet equipped to prove it without knowing some more set theory. In particular, we require knowledge of infinite
cardinals.

We end this section with a bit of notation that will prove useful. In particular, “FOLp” or “FOLp(c)” is used to denote
“first-order logic with parameters”. Really this is only used in the context of formulas: a formula is FOLp iff it is of the
form ¢(u, p) for some variables v, and some parameters p. So this is always made in the context of some (arbitrary)
model. For example, the identity element in a group G is FOL-definable, meaning definable without parameters. Given
an arbitrary element g of the group G, g~! is FOLp-definable: it is the y such that G F “g-y =y-g =17, ie.
GFE “Vz((g-y)-z=1z-(g-y) = z)”. The fact that g is used as a parameter here is what makes g~! € G FOLp-
definable.
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Section 2. Basic Set Theoretic Concepts

Recall the following definition from Subsection 0 A.

2+1. Definition
The universe of sets is the structure V = (V, €), where V consists of all sets, and € denotes membership.

Recall the notation introduced earlier: we may denote a set by enclosing its members in braces. For example, the set
of 0, x, and Abraham Lincoln is {0, x, Abraham Lincoln}. The empty set is given some special notation: {} = @. It’s
also important to note that repetition in writing is unimportant: {x, x, x, x} = {x}. This is just because all of those xs
are the same object and so the only thing in the collection {x, x, x, x} is x. And recall that generally x # {x}. Again,
a physical analogy with sets is that the braces represent a box and the things in between them represent the contents:
{x} is a box with x in it while x is just the thing in that box.

The notation of listing out the elements is good enough for sets with only a few members, but things quickly get
unwieldy if we want to consider larger collections. If we don’t wish to list out explicitly all the elements of a set, we
may instead write a description in the following form.

2-2. Definition
Let ¢ be some property, or predicate, or description, etc. Write {x : ¢(x)} for the collection of all x such that ¢ holds
of x,1.e. ¢(x). For A another collection, we also consider {x € A : ¢(x)} for {x : x € A A @p(x)}.

For example, {x : x is a person} is the set of all people. Similarly, we can restrict ourselves to a certain domain. For
example, {x € N : x2 = 1} is the set of all natural numbers that square to 1. As sets are determined by their members
(i.e. two sets are the same iff they have the same elements) this set is just {1}, because the only natural number whose
square is 1 is 1 itself (the only other “number” that has a square of 1 is —1 which is not an element of N). So we have
defined a subset of N in that all of {1}’s elements are in N: it contains fewer members. We write x C y to denote that
x is a a subset of y, translated as Vz(z € x — z € y) in first-order logic.

There are other ways of forming sets. For example, if x is a set, we can consider the powerset, the set of all collections
formed from elements of x. Formally, ®(x) = {¢ : ¢+ € x}. Additionally, we have operations on sets, like union and
intersection. These will be formally defined later, but to give a simple example, regarding lines as sets of points, the
intersection of two (non-parallel) lines is always the set containing exactly one point. In particular, L1 = {{x, y) €
R2?:y =2x +3}isaline, asis Ly = {(x,y) € R?: y = —x}, and their intersection is where the two lines meet,
denoted L1 N Ly:
LiNLy={{(x,y)eR?:y=2x4+3Ay=—x}={(-1,1)}.

Now that we have some basic intuition set up, let’s consider the following true statements about V, which are axioms
of ZFC.
— 2+3. Definition (Axioms)

(Extensionality) two sets are equal whenever they have the same members:

VxVy(x =y < Vv (vex < vey)).

(Empty set) there is a set @ with no members: 3z Vx (x ¢ z).
(Comprehension) for each A, and for each FOLp(€)-formula ¢(v), {v € A : ¢(v)} exists: for ¢ a FOL(€)-formula,

Ywg--Yw, YVAIz Vv (v €z < v e AAp(,w)).

Extensionality is perhaps the most definition-like axiom, contained in the idea of a set.

2+4. Corollary
’guppose {x} = {y}. Therefore x = y.

The empty set will provide the base for our universe in the following sense.
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2+5. Result
Eor every set A, @ C A. Moreover, A C @ implies A = @.
Proof ...

@ < A since every element of @ (of which there are none) is an element of A. Now suppose A < @. Thus
Vx (x € A — x € 0). For each x, x € @ is false, and thus x ¢ A, Hence Vx (x ¢ A), and therefore A and @
have the same elements: no elements. By extensionality, 4 = @. =

Comprehension"' really is a scheme, meaning that for each FOL-formula, we get a different axiom. It is an attempt to
formalize the idea of {x : ¢(x)}. It’s important to realize, however, that the full generality is inconsistent we can only
consider the subset {x € A : ¢(x)} for some set A. The idea is that we can’t take arbitrary collections and call them
sets, as seen in the following theorem.

2+6. Theorem (Russell's Paradox)
There is no set {x : x = x}. Equivalently, =3sVx(x € s).

Proof ..

If there were such a set, call it V. Now consider by comprehension the subseta = {x € V : x ¢ x}. By
hypothesis, a € V. Now we can question whether @ € a or not. If a € a, then a meets the definition: a ¢ a,
a contradiction. Hence a ¢ a. But this means that a doesn’t meet the definition of a, meaning @ € a, again a
contradiction. So either way we have a contradiction, and so the hypothesis that I exists is false. =

So comprehension at least says that we can consider (definable) subsets. In some sense, the issue is that the collection
of all x is too big to be a set: V is not a set. So comprehension says that if we have a set, then all the subsets are small
enough to be sets too.

§2A. A word on classes versus sets

We often want to talk about collections that aren’t sets. Russell’s Paradox (2 ¢ 6) gives one such example: the collection
of all sets, V. There are other, less ad hoc collections we will want to consider later, but this raises the question of how
do we talk about these things? What is the distinction between “collection” and “set”? The basic idea is that collections
inside a model are sets. So V is not a set by Russell’s Paradox (2 ¢ 6). We can still consider V a collection, though, and
in particular, a definable collection in that the property of being in V is definable over V (trivially by x € V iff x = x).

The fact that a collection C is definable allows us to use the axioms of set theory with it like a parameter: we can’t
necessarily write for example “Vx (x € C — ¢(x))” as a FOLp-formula, but we can write “Vx (1 (x) — ¢(x))” where
C = {x : ¥ (x)}. Similarly, the fact that C is definable tells us through Axioms (2 *3) that{y € A : y € C} is a set for
everyset A: IzVy (y ez < ye AAY())).
2A-1. Definition
Let A be a model of set theory. A class of A is a collection C € A which is FOLp(€)-definable, i.e. x € C iff
A E “p(x)” for some FOLp(€)-formula ¢. A class is a proper class iff it is not a set, meaning not in A."11

So with V, sets are just things in V and classes are more like concepts that we can define. As a bit of notation, classes
will generally be written upright: like ‘V’, ‘L’, ‘Ord’, ‘HOD’, instead of ‘V’*, “L’, ‘Ord’, ‘HOD’. But this is just a
convention for this text, and there isn’t a general standard in the field. Often upright boldface is used, and frequently
there is no distinction in writing except by the use of majuscule letters.

It’s hard to over emphasize that these collections are not necessarily a part of the set theoretic universe V: every set is a
class, but not vice-versa. To see this, any set X is FOLp(€)-definable (by the formula “x € X), so all sets are classes,

‘fffalso called separation
VillTechnically, A's interpretation of ‘€’ isn't necessarily membership, and so it's better to say that C is a proper class iff it's a class and A E
“=3X Vx (x € X < ¢(x))” where ¢ defines C. Basically, for X € A, we might not have that X = {x € A : A F “x € X} because A is

misinterpreting membership.

10
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but not vice versa as Russell’s Paradox (2 « 6) shows. The point of classes is just to say that while the entire collection
isn’t in our domain of discourse, the fact that it’s definable shows that it still plays nicely with our axioms and we can
easily reason about it. As noted before, comprehension tells us that the intersection of a set with a class is a set. So in
some sense, every part of a class is a set, although the totality might not be.

There are more complicated understandings of classes that allow more collections than just definable ones. But at that
point, we get into the realm of class theory rather than set theory. And before learning class theory, one needs to start
with a good understanding of set theory. In essence, the typical model of class theory will be one that satisfies a variant
of ZFC in an expanded language that has constant symbols for the relevant classes (so at least all definable collections).
In this setting, a set is no longer defined to just be a member of the universe but instead something that can be collected
together: x is a set iff Ay (x € y) iff {x} exists in the universe.

But under our definition, classes really are just short-hand for formulas. So often results for sets generalize to results for
classes just by virtue of classes being definable. That said, it’s still important to remember that classes are not always
sets, and certain theorems do not always generalize to classes. The basic problem is that we can’t quantify over classes
in the sense of saying “for all classes such-and-such happens”. So often our results about classes are metatheoretic.’

§2B. Ordered pairs

So far, the set theory presented is relatively uninteresting, because the axioms do not allow us to form sets with new
elements: we may only take subsets. Moreover, even if we have these sets, it’s not completely clear what the benefit
of them is. To motivate things a little more, sets are seen as a foundation of mathematics, both practically, and philo-
sophically. Often, when one needs to make things mathematically precise, it is done using sets.* So to begin with, we
will first show that we can formalize an ordered pair (x, y), in that we have a construction where {(a, b) = (a’,b’) if
and only ifa = @’ and b = b’. This will allow us to talk about sequences, functions, relations, and so forth. To do this,
we need some additional axioms that reflect what’s true of V.
— 2B+1. Definition (Axiom)
(Pairing) for any two sets x and y, the pair {x, y} exists: Vx Vy IzVv (v €z <& (v = x Vv = y)).

— 2B+2. Definition
For x, y sets, the ordered pair of x and y, (x, y) is the set {{x}, {x, y}}.

As a side note, if x = y, then (x, y) collapses down to {{x}}, since {x, y} = {x, x} = {x} because the two have the
same members. Now let’s prove the single point of having an ordered pair: that the entries are uniquely determined by
the ordered pair.

2B-3. Result
Eetx,x’, v, y’ be sets. Therefore (x, y) = (x/,y’)iff x = x"and y = y'.
Proof ...

Clearly if x = x" and y = y’, then (x, y) = (x’, y’). So suppose (x, y) = (x’, y’), meaning that these sets have
the same members. The members of these sets are {x} and {x, v}, and {x’} and {x', y'}.

If x # y and x’ # y’, then the two-element sets must be equal, and the one-element sets must be equal, implying

XTo give a more precise example of where the distinction is important, Godel's theorems tell us that ZFC cannot prove the consistency of ZFC.

But if we assume we have a model M = ZFC, then in the metatheory it would seem like M should know that ZFC is consistent because M contains a
model of it—after all, the class M is a model. But this isn't true: M € M, but M ¢ M. In other words, M is unable to talk about M or what infinite
collection of axioms it satisfies directly because it is a class and so it does not exist in the domain of discourse that M considers. Although M can
see that ¢ holds in M for each formula ¢ of ZFC, that doesn't mean M understands that M exists as a model.
(Nor does it mean that M thinks all of those formulas make up ZFC. In particular, there are non-standard models that misinterpret what “finite”
means, and thus [as formulas, proofs, and so on are finite strings of symbols] misinterpret what exactly is in our description of “ZFC”. In such a
model M, it's possible for there to be models W of the actual ZFC, but M doesn't recognize W as satisfying all of the formulas of ZFC, precisely
because it has misinterpreted what exactly ZFC is.)

*there are other theories some people put forth as a foundation of mathematics, but their proponents often either defer the serious paradoxical
issues for set theory to deal with, or fail to start from philosophically basic notions.

11
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x = x"and {x,y} = {x’,y'}. Since we already know x = x’, we must have y = y’. If x = y, then
{(x,y) = {{x}}. Hence both elements of (x’, y’) are equal to this: {x} = {x, y} = {x’} = {x/, y’}, implying that
x" =y’ = x = y. The same idea holds if x" = y’. -

We can also refer to the left and right coordinate of an ordered pair in this way: given an ordered pair z, the left-
coordinate is just the x satisfying 3y ({x, y) = z). In fact, using another axiom, we can restrict the search for such a y
to an element of the union of z.
2B-+4. Definition (Axiom)
(Union) for any family of sets F', there is a set containing the elements of all of those sets:

VFAU Vv (veU < Ax(x € F Av € x)).

We denote the union by | J F, in this case. For just two sets, write x Uy = {a : @ € x V a € y} rather than the
more clumsy | J{x, y}, which exists by union and pairing. For a concrete example of a union, consider x = {1,2},
and y = {2,4,10}. Therefore x U y = {1,2,4,10}. A related concept, which we could already form through
comprehension, is the intersection of two sets: x Ny = {a : a € x Aa € y}. More generally, for a non-empty family,
F, the intersection (| F = {a : Vx € F(a € x)}, which can be written as a subset of each particular x € F. Similarly,
we can take complements: x \ y = {a € x : a ¢ y}. Using the same x and y example from before, x \ y = {1} while
x Ny = {2}. Note that we have the following trivial facts about intersection, union, and so forth, mostly which just
follow from properties of sentential connectives:

cxNx=x,xUx=x,xU0 = x;

cxNP=0,x\x=0;

cx\(xNy)=x\y;

e xNyCx,andifa Cxanda C y,thena C x N y;

* xN(yNz)=(xNy)Nz, and similarly for union;

c(xNy)Uz=@xUz)N(yUz),and(xUy)Nz=(xNz)U(yNz),

e ifxCaandy Ca,thenx Uy Ca;

* ifx € yand y C a, then x C a@; and

exCyiffyux=yifxny=xiffx\y=42a.

e x C yimplies | Jx C | y.
These also have a related definition, since sets having completely different elements is very useful.

2B-5. Definition
Two sets x and y are disjoint iff x Ny = @. A family of sets F consists of disjoint sets or pairwise disjoint sets iff
xNy=@forallx,y € F.

Now ordered pairs on their own are fine, but we still need to be able to do more with them to do any basic set theory.
Obviously using pairing, we can form {({x, y), (x’, y')}. We can also form {(x, y), (x’, y'), (x”, y”)} using another
application of pairing and union:

{0 ) Ty ) 7y = (e p) (Y U 7). (7 )

We have two potential routes to form arbitrary sets of pairs—excluding finite applications of pairing and union—
powerset (with comprehension), and replacement. First we introduce replacement.

2B-+6. Definition
A FOLp(e)-formula ¢(x, y) defines a function over D iff for every x € D there is a unique y with ¢(x, y). Sym-
bolically, Vx (x € D — 3Aly ¢(x, y)).

Replacement then says in effect that if we can definably transform elements of a set, then the set of the transformations
exist.

2B-7. Definition (Axiom)
(Replacement) the image of a function over a set is a set: for each FOL(€)-formula ¢,

Ywo - Yw, ¥ D (¢p(x, y, W) defines a function over D — IR(y € R <> Ix(x € D A g(x,y,W)))) .

12
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It should be clear that D is the intended domain of the function defined by ¢, and R is the range of ¢ restricted to D.
So replacement is saying that R exists: if | can define a function from a set, then the range is a set. So if we consider
the function mapping xs and ys to (x, y), we get a cartesian product as the range.

— 2B-+8. Definition
The cartesian product A x B of A and B is the set of all pairs from A and B: {{a,b) :a € AAb € B}.

— 2B-+9. Result
Let A and B be arbitrary. Therefore A x B exists*.
Proof ..

For each a € A consider the formula ¢(b, p, a) which is just that p = (a, b). This is of course shortened, but the
defining notions can be replaced here. Regardless, it’s clear that this defines a function over B, where b maps to
(a, b) for our fixed a € A. So replacement says that there is some

R, ={p:3b e B¢, p,a)} ={{a,b):be B}
This is an individual slice of the cartesian product. So consider the function ¥ (r, a) which states r = Ry, i.e.

r = {{a,b) : b € B}. (We can do this by taking the even longer formula vy (r,a) to be Vx (x € r < 3b €
B ¢(b, x,a)).) This defines a function over A, and so another application of replacement yields the set

P ={{{a.b):be B}:ac A}
Hence | J{{{a,b) : b € Bla e A} ={{a,b):ac€ Anbe B} = AxB. —

§2C. Relations

The cartesian product is the basis for most of basic set theory, since it allows us to consider relations and fuctions, and
thus define sequences, and notions of size. Really, if sets are supposed to be devoid of all structure beyond membership,
this idea allows us to put structure back into play, and thus work with more complicated ideas all within set theory.

2C-1. Definition
A relation is a subset R € A x B for some A, B. For any relation R, dom(R) = {x : Iy ({x,y) € R)}, and
similarly, ran(R) = {y : 3x ({x, y) € R)}.

The existence of the domain and range of R can be shown by the union axiom: x, y € | J{x,y) = {x, y}U{x} = {x, y}
so that (x, y) € R implies x, y € | J|J R. Hence we can take the appropriate subset to define the domain and range.
Alternatively, we can use replacement. But resorting to the more basic axioms can be insightful.

Note that then if R is a relation, every subset of R is a relation too. Moreover, the union of relations are relations.
Really a relation is just a set R where z € R implies z = (x, y) for some x and y. So the relation doesn’t need to be
over the same set or have some intuitive reason behind relating elements. Note that for R a relation, we will often write
x R y for (x,y) € R. Note that we can have the relation defined on three sets (or more) just by having (x, y) € R
always having y an ordered pair of some form. We will make this more formal or official later, so for now we focus
on binary relations. Again, we get some immediate facts: for R and S relations,

* dom(R U S) = dom(R) U dom(S);

* ran(R U §) = ran(R) U ran(S);

e dom(R N S) € dom(R) N dom(S); and

* ran(R N §) C ran(R) Nran(S).

Given any relation, we can form the inverse, where we swap all the entries of the ordered pairs:

2C-2. Definition
For R arelation, define R™! = {(y, x) : (x, y) € R} to be the inverse or converse of R.

XiNote that we've also shown that the cartesian product of classes exists as well. In particular, for A and B classes, we have the FOLp-formula
defining AxBbyx € AxBiffdy 3z (x = (y,z) Ay € AAz €B).

13
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The existence of R™! can be shown through a variety of methods, notably replacement. Note that this behaves exactly
as one would expect:

RTINS~
Proof ...

2C-3. Result
Fet R be a relation. Therefore R™! is a relation, and (R~!)~! = R. Moreover, for S a relation, (R N §)~! =

Clearly R™!, as a set of ordered pairs, is a relation. Moreover, (R™!)™! = {{x,y) : (y.x) € R} =
{{x,y).{x,y) € R} = R. To see that the inverse of an intersection is the intersection of the inverses, let
(y,x) € (RN S)~!. Therefore {(x,y) € RN S and so (y,x) € R ' and (y,x) € S~!. Similarly, if
(y,x) € R7! N 7!, then (x, y) must be in both R and in S, so that (y,x) € (RN S)~!. So the two sets
have the same elements, and so must be equal. =

One of the most important kinds of relations is a partial order, notable mostly for the notion of transitivity.

— 2C-4. Definition
Let R be a relation. Write x R y for (x, y) € R. We say R is a realtion over X iff dom(R) Uran(R) = X.

* Ris transitive iff VX Vy Vz (x Ry Ay Rz — x R z).

* Ris symmetriciff Vx Vy (x R y <> y R x).

* Ris antisymmetriciff VxVy (x Ry Ay Rx — x = y).

* Ristotal iff Vx Vy (x,y € dom(R) Uran(R) > (x Ry Vx =y V y R x)).
* R is reflexive iff Vx (x € dom(R) Uran(R) — (x,x) € R).

* R is a partial order iff it is transitive, and antisymmetric.

* R is linear iff it is transitive, antisymmetric, and total.

A relation R is called a strict order if (x, x) ¢ R for all x.

We now get some very easy results about various relations that the reader should check to confirm their intuitions.
* The identity relation id4 = {(x, x) : x € A} is symmetric and antisymmetric.
* R is symmetric iff R = R™!.
 If R is a linear order then R N (A x A) is a linear order for any set A.
« If R is antisymmetric, and dom(R) U ran(R) has more than one element, then R~! # R.
* If R and S are reflexive, then R U S is reflexive.
* If R and S are antisymmetric, then R U S is antisymmetric.
« If R is antisymmetric, and S C R, then S is antisymmetric.
« If R is transitive, then R~! is transitive.
* If R is a partial order, then R U idgom(R)uran(R) 18 a reflexive partial order.
» If R is a partial order, then R \ idgom(R)uran(R) 18 @ strict partial order.
The relations which are of fundamental importance to set theory are well-founded relations, and equivalence relations.

2C-5. Definition
A relation R is well-founded iff for every subset X € dom(R) U ran(R), there is an R-minimal element of X,
meaning an x € X withnoy € X with y R x.

When we investigate well-founded linear orders. It turns out that they are canonical in the sense that they are all initial
segments of each other (up to isomorphism). We will investigate well-founded relations later on. For now, consider
some terminology regarding equivalence relations.
2C-6. Definition

A relation R is an equivalence relation iff R is reflexive, symmetric, and transitive.

An equivalence class of R isa X € dom(R) U ran(R) such that x R y forevery x,y € X.

For x € dom(R) = ran(R), write [x]r, the equivalence class of x, for {y € dom(R) : x R y}.

For X an equivalence class of R, a representative of X is an x € dom(R) such that X = [x]g.

For X a set, a partition is a set P suchthat Vx(x € X - 3Y(Y e PAx €Y))and VY € P(Y C X).

14
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For example, idy is an equivalence relation over X with [x]= = {x} for all x € X. But an equivalence relation is
more general than equality. But in essence, an equivalence relation still acts like it in the following sense.

2C+7. Result
For R an equivalence relation and x, y € dom(R), x R y iff [x]r = [y]r.
Proof ..

If [x]r = [y]r, then by reflexivity, y € [y]g = [x]g implies x R y. So suppose x R y. Ifa € [x]g then x R a.
By symmetry, a R x. Since x R y, symmetry yields that ¢ R y and symmetry again yields y R a, i.e. a € [y]r.
Thus [x]r € [y]r. The same argument shows [y]r C [x]g. Therefore x R y implies [x]r = [y]r. =

2C-8. Corollary
For R an equivalence relation, [x]g = [y]r or [x]g N [y]gr = @ for all x, y € dom(R).

Proof ..

\\Suppose a € [x]r N [y]r. By transitivity and symmetry, x R a A a R y implies x R y so that [x]g = [y]r.

Hence, the set of equivalence classes partitions the domain of R.

F 2C-+9. Corollary
F

or R an equivalence relation, {[x]g : x € dom(R)} is a partition of dom(R).

Conversely, partitions give rise to equivalence classes, and thus equivalence relations and partitions can be seen as the
same thing.

2C-+10. Result
Let X be a set and let P be a partition of X . Therefore the relation R = {{a,b) € X xX :3Y € P(a€ Y Ab € Y)}
is an equivalence relation over dom(R) = X.

Proof ...

Symmetry is immediate by the commutativity of A. Since each x € X has some Y € P with x € Y, reflexivity
is true of R, and this shows dom(R) = X. So it suffices to show transitivity. Suppose x,y € ¥ € P and
v,z € Y € P. As apartition, there is only one Y” € P with y € Y” sothatY = Y’ andthus x, y,z € Y € P,
which yields x R z. =

The main point of equivalence classes is just that they give a new notion of equality by considering the equivalence
classes instead of the equivalence relation so directly. This allows us to say things like “x and y are the same modulo
R”. Similarly, it allows us to define other relations so long as they respect the equivalence relation. In doing this, note
that often the equivalence class [x]g will have multiple elements: [x]g = [y]r although x # y. So if we are to make
a definition about [x] g that makes reference to x, we need to ensure that this gives the same thing if we were to choose
y instead as our representative.

2C+11. Result
Let ~ be an equivalence relation on X, and let R € X x X. Suppose x R y iff x’ R y' forx ~ x and y ~ y'.
Therefore the relation R/~ over X,~ = {[x]~ : x € X} defined by

[x]~ R/~ [¥]~ T xRy
is well-defined, meaning independent of the choice of representatives.

Proof ...

\\Suppose [x]~ = [x']~ and [y]~ = [y']~. Therefore x R y iff x" R y’, meaning [x]~ R/~ [y]~ iff X' R y'. -

This is the idea from algebra that allow us to “mod out” by an equivalence relation, like via the orbits induced by other
groups or ideals of a ring, generating a new group or ring. There are many applications, which we will see later.
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§2D. Functions

We introduce some simple notions about functions pictured below. In particular, the notion of hitting every element in
the range, and the notion of “doubling up”: sending two elements to the same place.

— 2D+1. Definition
A function is a relation f C A x B such that for each x € A there is exactly one y € B with (x, y) € f. We write
f:A— B,and y = f(x) in this case.

* Wecall f: A — Binjectiveiff f(x) # f(y) forall x # y in A.
* Wecall f: A — B surjective iffran(f) = B.
* Wecall f : A — B bijective iff it is injective and surjective.

We also call such functions injections, surjections, or bijections. Note that a function being surjective depends on how
we regard it: obviously f : dom( f) — ran( f) is surjective for any function f. Clearly if f is a function f : A — B
and B C C, then we can also regard /' : A — C which may no longer be surjective. So surjectivity is only ever
referenced when the co-domain—the object to the right of the arrow—is specified. Note also that in this text, instead
of ran( f) for the “range of f”, we will write im( /') for the “image of f”. This is merely a personal preference to
distinguish relations from functions.

Occasionally, we might reference a function by the notation x +— f(x). For example, x + {x} is a function and
(x = {x})(@) = {@}. This is mostly done to avoid introducing too many letters, especially if the function is only
going to be referenced a few times. The domain of this function isn’t clear from the notation, and usually is left to
context. For example, x + x2 + 2 is not an injective function with the usually assumed domain of real numbers, R
(whatever this might be in our set theoretic framework, since we haven’t defined it yet). But if we restrict our domain
just to positive real numbers, the resulting function is injective.

f o a g h
a B b ‘ o o
b 14 c ) \ B ' B
¢ 8 d ) . §
e e

2D-2. Figure: Aninjection f, surjection g, and bijection &

Because the objects we deal with in set theory are sets—in particular, sets that are hereditarily sets, meaning all their
members are also sets, and the same holds for them too—we need to make the distinction between the “pointwise image”
of a function as opposed to the “value” of a function. To motivate the example, consider the set A = {a, b, {a}} and
a function f with domain A. In general, there is a difference between f(a), f({a}), and { f(a)}. But sometimes we
do want to consider the set of values of a function, like { f(a)}. Similarly, sometimes we want to take a function, but
restrict our attention to a smaller subset of its domain. To denote the difference, we have the following definition.
2D-3. Definition

Let f : A — B be a function over sets A, B. Let X € A. Write the pointwise image of f under X as f"X =

{f(x) :x e X}.

Write the restrictionof ftoXas f | X ={{a,b) e f:ae X} = fN(X xim f).

So in the example above, f"{a} = {f(a)} while f({a}) # f"{a}. Note that im(f) = f"dom(f). Since restriction
allows us to chain our domain, dom(f | X) = X; we can also write /"X = im(f ' X). We also have the following
operations on functions: composition and inverses (which might not be functions).

2D-4. Definition
Let f : A — B be a function over sets 4, B. Let f~! be the relation {(b,a) : (a,b) € f} C B x A.
For g : B — C, the composition g o f is defined by {{a,c) : 3b € B(f(a) = b A g(b) = ¢)}.

It should be clear that g o f is also a function, now from dom( f') to im(g).
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f g
a 1 (07
b 2 B
c 3 Y
gof
—

2D-5. Figure: Example of composition

Functions are fundamental to mathematics, as they are a means of transformations. More than functions, really, the
importance is placed on the properties of functions. Most graphs of most functions will be set-theoretic haze: just a
bunch of points with no discernible relationship between the points beyond satisfying the definition of being a function.
So most applications will care about functions that preserve certain relationships. These are typically called homomor-
phisms, embeddings, and so on. We have already defined one such property: preserving inequality, or injectivity. But
the key thing for now is to recognize that functions can be interpreted in purely set theoretic terms.

Let me take a moment to talk further about bijections, injections, and surjections. When letting their sheep out to graze,
one technique that shepards used to make sure all sheep were accounted for was to pick up a pebble every time a sheep
left. Then a pebble was dropped for every sheep that returned. So if there were any left over pebbles, there were sheep
left out. Stated in terms of functions, there was a function f : sheep — pebbles which was injective—two different
sheep get two different pebbles—and surjective—every pebble corresponds to a sheep—and hence bijective. Going
back to the example, this means we have the same number of pebbles as sheep, and we have confimed this without
counting. So bijections really form a notion of size between two sets: we merely rename the elements via the bijection.
For a very simple example, consider {a, b, ¢} and {«, §, y}. Renaming a ‘a’, b ‘B’,and ¢ ‘y’, we get {a, b, c} should
have the same number of elements as {«, 8, y}, which it clearly does, and we did this without directly counting both
and then seeing that the two numbers line up.

One bijection Two bijections
1 :
S :
) 3
2D-+6. Figure: Counting without and with numbers
In some sense, counting just adds a third set of numbers, and then considers bijections to the numbers as a means of

counting each set. So to remove the middle-man of numbers—which we have not yet introduced in set theoretic terms
yet—we have the following definition.

2D-7. Definition
’Iet A and B be sets. Write A =, B iff there is a bijection f : A — B.

Ideally, we’d like to say the cardinality of A and B are the same. But without further technology in the form of ordinals,
we have no means of saying this. Instead, we will say that the cardinality of a set A is the class of {B : A =g,e B}.
We also have a notion of order on these equivalence classes in the following sense.

2D-8. Definition
’Iet A and B be sets. Write A <q,. B iff there is an injection f : A — B.

For example, A C B has A <y, B. Note that this is in essence the only way to have a size less than or equal to a set
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in the following sense.

2D+9. Result
A <, B iff there is some C =, B with A C C.
Proof ...

To see this, note that if A <g,. B, then the injection f : A — B witnessing this has f"4A C B. So take
C =(B\ f"A) U A, where clearly A C C. Ostensibly, C =g, B since it seems we can consider the function
F : C — B defined by
Fo) = {b ifbeB\ [
f(a) ifae A.

The only issue with this is that A N (B \ f"A) might not be empty, which would make the above ill-defined.
But assuming A N B = , then F is a bijection. To remove the assumption A N B = @, consider instead
C =B\ f"A)x{@})U(Ax{{0}}). with F({(b,@)) = b and F({a,{@})) = f(a). This yields the appropriate
bijection. 4

We will see later that A <y, B and B <y, A implies A =g, B, as suggested by the notation. But the long proof of
this isn’t instrumental to us for now. What’s important is the notion of bijection giving a notion of size.

We have the following easy properties of size and bijections. Note that “f : A — B” is not just a statement that
f € A x B,but that f is a function with f defined on all of A (so dom(f) = A) and im(f) C B.

*If f:A— Band g : B — C areinjective, then g o f : A — C is injective.

« If f: A — Bissurjective, and g : B — C is surjective, then g o f : A — C is surjective.

*If f: A— Bandg: B — C are bijections, then go f : A — C is a bijection;

* equivalently, if A =g, B and B =g, C then A =, C.

« If f: A — B isabijection, then £~ : B — A is a bijection;

* equivalently, A =,. B iff B =,. A forall A and B.

* If f: A — B isinjective, then f : A — im f is a bijection;

* equivalently, X =g, f"X for f : A — B injective with X C A.
All of this has been done without the notion of counting, but the benefit of being able to count is that it opens up a new

theory of “numbers”. So we will return to the notion of size or cardinality later, after we have introduced the ordinals.
But now we should have a basic intuition for functions and size.

§2E. Transitive sets

Let’s take a moment to look at so-called “transitive” sets. In some sense, this is a misnomer, since it is not the set that
is transitive, but the membership relation.

2E-1. Definition
’z set x is transitive iff membership into x, meaning {{a,b) : a € b A (b € x V b = Xx)}, is transitive.

So x being transitive is the same as saying a € b € x implies a € x. Equivalently, b € x implies b C x.X! In some
sense, this means that transitive xs not only contain various a with @ € b € x, but that we go all the way down to the
basis of the universe: @. This is partially shown in Figure 2 E « 2.

But to prove this, we need an additional axiom. In another sense, x being transitive means that the structure (x, €) is
a submodel of V: they both interpret € in the same way. As a result of this, we get some nice model-theoretic results.
Below is just one example of this showing that transitive sets have nice absoluteness properties that we will consider
later.

XiOf course, we cannot have a set where Vb (b € x — b € x) by the same reasoning as in Russell's Paradox (2 * 6).
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{0.{x. y}} 9, {x, v}
=X,
{9, x} not transitive

={0.{0}} |y ={{0}}

2E-2. Figure: The membership relation compared to a transitive set

2E+3. Result
ﬁet X be transitive. Leta,b € X. Therefore X = (X, €) E “a C b”iff VE “a C D"
Proof ...

To say that a C b is just short-hand for Vy (y € a — y € b). Since X and V interpret € the same way, if y € X,
XE“yea—->yeb”iffVE “yea— yeb” Since X C V, y ranges over more sets in V than in X: if
V E “a C b”, then X E “a C b”. The other direction, if V F “a € b”, then there must be some element y € a
with y ¢ b. But since X is transitive witha,b € X,y € a € X implies y € X. Hence VE “yea Ay ¢ b”
implies X F “y € a A y ¢ b”, because they interpret € in the same way. But then X = “a & b”. .

Finding examples of transitive sets and examples of non-transitive sets is easy. In particular,

1. @ is transitive. {@} is transitive.

2. If x is transitive, then x U {x} is transitive (any element b € x U {x} is still a subset since b C x C x U {x}).

3. Writing 0 = @, 1 = {0}, and 2 = {0, 1}, then from the above, 0, 1, 2, and {0, 1, 2} are transitive, but {1}, {0, 2},
and {2} are not.

4, If x is transitive and y C x, then x U {y} is transitive.

Now we introduce the axiom of foundation. To motivate the axiom, it’s difficult to think of a set which could be an
element of itself. Considering a more physical picture, you can’t place a box (completely) inside itself—the concept
wouldn’t make any sense. Indeed, Russell’s Paradox (2 ¢ 6) partly goes through because we consider that the collection
of everything that exists is an element of itself. This would suggest we should assume Vx (x ¢ x) as an axiom. This
would rule out some direct approaches, but we could still code the counter-intuitive situations through other loops:
x € yand y € x, for example.

The axiom of foundation rules out loops of arbitrary length, and has a great number of consequences. Intuitively, the

idea can be motivated as above, but it can also be motivated though the iterative conception of what a collection is:

namely, collections are built up of smaller things that have come before in a certain sense. This will turn out to be

equivalent to the axiom. Explicitly, foundation merely states that membership is well-founded.

— 2E-+4. Definition (Axiom)
(Foundation) for each x, there is a e-minimal element of x: Vx Iy (y e x AVz (z € y — z ¢ X)).

— 2E-5. Corollary
Assume the axiom of foundation. Therefore:

1. We never have x € x.

2. In fact, there are no finite loops xg € x; € --+ € X, € Xo.
3. If x # @ is transitive, @ € x is the €-minimal element of x.
4. x is transitive iff x U {x} is transitive.
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Proof ..

1. Suppose x € x. By foundation, there is a €-minimal element of {x}, which must be x. So any y € x has
y ¢ {x} by minimality. But x € x has x € {x}, so we have a contradiction.

2. Consider the set {xg, - - - , x, }, which exists by finite applications of union and pairing. This has no e-minimal
element, since any x; has x;_1 € x; fori > 0 orelse x, € x; fori = 0.

3. If x is transitive, then every element y € x is a subset of x. Hence if y # @ is €-minimal, then there is some
z € y € x, which yields z € x and z € y, contradicting the minimality of y. Hence any €-minimal element
must be @.

4. We know that x being transitive implies x U {x} is transitive. For the other direction, if x U {x} is transitive,
then any a € b € x U {x} must have either @ € x or a = x. But a cannot equal x without us having a finite
loop: either x € b € x orx € b = x. Hence a € b € x U {x} requires a € x. This clearly implies that x is
transitive sincea € b € x € x U {x} impliesa € x. =

Important for later is the idea that any set is contained in a transitive set, which should seem rather clear: just continually
add in the elements missing. To formalize this, however, we need some more ideas in general: the natural numbers. In
general, we need ideas which will take the form of ordinals. In particular, we need a better idea of how to talk about
rank. 1f @ is the base of the universe, then {@} is just above it, and so has a rank one higher. Similarly, collections built
from these like {@, {#}} and {{@}} are a rank higher than that. This is the iterative concept we will explore: {#} comes
“before” {@, {@}} because it has a lower rank.

§2F. Formula abbreviations

We will often make abbreviations to our formulas to change their domain of discourse. For example, instead of writing
“Yx (x € A — ¢)”, we will write “Vx € A ¢”. Similarly, instead of “Ix(x € A A ¢)”, we will write “Ix € 4 p(x)”.
These are standard translations of the more natural language ways of phrasing the formulas: “for all x in A4, ¢(x) is true”
and “there is an x in A such that ¢(x) is true”. We may also do this with other properties. For example, “Vx < a ¢(x)”
stands for “Vx(x < a — ¢(x))”. Mostly this just serves to simplify formulas and make them easier to read, which we
have already done with other abbreviations like ‘C’, ‘U’, and so forth.
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Section 3. Well-orders and Ordinals

We will primarily be working with well-orders. Ordinals themselves are the “canonical” well-orders in that they are
well-ordered by membership. They will also be special transitive sets, giving some credence to the axiom of foundation,
since these canonical examples of transitive sets are well-ordered.

3+1. Definition
A relation R is a well-order iff R is linear, and well-founded.

We will see later that all well-orders on their domain and range are isomorphic to ordinals with the membership relation.
First we must figure out what the ordinals are, and what properties they have.

§3A. Introducing ordinals

3A-+1. Definition
A set « 1s an ordinal iff « is transitive, and € is a strict well-order of «.

Note by foundation that € is well-founded on any set . In the absence of the axiom of foundation, the requirement
that € be well-founded isn’t redundant. In the absence of foundation, we could have a set x = {x} which is clearly
well-ordered by €, but this isn’t a strict order: x € x.Xl For the remainder of this section, we will not assume the
axiom of foundation to show that the ordinals behave the same regardless. The well-founded property of membership
on ordinals is used extensively in the arguments below. In essence, the results say that collection of ordinals themselves
is linearly ordered by €, rather than just each individual ordinal.
— 3A+2. Result
Let «, B be ordinals. Therefore,

1. Any y € « is an ordinal.

2. ¢ € BVa = pisequivalentto o C B.

3.aef,pea,ora = 8.

4. o U B is an ordinal.

Proof ...

* For§ € o, suppose y € x € §. We know y,x € «. Since « is linearly ordered by €, it follows that either
§ € yory € é. Clearly § € y is impossible by well-foundedness. Hence y € § verifies that § is transitive.
Anti-symmetry follows from antisymmetry on «: y € «. Similarly, totality follows from the totality on «.

e Clearly if « € B ora = S then @ C f by transitivity. So suppose « C f for « an ordinal, but that the
conclusion fails: @ # f and « ¢ 8. Without loss of generality, take § as the least failure in the sense that for
eacha’ € B, a C o implies ¢ € o’ or @ = ' (to do this, take any ordinal S witnessing the failure, and then
consider the subset { € Bo : B has it fail} and thus take a minimal element 8 by well-foundedness of € on
ordinals).

Consider 8 \ « as a subset of . Since 8 is well-ordered by €, there is a least element o’ € 8\ . Now suppose
y € a. Clearly y € o' by totality of € on 8. Hence « C «’. By minimality of 8, « € &’ or o = «'. Therefore
o € B, a contradiction.

XiliEnsuring the well-order is strict gets rid of these degenerative cases in the absence of foundation. But it also allows for the usual arguments
to go through. A typical argument will be to consider the €-least counter example ¢ and conclude that for every B € «, B has the property we're
after. This doesn't work if @ € & = {a} because we're critically assuming B # «, and this is why € being strict is important (although it's not very
important).
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* Let « be fixed. Let 8 be an ordinal with o ¢ B, @ # B, and B ¢ «. Without loss of generality, take § as the
least failure in the sense that for each @’ € B8, @ € &', « = o’ or &’ € « (to do this, just take any ordinal 8¢
witnessing the failure, and then consider the subset {8 € B¢ : B has it fail} and thus take a minimal element
by well-foundedness).

Clearly if o« € o’ € B for any o’ € B, then (2) yields that @ € B. So then &’ € « for every &’ € 8. But then
B C asothat 8 € @ or B = « by (2), again, a contradiction.

 That @ U B is transitive is immediate: any y e ¢ U hasy e v ory € B. Soifx € y,thenx e xorx € §
and hence x € o U 8. Well-foundedness follows from the property holding on « and on f: for any subset X,
o N X has a minimal element oy and 8 N X has a minimal element By, and one of these must be minimal for
o U B. Antisymmetry is trivial. Totality follows from (1) and (3). —

Some easy examples of ordinals can be gotten from Subsection 2 E. In particular, @ is an ordinal, and we have the
following result.

3A-3. Result
’Iet « be an ordinal. Therefore o U {o} is an ordinal.

Proof ...

We know by Corollary 2 E « 5 that @ U{«} (or rather the memberhsip relation on it) is transitive. So all that suffices
to be shown is antisymmetry, and totallity of €. Since antisymmetry is vacuously true for well-founded relations,
as in Corollary 2 E ¢ 5, we only need to show totality. But this follows from Result 3 A «2: all elements of & U {«}
are ordinals, and so can be related by €.

In particular, for @, we have {0}, {@,{@}}, and so on as ordinals. To make the notation a bit nicer, we will use the
extremely suggestive notation below.

3A-4. Definition
Eor « an ordinal, write & + 1 for o U {a}. Write 8 < « for 8 € «. Write 0 for @.

Hence 0,1 =0+ 1,2 =14 1,3 =2+ 1 are all ordinals. Note further that then every ordinal @ = pred_ («) so that,
for example, 5 = {0, 1,2, 3, 4} (which has five elements). Note that the use of “4-1” is appropriate here as a kind of
successor operation.

3A-5. Corollary
i

et « be an ordinal. Therefore there is no ordinal 8 between o and o + 1.

Proof ...

Obviously,« € B € o + 1 requires § = « or § € «. Since @ ¢ o by well-foundedness, we must have 8 € «,
contradicting antisymmetry and that & + 1 is an ordinal. =

So far we are able to constructn = 1 + --- + 1 (n additions of 1) for each natural number n. But (provably) we can’t
show that the set of all of these ordinals exists from the axioms thus far. To do this, we must introduce the axiom of
infinity: that there exists an infinite set of these.

3A-6. Definition (Axiom)
’/(Inﬁnily) The set of natural numbers (or a set containing them) exists: AN (0 € N AVx € N (x U {x} € N)).

The definition isn’t able to properly say that the set of natural numbers exists without the notion of an ordinal. So we
have to note the following result to then define the set of natural numbers. Clearly the result follows from foundation,
but to get better acquainted with ordinals, we don’t resort to this fact.
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3A+7. Theorem
For any non-empty set X of ordinals,

e sup X := | J X is an ordinal, and | J X > « foreach« € X;
e inf X := () X is an ordinal, and (| X < « foreach« € X;

e inf X € X so that inf X = min X is the minimum element of X .

Proof ..

+ It’s clear that sup X > o for each ¢ € X. To see that sup X is an ordinal, transitivity follows from the
transitivity of each ordinal in X: x € y € sup X has y € « for some o and hence x € a C sup X implies
x € sup X. Antisymmetry is trivial, and totality follows easily from Result 3 A « 2.

+ It should be clear that then inf X < « for each @ € X. To see that inf X is an ordinal, if y € x € « for each
o € X, then y € o for each ¢ € X so that inf X is transitive. Antisymmetry is again trivial, and totality is
again easy to see as inf X is still a set of ordinals by Result 3 A+ 2.

* Since every @ € X has ¢ < sup X, it’s easy to see that ¢ < sup(X) + 1 so that X < sup(X) + 1. As
€ is well-founded on sup(X) + 1, it follows that X has a minimal element min X, which is an ordinal. As
()X < min X, by (2), it suffices to show min X C () X. Butthisisclear: every elemente € X hasmin X C «

sothatmin X € () X. Hencemin X =\ X € X. -

Thus far, we’ve only seen ordinals where sup X = max X € X orelse X = (. But this won’t always be true in
general. In fact, there is a whole class of ordinals where this is false. Such ordinals are called limit ordinals, and in fact
all ordinals can be broken down into limits or successors (or 0). As a hint of what to come, the set of natural numbers
will be a limit ordinal, and in fact the least such.

— 3A-8. Definition
Let o # 0 be an ordinal. « is a successor ordinal iff @ = B + 1 for some ordinal 8. « is a limit ordinal iff @ = sup «.

This classifies all ordinals.

— 3A+9. Theorem
Let @ be an ordinal. Therefore « = 0, or @ = sup(«) + 1, or @ = sup .

Proof ...

Leta # 0. If @ = sup«, then for each § < «, there is an y < « with 8 < y. In particular, by Corollary 3 A« 5,
B+ 1 < a. Soit’s easy to see that « = sup« is equivalentto VB < a (8 + 1 < ). So if @ # supa, there
issome B <awithf +1 £ a. Thus § <a < B+ 1so by Corollary 3A*5, « = B + 1. But then for every
y <a,y < B,implying § = sup« and thus ¢ = sup(«) + 1. —

Let’s now collect the major properties of ordinals that we know so far.

— 3A+<10. Theorem
For all ordinals «, 8,

« 1s a set of ordinals;

o = 0, o is a successor ordinal, or « is a limit ordinal;

0 is the least ordinal;

the ordinals are well-ordered by €;

a U = max(a, B);

a N B = min(a, B);

a < B iff e C B (although not all sets x € B are ordinals);
infoo <supo <o <a+1,and fora > 0, infa < supa.

el BN Gl S e
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Proof ..

1. follows from Result 3 A «2 (1).

2. follows from Theorem 3 A« 9.

3. follows from Definition 3 A+ 4: y < 0 implies y € @, which is always false.

4. has linearity follow from transitivity and Result 3 A <2 (2). To show well-foundedness, let X be a non-
empty set (or class) of ordinals. Taking ¢ € X yields that X N (e« + 1) € o + 1 which then has a least
element B € X N (« + 1). Any least element y € X must have y < o and thus y € X N (« + 1) so that B
is the least element of X .

5. follows from Result 3 A «2 (4) and (2).

6. follows from Theorem 3 A« 7.

7. follows from Result 3 A +2 (4).

8. follows from Theorem 3 A« 7.

Now formally, we’ve defined a well-order to be a certain kind of set, which would make (4) false: the collection of all
ordinals doesn’t constitute a set. But it’s easy to see what is meant by € well-ordering the ordinals (just the defining
conditions without the additional requirement that the relation—e here—be a set).
3A-11. Result (Burali-Forti Paradox)
—3ds Vx (x is an ordinal — x € s). Informally, the collection Ord of all ordinals is not a set. In particular, there is
no largest ordinal.

Proof ..

There is no largest ordinal, since the largest ordinal o has o 4 1 > « by the reasoning above: « 4+ 1 = « implies
a € «, contradicting well-foundedness (even a set {«} has no least element, since a least element 8 requires
Vz € B (z ¢ a), which isn’t true for § = ).

To show that Ord can’t be a set, by Theorem 3 A 10, € well-orders Ord. Since each « € Ord is transitive, it
follows that « € Ord and hence Ord is transitive. Therefore Ord is an ordinal. But then Ord is the largest ordinal,
contradicting the idea above. =

Let’s return to the idea of natural numbers. Notice that by our classification, every natural number is a successor
ordinal, and in particular is of the form O + 1 + - -- 4 1 for some (natural) number of +s.

3A-+12. Definition
Write w for the least limit ordinal, the set of natural numbers.

To see why w should be the set of natural numbers, note that the supremum of the natural numbers must be a limit
ordinal: n is a natural number implies # + 1 is too, so if n < sup N then n + 1 < sup N, meaning sup N is a limit
ordinal. Moreover, sup N must be the least limit ordinal, since every n < sup N is a natural number, which means it’s
either a successor or 0. So this implies @ = N, but we haven’t shown that @ actually exists, yet.

3A-+13. Result
The set w, the least limit ordinal, exists.

Proof ..

Let N be as in the axiom of infinity. Take the subset N’ = sup{a € N : « is an ordinal} so that N’ is an ordinal.
We need to show that @ < N’. If N’ has a limit ordinal below it, then clearly w is least by definition. So if N’
has no limit ordinals below it, we want to show that N/ = w.

Leta € N’ be the least such that « € w \ N’. As w is the least limit ordinal, & must be a successor or 0. If @ = 0,
then 0 € N’ by hypothesis that ] € N so0 <1 < N'. Ifa = B + 1, then 8 € w. By the minimality of 8,
B € N’ so that by the hypothesison N, 8 +1 =« € N and hence @ + 1 € N so that@ < N’, a contradiction.
Therefore w € N’. But then as ordinals, w < N’ or w = N’. Since N’ has no limit ordinals below it, N’ = .-
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It would seem that the reasoning alone gives the existence of w, but really the idea only only characterizes w. We still
need the existence of such an N as in the axiom of infinity to ensure the existence of w.

With the natural numbers at our fingertips, we can show that w satisfies all the usual properties that we want, namely
the axioms of peano arithmetic, PA. To do this, we need a notion of addition and multiplication of ordinals. To do this,
we need a better way of defining operations on w.

As aside note, we have a characterization of @ in meta-theoretic terms (able to be reached from 0 by finite applications
of adding 1). What we’ve done now is show that in V, this coincides with the characterization of w as the least limit
ordinal. This formal characterization, however, isn’t necessarily the set of natural numbers. Consider the following
from model theory: in the language FOL(€, ¢) where ¢ is a constant symbol, the theory of set theory adjoined with
“w > c > 14 ---+ 1” (n times) for each real-world natural number n € V yields a theory T,, that is consistent
assuming that set theory is consistent (just interpret ¢ as n + 1 in V). Hence every finite subset of the theory T =
{¢ : ¢ in T,, for some n a natural number} is consistent so that T itself has a model by Compactness (1 D+ 2). But in
this model M E T, we have M E “w > c¢M > 1 4 ... + 1” (n times) for each real-world natural number n < w. So
oM can’t be the same as  in the real-world V. All of this is to say that we must be careful about using our intuitive,
meta-theoretic characterization of w to formally prove things about it from set theory. To ensure that we can prove all
of the intuitive properties of w formally, we resort to the principle of induction.

§ 3B. Finitary recursion and induction

Recall the defining property of w: if 0 € w,and n € @ then n + 1 € w (and this is all there is in w). In particular, this
yields the following result, called the principle of induction.

3B*1. Theorem (Induction on w)
Eet @(x) be a FOLp(€)-formula. Suppose ¢(0) and ¢(n) — ¢(n + 1). Therefore Vn € w ¢(n).

Proof ...

Consider the set X = {n € o : —¢(n)} and suppose X # @. This has a least element x € X. Note that x # 0 by
the hypothesis. Since w is the least limit ordinal, x = sup(x) + 1 is a successor. But by minimality, ¢(sup(x))
holds and so ¢(sup(x) + 1) holds, contradicting that sup(x) + 1 = x € X. =

Really, this is just a consequence of w being well-ordered. But this reflects the properties of arithmetic that w should
have. The key thing here is that by specifying what happens at 0, and what happens at successor stages, we can define
something on all of w. This idea is referred to as recursion.

The formal statement of recursion is long and clunky. So to better understand it, we give some examples. Firstly, we
would normally define addition by n by f,(x) = x + 1 + --- + 1 where we add 1 ns. The issue with this is that this
definition is informal and meta-theoretic, in some sense. It’s not clear how we would define this function purely in
terms of set theory without resorting to “n-times”. Surely for each x this makes sense, but the map sending n — f;
isn’t so obviously well defined (consider non-standard models with different ws). To get around this, for each x < @
consider the map defined by fy(0) = x and fy(n +1) = fy(n) 4+ 1 forall n < w. Using induction, any functions that
satisfy this agree everywhere so this defines fy on all n < w. Moreover, intuitively, this f satisfies fx(n) = x + n.

Once we have fy for each x < w, we can consider the map sending (x, n) to fx(n). This map, call it ‘4, sends (x, n)
to x 4 n in the usual sense.

To define this whole process more formally, what we’re doing is specifying what happens at the start, and then what
happens at successor stages. So we are given functions f and g, and we define the function / starting with f(0), and
finding the next values based on g and the previous value: forn < w,

h(0) = f(0)
h(n + 1) = g(n, h(n)).
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So to calculate /(2), we start with 2(0) = f(0), and then calculate 2(1) = g(1, £(0)), and then calculate h(2) =
g(2,g(1, £(0))). In principle, we could then keep going to define 4(4), h(5), and so on, meaning /(n) will be some
particular number for each n. This means the function % is determined by these conditions in the sense that it is the
unique function satisfying them. Formally, we have the following theorem. The proof of this theorem is very technical,
and long, and not terribly illuminating, mostly just making precise and formal the intuitive idea of “starting and 0 and
defining what happens next determines it on all of the natural numbers”. It is included for those interested in the precise
details, but for those uninterested, it can be skipped.

3B-+2. Theorem (Recursion on w)
Let f with 0 € dom(f) be a function. Let g be a function from ordered pairs with the first entries being natural
numbers: @ = dom(dom(g)). Therefore, there is a unique function 4 where dom(#) = w and for alln < w,

h(0) = f(0)
hn +1) = g(n, h(n)).

Proof ...

To show existence, we proceed by induction to show that for each n € w, ¢(n, h) defines a unique function #,,,
which is supposed to represent 2 | n. Once we do this, we pull together all of the /s to define 4.

Consider the formula ¥ (n, 1) given formally below:

dom(h):MwAqu( (k =0A(0, f(0)) € h) )

valwIm (k =m+1A(m,v) €hnk g(m,v))eh)
Informally, ¥ (n, h) says
h is a function with domain n and obeys the recusive definition up to n.

One may easily check the following facts:

1. if Y (n, h), then £ is a function;

2. ify(n,h) and m < n, then Y (m,h | m); and

3. ify(n,h)forn =n*+ I, then y(n + 1,h U {(n, g(n™*, h(n*)))}).
We want to now show that for each n < w, there is exactly one i with vy (n, k). This will allow us to use
replacement to collect all of these approximations to the /& of the theorem together.

Claim 1
’/‘v’n <wIh y(n,h).
Proof ...

There are two parts to this: the existence of £, and the uniqueness of 4. Existence holds by induction: since
ho = 0 exists trivially, and h, 4 satisfying ¥ (n + 1, h,4+1) exists by (3) above. So induction shows that
for each n < w, there exists such an & where ¥ (1, h).

To show there is at most one & with ¥ (n, h), let n + 1 < w is the least where this fails (it vacuously holds
for n = 0). Thus we have two functions g # h; where ¥ (n + 1, ho) and ¢ (n + 1, h1). Note by (2) above,
Y(n,ho } n)and ¥ (n,hy | n)hold. So by the minimality ofn+ 1, h¢ | n = hy | n. So the only place the
two functions can differ is at n: ho(n) # hi(n). But in satisfying v, we must have that fork =n = m + 1,
(k, g(m, h;(m))) € ho, hy,1.e. ho(n) = g(n,ho(m)) = g(n, h1(m)) = hy(n), a contradiction. =

Thus by replacement, we have the set {/, : n € w} where ¥ (n, h,) for each n < w. Therefore |, ¢, hn = h is
a function with domain w, and for each n < w, h satisfies ¥ (n,h | n). Thus 2(0) = (2 |} 1)(0) = f(0) and
hn+ 1) =0 tn+2)n+1)=gn,(h |} n+2)(n)) = gn,h(n)), showing that i shows the existence of
such a function as in the theorem statement.

Now for uniqueness, suppose /i’ # h also satisfied the hypothesis. Therefore for eachn < w, ¥ (n,h’ | n) holds
so that uniqueness of the parts yields &’ | n = h | n foreachn < w. Hence W’'(n) = (W' ' n+ D)(n) = (h
n+ 1)(n) = h(n) foreachn < w. Thus i’ = h. =
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The above theorem isn’t actually given in its fullest generality: we are allowed more variables. As long as the order
we proceed through the tuples in is well-founded, we are guaranteed the result by the same idea as above. Another
example would be to consider building a tree of finite length sequences of Os and 1s. We can proceed by the above idea
to define 4 (t) for any 7 in the tree by breaking down into cases: defining #(7™(0)) and 4 (z (1)) for arbitrary t gives
a definition to & generally: A((0,1,0,0, 1)) is given by looking at 4 (@), then looking at 2(@~(0)), then 2({0) (1)),
and so on. The proof of the existence and uniqueness of 4 is exactly the same.
— 3B-+3. Corollary
Let X be a set, and let T be the tree of finite sequences of elements of X. Let f with @ € dom( f) be a function.

Let g be a function of the form g : X x T x A — B for some sets A € B. Therefore there is a unique function
h:T — Awhereforallt € T and x € X,

h(@) = f(9)
h(r™(x)) = g(x. 7. h(1)).

Going beyond this is more difficult, because it’s unclear how to deal with limit stages with just the above information.
So we must consider the fransfinite versions of these.

§3C. Transfinite recursion and induction

The existence of limit ordinals is incredibly powerful, as it allows us to form larger and larger ordinals beyond just
. To go further, we need a better way of defining or constructing these ordinals. To do this, we use the notion of
transfinite recursion and induction. Intuitively,  + 1, @ + 2, @ + 3, and so on have all been defined. If we wish to
define w + w, we could do this as the least limit ordinal after w, but this clumsy characterization isn’t sustainable to
define o + B for general ordinals « + B. To do this, we use the characterization of ordinals into 0, successors, and
limits. If we specify the definition at 0, at successors, and at limits, we will have defined it everywhere. The idea of
transfinite recursion makes this explicit.

Again, first we have the fundamental property that allows us to do this: transfinite induction. The idea was already
noticed in Theorem 3 A < 10 (4). But to make it explicit, we have the following theorem.
3C-+1. Theorem (Transfinite Induction)

Let ¢(x, W) be a FOL(€)-formula with ¥ parameters. Suppose ¢(c, ¥) holds whenever VB < a ¢(B, V). Therefore
for every ordinal «, ¢(a, V).

Proof ...

Otherwise, take « the least such that —¢ (e, ¥)). Thus for every 8 < «, ¢(8, ¥). Hence by hypothesis ¢(«a, V), a
contradiction. -

This also applies to the natural numbers, but stated this way allows us to incorporate limit ordinals. If we had simply
left the same sort of statement as in Induction on w (3 B+ 1), we wouldn’t necessarily have the result for @, much less
all ordinals «. In particular, consider the property of being 0 or a successor ordinal. Clearly this holds for 0 and if it
holds for «, it holds for & + 1. But this never allows one to reason their way to the limit ordinals: only successors of
successors and so on.

To make the notion of transfinite recursion formal, we need three functions specifying what happens at stage 0, what
happens at successor stages, and what happens at limit stages. This idea of breaking down into cases proceeds in
precisely the same way as in Recursion on @ (3 B +2). But there is a slightly easier way to state it formally. Rather
than breaking down into more and more cases with more and more classifications, the main idea of recursion is just
that we can calculate the next value from the previous ones. So the value at @ should be determined by the values on
all n < w. Stated formally, this yields the much more compact version below.
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3C-2. Theorem (Transfinite Recursion)

Let o be an ordinal. Let f be a function, writing f(x) = @ for x ¢ dom( /). Therefore there is a unique function g
with domain « such that for all 8 < «, g(8) = f(g | B).

Proof ...

Assuming existence, uniqueness follows easily by induction on «. For « the least such where this fails, there are
then functions g # g’ where g(8) = f(g | B) and g’(8) = f(g’ | B) forall B < «. But by minimality of v,
g' M B=g !l Bsothatg(f) = f(g' I B) = g(B), meaning g(B) = g'(B) forall B < o, and thus g = g

To show existence, proceed as in Recursion on @ (3B +2). In particular, consider the formula v (8, g) which
says that g is a function with domain 8 and Vy < B (g(y) = f(g | y)). By induction on 8, we can show
Alg (B, g). To see this, let § be least where this fails. Hence for each y < B, 3!g ¥ (y, g). By replacement
we getaset {g, : ¥ < B}. One can easily see that Y (y, g) implies ¥ (8,g | §) forany § < y < B. Hence
the union ¢ = (J{g, : ¥ < B} is a function with domain §, and one can easily check that for each y < B,
g(y) = f(g ' ). Uniqueness follows from the uniqueness of each g, = g | y as in Recursion on w (3B +2).
_|

The idea above actually extends to Ord in the sense we can get define an output on every ordinal . Although we won’t
get a g such that Ord C dom(g) (since g needs to be a set), we can still define what the output will be at any given o by
considering the resulting function with domain o + 1. Uniqueness ensures that this output doesn’t vary with the change
in domain. So it makes sense to say that this defines a function on all of Ord, even though only the approximations
to this function exist. Formally, we might say ¢(«, y) holds iff 3g (g is a function with dom(g) = ¢ + 1 A VB <
a+1(g(B) = f(g | B)) Ay = g(a)). The reasoning above tells us that Vo € Ord 3!y ¢(«, ). So this is the sense
in which we have defined a function on all of Ord.

§3D. A word on sequences and functions

Although much of this section has been stated in terms of functions, it’s perhaps most intuitive to think of functions
from ordinals as sequences: for each entry in a sequence, there is a subsequent entry, and there should always be a least
point in the sequence where something happens. In most other branches of math, the only sequences that appear are
those of length w, or else finite.

3D-1. Definition
A sequence is a function f with dom( f) as an ordinal (or dom( f) = Ord, in which case f is a class). The length
of a sequence is its domain.

This notion of a sequence is incredibly important if we want to define functions with more than just finitely many
inputs. Thus far, if we wanted a function from tuples in A, B, and C to D, we’d need to consider f : Ax BxC — D.
The introduction of sequences allows us to consider tuples instead as sequences: (a, b, c) can be identified with the
function f : 3 — AU B U C where f(0) 